
Association for Computing Machinery
2 Penn Plaza, Suite 701
New York, NY 10121-0701

Volume XXXII Number 2 August 2012

Table of Contents
Newsletter Information
From the Editor’s Desk 3
Editorial Policy 4
Key Contacts 6
TLM Request Response Channel in SystemAda - Negin Mahani 9

Ada Gems
Gem #96: Code Archetypes for Real-Time Programming - Part 4 - Marco Panunzio 17
Gem #97: Reference Counting in Ada - Part 1 - Emmanuel Briot 24
Gem #98: High Performance Multi-core Programming - Part 2 - Pat Rogers 28
Gem #99: Reference Counting in Ada - Part 2: Task Safety - Emmanuel Briot 31
Gem #100: Reference Counting in Ada - Part 3: Weak References - Emmanuel Briot 33
Gem #101: SOAP/WSDL server part - Pascal Obry 35
Gem #102: SOAP/WSDL client part - Pascal Obry 37
Gem #103: Code Archetypes for Real-Time Programming - Part 5 - Marco Panunzio 39
Gem #104: Gprbuild and Configuration Files - Part 1 - Johannes Kanig 43
Gem #105: Lady Ada Kisses Python - Part 1 - Emmanuel Briot 45
Gem #106: Lady Ada Kisses Python - Part 2 - Emmanuel Briot 47
Letter by SIGAda Chair on changes in By-Laws 50

SIGAda Annual Report, July 1, 2011 - June 30, 2012 - Ricky Sward 52

Reusable Software Components - Trudy Levine 55

High Integrity Language Technology - SIGAda 2013 Conference Call for Proposal (CFP) 63

16th International Real-Time Ada Workshop - IRTAW 2013 65

18th International Conference on Reliable Software Technologies - Ada-Europe 2013 67

A Publication of SIGAda,
the ACM Special Interest Group on Ada

To subscribe to the ACM Digital Library, contact ACM Member Services:

Phone: 1.800.342.6626 (U.S. and Canada)
+1.212.626.0500 (Global)

Fax: +1.212.944.1318
Hours: 8:30 a.m.-4:30 p.m., Eastern Time

Email: acmhelp@acm.org
Mail: ACM Member Services

General Post Office
PO Box 30777
New York, NY 10087-0777 USA

ACM Professional Members can
add the ACM Digital Library for
only $99 (USD). Student Portal
Package membership includes
the Digital Library. Institutional,
Corporate, and Consortia
Packages are also available.

The Ultimate Online
INFORMATION TECHNOLOGY

Resource!

AD10

www.acm.org/dl

ACM Digital Library

Powerful and vast in scope, the AACCMM DDiiggiittaall LLiibbrraarryy is
the ultimate online resource offering unlimited access and value!

The AACCMM DDiiggiittaall LLiibbrraarryy interface includes:

• TThhee AACCMM DDiiggiittaall LLiibbrraarryy offers over 45 publications
including all ACM journals, magazines, and conference proceed-
ings, plus vast archives, representing over two million pages of
text. The ACM DL includes full-text articles from all ACM publi-
cations dating back to the 1950s, as well as third-party content
with selected archives. www.acm.org/dl

• TThhee GGuuiiddee ttoo CCoommppuuttiinngg LLiitteerraattuurree offers an
 enormous bank of more than one million bibliographic citations
extending far beyond ACM’s proprietary literature, covering all
types of works in computing such as journals, proceedings, books,
technical reports, and theses! www.acm.org/guide

• TThhee OOnnlliinnee CCoommppuuttiinngg RReevviieewwss SSeerrvviiccee
includes reviews by computing experts, providing timely com-
mentary and critiques of the most essential books and articles.

Available only to ACM Members.
Join ACM online at wwwwww..aaccmm..oorrgg//jjooiinnaaccmm

Advancing Computing as a Science & Profession

SIGADA & ACM
join today!

www.acm.orgwww.acm.org/sigada
The ACM Special Interest Group on Ada Programming Language (SIGAda) provides a forum on all aspects of the Ada language and tech-
nologies, including usage, education, standardization, design methods, and compiler implementation. Among the topics that SIGAda addresses
are software engineering practice, real-time applications, high-integrity & safety-critical systems, object-oriented technology, software educa-
tion, and large-scale system development. SIGAda explores these issues through an annual international conference, special-purpose Working
Groups, active local chapters, and its Ada Letters publication.

The Association for Computing Machinery (ACM) is an educational and scientific computing society which works to advance computing as a
science and a profession. Benefits include subscriptions to Communications of the ACM, MemberNet, TechNews and CareerNews, full and unlimited
access to thousands of online courses and books, discounts on conferences and the option to subscribe to the ACM Digital Library.

� SIGAda (ACM Member). $ 25

� SIGAda (ACM Student Member & Non-ACM Student Member). $ 10

� SIGAda (Non-ACM Member). $ 25

� ACM Professional Membership ($99) & SIGAda ($25) . $124

� ACM Professional Membership ($99) & SIGAda ($25) & ACM Digital Library ($99) . $223

� ACM Student Membership ($19) & SIGAda ($10) . $ 29

� Ada Letters only . $ 53

� Expedited Air for Communications of the ACM (outside N. America) . $ 56

payment information

Mailing List Restriction
ACM occasionally makes its mailing list available to computer-related
organizations, educational institutions and sister societies. All email
addresses remain strictly conFdential. Check one of the following if
you wish to restrict the use of your name:

� ACM announcements only
� ACM and other sister society announcements
� ACM subscription and renewal notices only SIGAPP

Questions? Contact:
ACM Headquarters

2 Penn Plaza, Suite 701
New York, NY 10121-0701

voice: 212-626-0500
fax: 212-944-1318

email: acmhelp@acm.org

Remit to:
ACM

General Post O'ce
P.O. Box 30777

New York, NY 10087-0777

www.acm.org/joinsigs
Advancing Computing as a Science & Profession

Name __

ACM Member # __

Mailing Address __

City/State/Province _______________________________________

ZIP/Postal Code/Country___________________________________

Email ___

Mobile Phone___

Fax __

Credit Card Type: � AMEX � VISA � MC

Credit Card # __

Exp. Date ___

Signature___

Make check or money order payable to ACM, Inc

ACM accepts U.S. dollars or equivalent in foreign currency. Prices include
surface delivery charge. Expedited Air Service, which is a partial air freight
delivery service, is available outside North America. Contact ACM for
more information.

Volume XXXII Number 2, August 2012

Table of Contents

Newsletter Information

From the Editor’s Desk 3
Editorial Policy 4
Key Contacts 6

Making Alive Register Transfer Level and Transaction Level Modeling in Ada by Negin Mahani 9

Ada Gems
Gem #96: Code Archetypes for Real-Time Programming - Part 4 by Marco Panunzio 17
Gem #97: Reference Counting in Ada - Part 1by Emmanuel Briot 24
Gem #98: High Performance Multi-core Programming - Part 2 by Pat Rogers 28
Gem #99: Reference Counting in Ada - Part 2: Task Safety by Emmanuel Briot 31
Gem #100: Reference Counting in Ada - Part 3: Weak References by Emmanuel Briot 33
Gem #101: SOAP/WSDL server part by Pascal Obry 35
Gem #102: SOAP/WSDL client part by Pascal Obry 37
Gem #103: Code Archetypes for Real-Time Programming—Part 5 by Marco Panunzio 39
Gem #104: Gprbuild and Configuration Files - Part 1by Johannes Kanig 43
Gem #105: Lady Ada Kisses Python - Part 1 by Emmanuel Briot 45
Gem #106: Lady Ada Kisses Python - Part 2 by Emmanuel Briot 47

Letter by SIGAda Chair on changes in By-Laws 50

SIGAda Annual Report, July 1, 2011 - June 30, 2012 by Ricky Sward 52

Reusable Software Components by Trudy Levine 55

High Integrity Language Technology - SIGAda 2013 Conference Call for Proposal (CFP) 63

16th International Real-Time Ada Workshop - IRTAW 2013 65

18th International Conference on Reliable Software Technologies - Ada-Europe 2013 67

A Publication of SIGAda,
the ACM Special Interest Group on Ada

Ada Letters, August 2012 1 Volume XXXII, Number 2

CHAIR
Ricky E. Sward, The MITRE Corporation, 1155 Academy Park Loop Colorado Springs, CO 80910 USA
Phone: +1 (719) 572-8263, RSward@Mitre.org

VICE-CHAIR FOR MEETINGS AND CONFERENCES
Alok Srivastava, TASC Inc., 475 School Street SW, Washington, DC 20024-2711 USA
Phone: +1 (202) 314-1419, Alok.Srivastava@TASC.Com

VICE-CHAIR FOR LIAISON
Greg Gicca, AdaCore, 1849 Briland Street, Tarpon Springs, FL 34689, USA
Phone: +1 (646) 375-0734, Gicca@AdaCore.Com

SECRETARY
Clyde Roby, Institute for Defense Analyses, 4850 Mark Center Drive, Alexandria, VA 22311 USA
Phone: +1 (703) 845-6666, Roby@ida.org

TREASURER
Geoff Smith, Lightfleet Corporation, PO Box 6256, Aloha, OR 97007, USA
Phone: +1 (360) 816-2821, GSmith@Lightfleet.Com

INTERNATIONAL REPRESENTATIVE
Dirk Craeynest, c/o K U Leuven, Dept. of Computer Science, Celestijnenlaan 200-A, B-3001 Leuven (Heverlee)
Belgium, Dirk.Craeynest@cs.kuleuven.be

PAST CHAIR
John W. McCormick, Computer Science Department, University of Northern Iowa, Cedar Falls, IA 50614, USA
Phone: +1 (319) 273-6056, McCormick@cs.uni.edu

ACM PROGRAM COORDINATOR SUPPORTING SIGAda
Irene Frawley, 2 Penn Plaza, Suite 701, New York, NY 10121-0701
Phone: +1 (212) 626-0605, Frawley@ACM.Org

For advertising information contact:
Advertising Department
2 Penn Plaza, Suite 701, New York, NY 10121-0701
Phone: (212) 869-7440; Fax (212) 869-0481

Is your organization recognized as an Ada supporter? Become a SIGAda INSTITUTIONAL SPONSOR! Benefits
include having your organization's name and address listed in every issue of Ada Letters, two subscriptions to Ada
Letters and member conference rates for all of your employees attending SIGAda events. To sign up, contact Rachael
Barish, ACM Headquarters, 2 Penn Plaza, Suite 701, New York, NY 10121-0701, and email:
MEETING@ACM.ORG, Phone: 212-626-0603.

Interested in reaching the Ada market? Please contact Jennifer Booher at Worldata (561) 393-8200 Ext. 131, email:
platimer@worldata.com. Please make sure to ask for more information on ACM membership mailing lists and labels.

Ada Letters (ISSN 1094-3641) is published three times a year by the Association for Computing Machinery, 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA. The basic annual subscription price is $20.00 for ACM members.

POSTMASTER: Send change of address to Ada Letters:
ACM, 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA

Notice to Past Authors of ACM-Published Articles
ACM intends to create a complete electronic archive of all articles and/or other material previously published by
ACM. If you have written a work that has been previously published by ACM in any journal or conference
proceedings prior to 1978, or any SIG Newsletter at any time, and you do NOT want this work to appear in the ACM
Digital Library, please inform permissions@acm.org, stating the title of the work, the author(s), and where and when
published.

Ada Letters, August 2012 2 Volume XXXII, Number 2

From the Editor’s Desk
Alok Srivastava

Welcome to this issue of ACM Ada Letters. In this issue you will find very interesting paper “Making
Alive Register Transfer Level and Transaction Level Modeling in Ada” by Negin Mahani. In this paper
Negin has shown use of a specialized form of Ada as a system description language, like the way SystemC is used
for description of systems. The paper discusses the specification of proposed SystemAda, its hardware description
style, its RTL link, and description of a TLM 1.0 channel using SystemAda.

The issue also provides details on AdaCore compiled Ada Gems:
� Code Archetypes for Real-Time Programming - Part 4 by Marco Panunzio
� Reference Counting in Ada - Part 1 by Emmanuel Briot
� High Performance Multi-core Programming - Part 2 by Pat Rogers
� Reference Counting in Ada - Part 2: Task Safety by Emmanuel Briot
� Reference Counting in Ada - Part 3: Weak References by Emmanuel Briot
� SOAP/WSDL server part by Pascal Obry
� SOAP/WSDL client part by Pascal Obry
� Code Archetypes for Real-Time Programming - Part 5 by Marco Panunzio
� Gprbuild and Configuration Files - Part 1by Johannes Kanig
� Lady Ada Kisses Python - Part 1 by Emmanuel Briot
� Lady Ada Kisses Python - Part 2 by Emmanuel Briot

In its last ACM SIGAda Extended Executive Committee (EEC) meeting held in Denver during SIGAda
2011 conference, the EEC discussed a possible reorganization of the Executive Committee to include
fewer elected officer positions to be consistent with several other SIGs. Therefore the SIGAda By-laws
have been amended to reduce the number of elected SIGAda officers from six to four: Chair, Vice Chair,
Secretary-Treasurer and International Representative. The justification for this change is that it will
reduce the number of volunteers that SIGAda needs to find to fill the officer positions. It also enables
other volunteers to serve in Conference Chair and Local Arrangements chair positions to support the
SIGAda annual conferences.

Also in this issue ACM SIGAda Chair Ricky Sward has provided the SIGAda Annual Report for July 1,
2011 - June 30, 2012 stating accomplishments and the challenges.

Here you will find the announcement of High-Integrity Language Technology SIGAda 2013 conference
to be held next year from mid-October to mid-November in Pittsburgh, Pennsylvania USA. Other major
Ada events, the 16th International Real-Time Ada Workshop - IRTAW 2013 will be held from 17-19
April 2013 at Kings Manor, York, England and the 18th International Conference on Reliable Software
Technologies - Ada-Europe 2013 will take place in Berlin, Germany, from June 10 to 14, 2013.

Regular contributor Trudy Levine has provided listing of sources for reusable software components.

Ada Letters is a great place to submit articles of your experiences with the language revision, tips on
usage of the new language features, as well as to describe success stories using Ada. We’ll look forward
to your submission. You can submit either a MS Word or Adobe PDF file (with 1” margins and no page
numbers) to our technical editor:

Pat Rogers, Ph.D.
AdaCore, 207 Charleston, Friendswood, TX 77546 (USA), +1 281 648 3165, rogers@adacore.com

We look forward to hearing from you!

Alok Srivastava, Ph.D.
Technical Fellow, TASC Inc.
475 School St, SW; Washington, DC 20024 (USA), +1 202 314 1419 Alok.Srivastava@TASC.Com

Ada Letters, August 2012 3 Volume XXXII, Number 2

Editorial Policy (from Alok Srivastava, Managing Editor)

As the editor of Ada Letters, I’d like to thank you for your continued support of ACM SIGAda,
and encourage you to submit articles for publication. In addition, if there is some way we can
make Ada Letters more useful to you, please let me know. Note that Ada Letters is now on the
web! See http://www.acm.org/sigada/ada_letters/index.html. The two newest issues are
available only to SIGAda members. Older issues beginning March 2000 are available to all.

Ada is standing on its own merits, lots of people and organizations have stepped up to provide
new tools, mechanisms for compiler validation/assessment, and standards (especially ASIS). The
Ada 2005 language version is fulfilling the market demand of robust safety and security elements
and thereby generating a new enthusiasm into the software development and the same is
expected from the incoming Ada 2012. Ada Letters is a venue for you to share your successes
and ideas with others in the Ada community. Be sure to take advantage of it so that we can all
benefit from each other’s learning and experience.

As some of the other ACM Special Interest Group periodicals have moved, Ada
Letters also transitioned from quarterly to a tri-annual publication. With exception of special
issues, Ada Letters now is going to be published three times a year, with the exception of special
issues. The revised schedules and submission deadlines are as follows:

Deadline Issue Deadline Issue
October 1st, 12 December, 2012 February 1st, 13 April, 2013
June 1st, 13 August, 2013 October 1st, 13 December, 2013

Please send your article to Dr. Pat Rogers at rogers@adacore.com

Guidelines for Authors
Letters, announcements and book reviews should be sent directly to the Managing Editor and
will normally appear in the next corresponding issue.

Proposed articles are to be submitted to the Technical Editor. Any article will be considered for
publication, provided that topic is of interest to the SIGAda membership. Previously published
articles are welcome, provided the previous publisher or copyright holder grants permission. In
particular, keeping with the theme of recent SIGAda conferences, we are interested in
submissions that demonstrate that “Ada Works.” For example, a description of how Ada helped
you with a particular project or a description of how to solve a task in Ada are suitable.

Although Ada Letters is not a refereed publication, acceptance is subject to the review and
discretion of the Technical Editor. In order to appear in a particular issue, articles must be
submitted far enough in advance of the deadline to allow for review/edit cycles. Backlogs may
result in an article's being delayed for two or more issues. Contact the Managing Editor for
information on the current publishing queue.

Articles should be submitted electronically in one of the following formats: MS Word (preferred)
Postscript, or Adobe Acrobat. All submissions must be formatted for US Letter paper (8.5” x
11”) with one inch margins on each side (for a total print area of 6.5” x 9”) with no page

Ada Letters, August 2012 4 Volume XXXII, Number 2

numbers, headers or footers. Full justification of text is preferred, with proportional font
(preferably Times New Roman, or equivalent) of no less than 10 points. Code insertions should
be presented in a non-proportional font such as Courier.

The title should be centered, followed by author information (also centered). The author's name,
organization name and address, telephone number, and e-mail address should be given. For
previously published articles, please give an introductory statement (in a distinctive font) or a
footnote on the first page identifying the previous publication. ACM is improving member
services by creating an electronic library of all of its publications. Read the following for how
this affects your submissions.

Notice to Contributing Authors to SIG Newsletters:
By submitting your article for distribution in this Special Interest Group publication, you hereby
grant to ACM the following non-exclusive, perpetual, worldwide rights:

� to publish in print on condition of acceptance by the editor
� to digitize and post your article in the electronic version of this publication
� to include the article in the ACM Digital Library
� to allow users to copy and distribute the article for noncommercial, educational or

research purposes

However, as a contributing author, you retain copyright to your article and ACM will make
every effort to refer requests for commercial use directly to you.

Notice to Past Authors of ACM-Published Articles
ACM intends to create a complete electronic archive of all articles and/or other material
previously published by ACM. If you have a work that has been previously published by ACM
in any journal or conference proceedings prior to 1978, or any SIG Newsletter at any time, and
you do NOT want this work to appear in the ACM Digital Library, please inform
permissions@acm.org, stating the title of the work, the author(s), and where and when published.

Back Issues
Back issues of Ada Letters can be ordered at the price of $6.00 per issue for ACM or SIGAda
members; and $9.00 per issue for non-ACM members. Information on availability, contact the
ACM Order Department at 1-800-342-6626 or 410-528-4261. Checks and credit cards only are
accepted and payment must be enclosed with the order. Specify volume and issue number as well
as date of publication. Orders must be sent to:

ACM Order Department, P.O. Box 12114, Church Street Station, New York, NY 10257 or via
FAX: 301-528-8550.

Ada Letters, August 2012 5 Volume XXXII, Number 2

KEY CONTACTS

Technical Editor
Send your book reviews, letters, and articles to:

Pat Rogers
AdaCore
207 Charleston
Friendswood, TX 77546
+1-281-648 3165
Email: rogers@adacore.com

Managing Editor
Send announcements and short notices to:

Alok Srivastava
TASC Inc.
475 School Street, SW
Washington DC 20024
+1-202-314-1419
Email: Alok.Srivastava@TASC.Com

Advertising
Send advertisements to:

William Kooney
Advertising/Sales Account Executive
2 Penn Plaza, Suite 701
New York, NY 10121-0701
Phone: +1-212-869-7440
Fax: +1-212-869-0481

Local SIGAda Matters
Send Local SIGAda related matters to:

Greg Gicca
AdaCore
1849 Briland Street
Tarpon Springs, FL 34689, USA
Phone: +1-646-375-0734
Fax: +1-727-944-5197
Email: Gicca@AdaCore.Com

Ada CASE and Design Language Developers
Matrix
Send ADL and CASE product Info to:

Judy Kerner
The Aerospace Corporation
Mail Stop M8/117
P.O. Box 92957
Los Angeles, CA 90009
+1-310-336-3131
Email: kerner@aero.org

Ada Around the World
Send Foreign Ada organization info to:

Dirk Craeynest
c/o K.U.Leuven, Dept. of Computer Science,
Celestijnenlaan 200-A, B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be

Reusable Software Components
Send info on reusable software to:

Trudy Levine
Computer Science Department
Fairleigh Dickinson University
Teaneck, NJ 07666
+1-201-692-2000
Email: levine@fdu.edu

Ada Letters, August 2012 6 Volume XXXII, Number 2

SIGAda Working Group (WG) Chairs
See http://www.acm.org/sigada/ for most up-to-date information

Ada Application Programming Interfaces WG
Geoff Smith
Lightfleet Corporation
4800 NW Camas Meadows Drive
Camas, WA 98607
Phone: +1-503-816-1983
Fax: +1-360-816-5750
Email: gsmith@lightfleet.com

Ada Semantic Interface Specification WG
http://www.acm.org/sigada/wg/asiswg/asiswg.html
Bill Thomas
The MITRE Corp
7515 Colshire Drive
McLean, VA 22102-7508
Phone: +1-703-983-6159
Fax: +1-703-983-1339
Email: BThomas@MITRE.Org

Education WG
http://www.sigada.org/wg/eduwg/eduwg.html
Mike Feldman
420 N.W. 11th Ave., #915
Portland, OR 97209-2970
Email: MFeldman@seas.gwu.edu

Standards WG
Robert Dewar

 73 5th Ave.
 New York, NY 10003
 Phone: +1-212-741-0957
 Fax: +1-232-242-3722

Email: dewar@cs.nyu.edu

Ada Letters, August 2012 7 Volume XXXII, Number 2

Ada Around the World
(National Ada Organizations)

From: http://www.ada-europe.org/members.html

Ada-Europe
Tullio Vardanega
University of Padua
Department of Pure and Applied
Mathematics
Via Trieste 63
I-35121, Padova, Italy
Phone: +39-049-827-1359
Fax: +39-049-827-1444
E-mail: tullio.vardanega@math.unipd.it
http://www.ada-europe.org/

Ada-Belgium
Dirk Craeynest
C/o K.U.Leuven, Dept. of Computer
Science, Celestijnenlaan 200-A, B-3001
Leuven (Heverlee), Belgium
Phone: +32-2-725 40 25
Fax : +32-2-725 40 12
E-mail: Dirk.Craeynest@cs.kuleuven.be
http://www.cs.kuleuven.be/~dirk/ada-
belgium/

Ada in Denmark
Jørgen Bundgaard
E-mail: Info at Ada-DK.org
http://www.Ada-DK.org/

Ada-Deutschland
Peter Dencker, Steinackerstr. 25
D-76275 Ettlingen-Spessartt, Germany
E-mail: dencker@parasoft.de
http://www.ada-deutschland.de/

Ada-France
Association Ada-France
c/o Jérôme Hugues
Département Informatique et Réseau
École Nationale Supérieure des
Télécommunications, 46, rue Barrault
75634 Paris Cedex 135, France
E-mail: bureau@ada-france.org
http://www.ada-france.org/

Ada Spain
J. Javier Gutiérrez
P.O. Box 50.403
E-28080 Madrid, Spain
Phone: +34-942-201394
Fax : +34-942-201402
E-mail: gutierjj@unican.es
http://www.adaspain.org/

Ada in Sweden
Rei Stråhle
Box Saab Systems
S:t Olofsgatan 9A
SE-753 21 Uppsala, Sweden
Phone: +46-73-437-7124
Fax : +46-85-808-7260
E-mail: Rei.Strahle@saabgroup.com
http://www.ada-i-sverige.se/

Ada in Switzerland
Ahlan Marriott
White Elephant GmbH
Postfach 327
CH-8450 Andelfingen, Switzerland
Phone: +41 52 624 2939
Fax : +41 52 624 2334
E-mail: ada@white-elephant.ch
http://www.ada-switzerland.org/

Italy
Contact: tullio.vardanega@math.unipd.it

Ada-Europe Secretariat
e-mail: secretariat@ada-europe.org

Ada Letters, August 2012 8 Volume XXXII, Number 2

Making Alive Register Transfer Level and Transaction Level Modeling in
Ada

Negin Mahani
Electrical and Computer Engineering Department, Faculty of Engineering, Campus #2

University of Tehran, 14399 Tehran, IRAN

negin@cad.ece.ut.ac.ir
negin_mahani@yahoo.com

Abstract

Over the past 50 years, design of hardware has
evolved from transistor level to register transfer level
(RTL), and now to transaction level. Transaction Level
Modeling (TLM) enhances simulation performance of
today’s complex digital systems and also provides the
ability of early design space exploration. TLM divides
a system into computation parts, i.e. processing
elements, and communication parts, i.e. channels and
sockets. The inherent concurrency of Ada along with
its object oriented features gives it potentials for being
used as a TLM language.

In this paper, we use a specialized form of Ada as
a system description language, like the way SystemC is
used for description of systems. We refer to our form of
Ada as SystemAda and we use a public Ada compiler
(Gnat) to evaluate system descriptions written in Ada.
SystemAda is meant for modeling system behavior and
structure at the transaction level and we consider
possible approaches for extending Ada to meet these
requirements. This paper discusses the specification of
our proposed SystemAda, its hardware description
style, its RTL link, and description of a TLM 1.0
channel using SystemAda.

1. Introduction

To cope with the complexity of electronic systems,
high level description languages have evolved for
describing electronic hardware at system level. Today,
Transaction Level Modeling has established itself as a
common way of describing digital systems at the
system level for design and architecture exploration.
TLM allows designers to focus on the functionality of
the design and not to be concerned with low level
(RTL) details. At this level of abstraction, a hardware
system is divided into processing elements and
communication channels. At the top level, this system
consist of a structural interconnections of processing
elements, where interconnections become channels and

sockets instead of wires at the gate level, or buses at
RTL [1].

For the design of such systems, hardware
description languages that are different than those used
in today’s register transfer languages should be used.
The focus of such languages should be on processing
elements connected by channels, instead of registers
and logic units connected by buses as in register
transfer level languages. Furthermore, languages for
system level descriptions must be capable to easily
interface with software languages, to enable designers
to design complex hardware/software systems in one
environment [1].

Our study of Ada language features, compilers,
and support for concurrency indicates that this
language is a good candidate for describing hardware
at RT and transaction levels. Inspired by an existing
RTL package for Ada, we have developed an RTL link
for Ada that provides system level hardware designers
with sufficient RT level description capabilities. In
addition, we have developed a package containing a
basic transaction level channel to provide Ada system
level designers with hardware description features
found in today’s transaction level hardware description
languages. The combination of our added RTL and
transaction level features makes our SystemAda that is
described in this paper.

In addition to providing constructs for covering
hardware at certain level, a hardware description
language at any level has to provide a minimum set of
constructs for describing hardware at its immediate
next lower level of abstraction. Therefore, we have to
cover some preliminary RT level constructs for
creating a transaction level hardware language from
Ada. This work focuses on TLM while providing a
sufficient link to RTL.

In this paper, we introduce SystemAda as a system
description language for hardware systems. The work
is partitioned based on two distinct concepts: RTL and
TLM. In the RTL concept, we explain different options
for linking Ada to RTL and expand one of them. In the

Ada Letters, August 2012 9 Volume XXXII, Number 2

TLM concept, we describe tlm_fifo as the most basic
TLM channel which will be used for describing other
channels. The rest of this paper is organized as follows.
Section 2 briefly introduces Transaction Level
Modeling and TLM standards released by OSCI.
Section 3 contains an overview of Ada as a Hardware
Description Language (HDL). In Section 4, major
requirements for SystemAda are explained. Section 4.1
introduces existing methods for linking Ada to RTL
and adopts one such method and adds several new
features to it. Section 4.2 contains an overview of TLM
channels and their implementation in Ada. Section 5
describes tlm_fifo application in a master-slave
architecture using Ada tasks. In section 6 we have
implemented a Network on chip system usisg our ada
packages. Finally, in Section 7 we present the
conclusion of this work.

2. Transaction Level Modeling

 Recent advances in semiconductor technology
enables the designers to integrate hundreds of
embedded processors on a single chip which is called
System on Chip (SoC). This fast-paced increasing of
complexity of digital systems, on the other hand, has
introduced new challenges to the design community.
An important challenge is to handle the complexity of
designing such systems with increased productivity
and decreased time-to-market. Electronic System Level
(ESL) design methodologies solve this problem by
starting the design from higher abstraction levels than
RTL. Transaction Level Modeling (TLM) has been
proposed as the key step toward ESL methodology. In
TLM point of view, a system is divided into two parts:
computation parts and communication parts. The focus
of the TLM is on communication and this is performed
through passing high level data structures called
transactions between computation parts.
 SystemC that is a library on C++ has been used
widely for design at transaction level. Open SystemC
Initiative (OSCI) which works on the definition and
standardization of SystemC as a system-level language
has released two versions of the TLM standard. In
TLM 1.0, channels are the basic communication
elements, while in TLM 2.0 the concept of the sockets
has been introduced as the communication
infrastructure.
 In this work, we will examine the possibility of
using another language, i.e. Ada, as a TLM language.
In general, having the link to RTL and the ability to
describe TLM channels are two essential requirements
of a TLM language. The inherent concurrency of Ada
along with its object oriented features gives it
potentials for satisfying these requirements. We will
discuss these issues in later sections.

3. Ada as an HDL

Most hardware designers use an HDL such as
VHDL or Verilog for their RT level descriptions, C or
C++ for software parts of their designs, and SystemC
and its TLM derivation for fast simulation of system
level designs. With SigAda’s project [2], RTL design,
software parts of a design, and software for design test
and verification can all be done in the same language
and environment.

The idea of using Ada as an HDL goes back to
1980’s. At that time, Ada compilation was slow and
hardware design abstraction was at gate level, making
Ada not the best alternative for hardware description.
In 1981, Ada was used as a base language for the
development of VHDL [3]. In 1995, a new version of
Ada called Ada95 was defined with object oriented
features that could be used for high abstraction level
design such as TLM [4]. Considering Ada as the
VHDL base language, a popular HDL for complex
hardware description at RTL, it has the proper root to
be used for system level description as a TLM
language.

Because hardware systems comprise activities that
are performed concurrently, an important requirement
for a hardware description language is its support for
concurrency. In addition to concurrency, an HDL for
transaction level modeling should have some language
features for object oriented modeling, genericity, and
abstract communication.

Considering language features and structures of
Ada, we can easily conclude that the TLM standard is
implementable in this language. In addition to its
capabilities for transaction level modeling, Ada has
links with the lower level, i.e. RTL. The VHDL
language that has been derived from Ada is similar to
Ada in syntax. VHDL hardware modules that are
described with entity-architecture parts are equivalent
to the specification-body structures of the Ada
language. Such observations led us to conclude that
Ada, as it is presently defined, has potentials for
description of hardware.

From the linguistics point of view, Ada compilers
have the advantage of being strongly typed and being
thorough in the compilation process such that most
syntax and semantic errors are detected during
compilation. Such features make Ada a language that is
more feasible for design error detection than C/C++,
their additional patches, or their SystemC derivations
 [5] [6].

Furthermore, Ada2005 has services which provide
the ability to trigger events at specific times, invoking
threads, and facilitating process synchronization.
Object oriented programming could be linked to real
time activities using these capabilities [5] [6].

Ada Letters, August 2012 10 Volume XXXII, Number 2

4. Major requirements for SystemAda

In addition to supporting TLM abstraction level,
system level languages like SystemC also provide a
strong link to RTL. In general, having the link to RTL
and the ability to describe TLM channels are two
essential requirements of a TLM language. In this
work, we consider the main concepts of the OSCI
TLM 1.0 standard [7] [8], and base our requirements on
the main features supported by this standard.

Since communication is the main focus of the
TLM and all TLM channels have been defined based
on fifo channel (tlm_fifo), we have developed a tlm_fifo
channel in this paper. We show how this channel is
instantiated and used for interconnection of processing
elements.

As mentioned above, a hardware description
language needs a link to its most immediate lower level
language; in case of our system level, the lower level is
RTL. Therefore, we need to provide a link between our
system level SystemAda and an existing RTL hardware
description language.

4.1. Linking Ada to RTL

There are several options for linking Ada to RTL.

The following sections describe the different options.
Our RTL part of Ada is based on the method described
in the last section. We have created an HDL package
for Ada using this method.

4.1.1. Linking using Ada pragmas. An option for
creating an HDL link for Ada is using the ability of
Ada to communicate with a language which supports
RTL. The most useful pragmas are import, export, and
convention [9].

According to Ada95 language reference manual,
the import pragma imports a subprogram from a
foreign language into an Ada program. The export
pragma exports an Ada subprogram to another
language, and the convention pragma specifies that a
certain type should use the storage conventions of a
given foreign language. It is also used on subprograms
if they are of the callback type [9] [10].

Since Ada and C++ programs can interface by
Ada pragmas (import, export, and convention),
combining Ada and SystemC RTL core is possible.

4.1.2. Linking with VHDL. The second option for
providing a link between Ada and RTL is using
GHDL. GHDL is an open source VHDL compiler that
can simulate Ada programs [11].

Command lines for this compiler provide
analyzing VHDL design files, binding the design, and
finally compiling the Ada program, binding it and

linking it to the VHDL design. Figure 1 shows GHDL
and GNAT compiler commands achieving this linking.

$ ghdl -a design.vhdl
$ ghdl --bind design
$ gnatmake my_prog -largs `ghdl –listlink
design`

Figure 1. GHDL and GNAT compiler commands

4.1.3. Linking by mapping VHDL to ADA. Another
possibility for creating a link between Ada and an RT
level HDL is mapping VHDL structures to Ada. The
U.S. Air Force Research Lab has provided examples of
how to describe VHDL constructs in Ada. Signals are
unique objects in VHDL and their declarations and
assignments are modeled in Ada. VHDL signal
attributes have been modeled using an Ada record.
This record is called a signal description record [12].

In general, the work described in [12] has mapped
VHDL language defined types, signal declarations, and
signal assignments to various Ada constructs. For
example, for implementing VHDL signal assignment
an if or a case statement is used.

4.1.4. Linking by an Ada HDL package. We have
created an HDL package for providing a link between
Ada and a hardware description language. The basic
combinational components of an RT level description
consist of word gates (array of gates), multiplexers,
decoders, encoders, and arithmetic units. In addition,
sequential components are registers and counters
(Table 1).

Table 1. Digital logic basic elements

Component Type Subtype

Elementary logic gates
AND, OR, NAND, NOR,
Inverter, and their array

versions
Decoder -
Encoder -

Multiplexer -
Full adder -

Basic latches SR, D, Gated SR, Gated D
Triggered D flip-flop -

SigAda’s project in 1998 [2] proved that Ada83

could be used as a hardware description language.
Since we are using Ada95 to describe hardware at
TLM, we have used this version of Ada to develop a
package called UT_Ada_HDL to provide RTL
designers with the required primitives. For this
purpose, we have implemented basic RTL elements
mentioned above using Ada95 procedures. Based on
this and the fact that Ada is an object oriented
language, by taking advantage of its reusability facility,

Ada Letters, August 2012 11 Volume XXXII, Number 2

a hardware designer can use Ada procedures to
develop more complex elements[16] [17].

UT_Ada_HDL package which is partially shown
in Figure 2 contains the Ada script and package made
of all the digital logic basic elements shown in Table 1.
The basic types and subtypes in this package are as
follows:

• Subtype input: This type is Boolean and is the
same as SigAda’s input.

• Subtype output: This type is Boolean and is the
same as SigAda’s output.

• Type bus: This is a Boolean array of natural
range.

• Type state: This is an enumeration type with
high and low enumeration elements. This type
indicates clock states high and low.

• Type edge: This type is a Boolean array of
natural range. User can use this array to specify
clock edges.

• Type dimension2_bus: This type is a two
dimensional Boolean matrix of natural range.
This type is introduced for more complex RTL
packages.

package UT_Ada_HDL is

subtype input is Boolean;
subtype output is Boolean;

type bus is array
(natural range <>)of Boolean;

type dimension2_bus is array
(natural range<>, natural range<>) of
Boolean;

type state is (high, low);

type edge is array
(natural range<>) of Boolean;

type edge_not is array
(natural range<>) of Boolean;
 …
procedure nand_array (x1: in out bus;
x2: in out bus; n: in out integer;
xout: out bus);

procedure mux (en:in input;
mux_in: in input; data1: in input;
data2: in input; mux_out: out output);

procedure SR_latch (S: in out input;
R: in out input; Q_a: out output;
Q_b: out output);

procedure fulladder (input1: in input;
input2: in input; carry_in: in Boolean;
carry_out: out output; sum: out output);
 …
end UT_Ada_HDL;

Figure 2. UT_Ada_HDL package

Included in this package are procedures Invert,
And_bit, or_bit, nand, nor, and mux. These procedures
use Ada's Boolean operations for faster simulation.
Since word gates inputs use bus data type, direct use of
Boolean operations is not allowed. Therefore, we have
used type conversion between bus and Boolean data
types. As an example, the implementation of a nand
word gate as shown in Figure 3 uses Boolean type
conversion for x1 and x2 input bus types. The invert
procedure that also is shown in this figure returns
complement of xouttemp as nand output.

procedure nand_array (x1: in out bus; x2: in
out bus; n: in out integer; xout: out bus)
is
xouttemp,xouttemp_not,x1temp,x2temp :
Boolean;
begin
 for i in reverse x1'range loop
 xouttemp:= Boolean(xout(i));
 x1temp:= Boolean(x1(i));
 x2temp:=Boolean(x2(i));
 xouttemp:= x1temp and x2temp;
 invert(xouttemp,xouttemp_not);
 xout(i):= xouttemp_not;
 end loop;
end nand_array;

Figure 3. Nand_array procedure

A simple multiplexer with two data lines, one
select line, and an enable control input is shown in
Figure 4. As mentioned before, this mux is included in
our UT_Ada_HDL package.

procedure mux (en:in input; mux_in: in input;
data1: in input; data2: in input; mux_out: out
output) is
begin
 if en = true then
 if mux_in = true then
 mux_out:= mux_in and data1;
 else
 mux_in_invert:= not mux_in;
 mux_out:= mux_in_invert and data2;
 end if;
 else
 put("off");
 end if;
end mux;

Figure 4. Multiplexer procedure

procedure SR_latch (S: in out input; R: in
out input; Q_a: out output; Q_b: out output)
is
begin
 delay 0.004 ;
 Nor(S,Q_a, q_btemp);
 Nor(R,Q_b, q_atemp);
 Q_a:= q_atemp;
 Q_b:= q_btemp;
End SR_latch;

Figure 5. SR_Latch procedure

Ada Letters, August 2012 12 Volume XXXII, Number 2

Figure 5 shows implementation of an SR latch. In
this procedure, Ada delay construct has been used to
imply the actual data passing delay in hardware.

4.2. Describing TLM channels using Ada

This section starts with the description of Ada
tasks that are the main language constructs we have
used for describing TLM channels. This will be
followed by a subsection for describing the main TLM
1.0 channel, i.e. tlm_fifo.

4.2.1. Task overview. Tasks are the basic elements
for implementing concurrency in Ada. Task units can
communicate with each other, and each will be in
progress for a specified time. The language semantics
make it look like that tasks are running on separate
computer systems. Tasks have this ability using the
entry concept, which defines what information should
be sent to a task when it is invoked, and what should
be done. Tasks can be sensitive to activation of one or
more entries. Tasks have a declaration part and a body
part. A task body part describes the functionality of the
task [13] [14] [15].

Each task can use Ada’s select block and its
accept statement. The select block, with the accept
statements inside it, provides alternative entry points
for messages into a task. The accept statements in the
select block are separated by OR to allow the task to
accept a call on each entry [13] [14] [15].

4.2.2. TLM_FIFO channel in Ada. Every TLM
1.0 channel can be implemented based on the tlm_fifo
channel. This channel is generic in size and type. As a
result, we define a generic fifo channel in Ada to be
used later to define other TLM channels.

with Ada.Text_IO;
 …
generic type fifo_element is(<>);
PACKAGE fifo IS
 TYPE fifo_node;
 TYPE fifo_pointer IS ACCESS fifo_node;
 TYPE fifo_node IS RECORD
 …
 input : fifo_element;
 output: fifo_element;
 …
 PROCEDURE add_fifo;
 PROCEDURE rem_fifo;
 …
 task type fifo_task is
 entry add;
 entry remove;
 entry stop;
 end fifo_task;
 tlm_fifo : fifo_task;
END fifo;

Figure 6. Generic fifo package

The generic keyword in Ada has the functionality
of the template in C++. Figure 6 shows the code of our
fifo specification that can be used as a TLM channel.
This fifo is a linked list that has no size limitation.
Because of the generic element type, the type of its
nodes can be of any types.

The tlm_fifo of Figure 6 represents a hardware
component for communication between several
running processes. This component that is used at
transaction level, must have concurrency as an
essential requirement for modeling hardware systems.
For this reason, we have used a task type, as the basic
unit of concurrency in our fifo. The tlm_fifo task in this
figure is an instance of the task type called fifo-task.

Our fifo task has the add and remove entries,
whose names describe their functionalities. A generic
fifo provides users with the opportunity to determine
the type of its elements. The program shown in Figure
7 shows how we define an integer fifo [1].

with Ada.Text_IO;
use Ada.Text_IO;
with fifo;
package fifo_channel is new fifo(integer);

Figure 7. Generating an integer fifo

5. TLM master-slave architecture

We have modeled a TLM master-slave
architecture in Ada using task types with two
computational modules: master and slave. The block
diagram of the TLM master-slave architecture is shown
in Figure 8.

Figure 8. TLM master-slave architecture

with fifo_channel;
 …
procedure tlm_master_slave is
 task slave is
 …
 fifo_channel.tlm_fifo.remove;
 …
 task master is
 …
 fifo_channel.tlm_fifo.add;
 …
 task simulation is
 …
begin
 simulation.start;
 delay 1.0;
 simulation.stop;
end tlm_master_slave;

Figure 9. TLM Master-slave

Ada Letters, August 2012 13 Volume XXXII, Number 2

Figure 9 shows a procedure that defines master

and slave interconnections using a tlm_fifo. This
procedure is composed of three tasks, each containing
an infinite loop inside its body: master, slave and
simulation. These tasks have two entries start and stop.
The master task enters integer numbers into the integer
fifo by sending fifo_channel.tlm_fifo.add message to
tlm_fifo task. On the other hand, the slave task removes
integers from the integer fifo by sending
fifo_channel.tlm_fifo.remove message to tlm_fifo task,
and performs its operation on the obtained data.

 In the main block of the program (Figure 9),
simulation.start massage starts the simulation task.
After a delay of 1.0, the simulation.stop message will
stop the simulation task. The simulation task of Figure
10 by accepting the start message enters the loop and
sends the start massage to master and slave tasks to
notify that the simulation has been started. By
accepting the stop message, the simulation task exits
the loop and stops the master, slave, and tlm_fifo tasks.

task simulation is
 entry start;
 entry stop;
end simulation;
task body simulation is
begin
 accept start;
 loop
 select
 accept stop;
 exit;
 else
 master.start;
 slave.start;
 end select;

 end loop;
 master.stop;
 slave.stop;
 fifo_channel.tlm_fifo.stop;
end simulation;

 Figure 10. Simulation task declaration and body

The process described above is an exact modeling
of channels as expected in transaction level design.
This description is more accordant to behavior of
hardware than if the description were done with C++
and SystemC [1].

6. Implementation of a Network-on-Chip
using SystemAda
In order to show the capabilities of SystemAda for
modeling of digital systems at transaction level, we
have implemented a Network-on-Chip (NoC) using
SystemAda. The NoC architecture implemented in this
paper is shown in Figure . This NoC has 7 switches
and 6 processing elements. Switches are shown as
squares, processors as circles, and channels between

modules as straight lines. Each switch has a connected
processing element except for switch4. Switches are
connected to their adjacent switches by fifo channels
which are named F1 to F8 respectively. In a similar
way, each switch is connected to its corresponding
processor by a fifo channel. Our NoC architecture uses
a dynamic routing algorithm and works based on Store
and Forward (SaF) packet switching method. The
routing algorithm will be discussed later in this section.
Processor1 and Prcoessor7 are the master processors of
the NoC and input and output ports of the circuit are
located at these processors respectively. Processor1 is
in charge of reading data packets from an input file and
sending them to Switch1. When Switch1 receives an
incoming packet, sends it to appropriate output port
that is decided by the routing algorithm. Upon arrival
at destination, the packet is processed by
corresponding processor and then, is sent toward
Switch7. When Switch7 receives a packet, sends it to
Processor7 which writes the packet data into some
output file.

Figure 11. NoC architecture implemented using
SystemAda

Figure 12 shows the body of the procedure which
implements the functionality of our NoC. A task is
defined for each processor and switch in the NoC.
Each task has two entries, start and stop, except for
Switch4 and switch7. Because Switch4 and Switch7
receive packets from two neighboring switches, they
have separate entries for each input port instead of a
single start entry. Swicth4 has two entries named start2
and start3 and Switch7 has entries start5 and strart6.
Simulation task controls the simulation of the NoC
design and has two entries for start and stop the
simulation.

WITH
fifo1,fifo2,fifo3,fifo4,fifo5,fifo6,fifo7,fifo8,fifop1,fifop2,fifo3,fifo5,fi
fo6,fifop7;
PROCEDURE SystemAda_NoC IS

Ada Letters, August 2012 14 Volume XXXII, Number 2

 TASK processor1 IS
 ENTRY start;
 ENTRY stop;
 END processor1;
 …
 TASK processor7 IS
 ENTRY start;
 ENTRY stop;
 END processor7;

 TASK switch1 IS
 ENTRY start;
 ENTRY stop;
 END switch1;
 …
 TASK switch7 IS
 ENTRY start;
 ENTRY stop;
 END switch7;

 TASK simulation IS
 ENTRY start;
 ENTRY stop;
 END simulation;

Figure 12. SystemAda_NoC procedure

 Figure 13113 shows the body of processor1 task.
The packets that will be sent to the network are written
in a file named input_file. At the start of the task,
input_file is opened. Then, the task enters an infinite
loop in which the start entry is checked first. If the end
of input_file is not reached, a packet is read from
input_file and is added to fifop1. Fifop1 is the fifo
between processor1 and switch1. Then, start entry of
swicth1 is called and switch1 starts it operation. If stop
has been called, the loop terminates.

TASK BODY processor1 IS
 input_file : FILE_TYPE;
BEGIN
 OPEN(input_file);
 LOOP
 SELECT
 ACCEPT start DO
 IF(not(END_OF_FILE(input_file))) THEN
 GET(input_file,fifop1.input);
 fifop1.tlm_fifo.add;
 switch1.start;
 END IF;
 END start;
 OR
 ACCEPT stop;
 EXIT;
 END SELECT;
 END LOOP;
 CLOSE(input_file);
END processor1;

Figure 131. Processor1 task body

 Figure 14214 shows the body of switch1 task. A
Boolean variable called flag is defined which is used in

making routing decisions. At the beginning of the task,
it enters an infinite loop. After accepting start entry, if
the fifo between switch1 and processor1 (fifop1) is not
empty, a packet is removed from it and is routed based
on the routing algorithm that we describe here. If the
switch has only one output port, the packet is sent to
that port. Otherwise, two situations may arise. If the
packet is targeted for an immediate neighbor of this
switch, it will be sent to the corresponding port.
Otherwise, the packet will be sent to one of the output
ports alternatively using flag variable. As shown in
Figure 14214, if the packet is targeted for Switch2 or if
the packet is not targeted for switch3 and flag is false,
the packet is sent to Switch2 and start entry for this
switch is called. Otherwise, the packet is sent to
Switch3 and start entry for this Switch is called. Upon
calling stop entry of Switch1 task, the loop terminates.

TASK BODY switch1 IS
 flag : BOOLEAN := FALSE;
BEGIN
 LOOP
 SELECT
 ACCEPT start DO
 IF (fifop1.empty_flag=FALSE) THEN
 fifop1.tlm_fifo.remove;
 IF (fifop1.output.destination=2 OR
(fifop1.output.destination/=3 and flag=FALSE)) THEN
 flag:=TRUE;
 fifo1.input:=fifop1.output;
 fifo1.tlm_fifo.add;
 switch2.start;
 ELSE
 flag:=FALSE;
 fifo2.input:=fifop1.output;
 fifo2.tlm_fifo.add;
 switch3.start;
 END IF;
 END IF;
 END start;
 OR
 ACCEPT stop;
 EXIT;
 END SELECT;
 END LOOP;
END switch1;

Figure 142. Switch1 task body

 Figure 153 15 shows the body of simulation task.
After accepting start entry, the task enters an infinite
loop in which the stop entry is checked first. If stop has
been called, the loop terminates. Otherwise, start entry
of processor1 task is called and processor1 starts its
simulation. Processor1 will call the start entry of
switch1 task and switch1 will call the appropriate entry
of switch2 or switch3 based on the routing decision.
Upon arriving at destination, the packet will be
processed by the destination processor and then routed
toward Switch7 where it is written into the output file.
This process repeats for the rest of the packets

Ada Letters, August 2012 15 Volume XXXII, Number 2

generated at processor1. Once he stop entry of
simulation task is called, the loop terminates and stop
entries for switches, processor, and fifo tasks including
fifos between switches and fifos between switches and
their processors are called and simulation ends.

TASK BODY simulation IS
BEGIN
 ACCEPT start;
 LOOP
 SELECT
 ACCEPT stop;
 EXIT;
 ELSE
 processor1.start;
 END SELECT;
 END LOOP;
 switch1.stop;
 …
 switch7.stop;
 processor1.stop;
 …
 processor7.stop;
 --stop all fifo’s and fifop’s
 …
END simulation;

Figure 153. Simulation task body

7. Conclusion

Since digital designs are getting more complex,
the need for a system description language that
supports TLM is obvious. An important requirement at
this level is to be able to run hardware of a system
along with its software. Ada with intrinsic
concurrency, early error detection, and extensive
support for multithreading and multiprocessing would
be a good choice to satisfy this requirement.

Other features of an HDL at a certain level of
abstraction include link to its immediate lower
abstraction level. In this paper, we showed how an
RTL package could be used to override Ada with a
register transfer capability.

Finally, an essential feature of an HDL at the
transaction level is to be able to model transaction
based communication channels for concurrent
communication between processes. For this purpose,
we showed how Ada could be used for defining the
tlm_fifo channel functionality.

With the features inherent in Ada and packages
added to this language, it could be a good candidate for
transaction level description of hardware. Such a
language is a required part of evolution of hardware
design to higher levels of abstraction.

7. References

[1] S. Mirkhani, and Z.Navabi, The VLSI Handbook,
Chapter 86, CRC Press, 2ed

Edition, 2006.

[2] S. Wong, and Gertrude Levine, “Kernel Ada to Unify
Hardware and Software Design”, Proc. Annual ACM
SIGAda International Conference on Ada, 1998, pp. 28-
38.

[3] “Reusable Software Components for Reusable
Hardware Designs”, 2009-01-10, Available at:
http://alpha.fdu.edu/~levine/reuse_course/columns/HDL
_column.

[4] “A History of Object-Oriented Programming Languages
and their Impact on Program Design and Software
Development”, 2009-01-10, Available at:
http://jeffsutherland.com/papers/Rans/OOlanguages.pdf.

[5] R. Goering, “ESC: Ada 2005 Speaks to Real-time
Embedded Applications”, 2007-4-2, EE Times,
Available at:
http://www.embedded.com/news/embeddedindustry/198
701828?_requestid=308128.

[6] J. E. Sammet, “Why Ada is not Just another
Programming Language”, Communications of the ACM,
vol. 29, no. 8, August 1986, pp. 722-732.

[7] S. Swan, “OSCI SystemC TLM”, 2009-01-10,
Available at: http://www-ti.informatik.uni-
tuebingen.de/~systemc/Documents/Presentation-13-
OSCI_2_swan.pdf.

[8] “SystemC TLM1.0”, 2009-01-10, Available at:
http://www.systemc.org/home.

[9] Ada Reference Manual, ISO/IEC 8652:2007(E) Ed. 3,
pp. 471-474.

[10] D. A. Wheeler, “Lovelace tutorial”, Section 16.1-
General Information on Interfacing to Other Languages,
2009-01-10, Available at: www.dwheeler.com/lovelace.

[11] GHDL guide, section 5.8.5 Linking with Ada, 2009-01-
10, Available at: http://ghdl.free.fr/ghdl/Linking-with-
Ada.html#Linking-with-Ada.

[12] M. Mills, and G Peterson, “Hardware/Software
Codesign: VHDL and Ada 95 Code Migration and
Integrated Analysis”, Proc. Annual ACM SigAda
international conference on Ada, 1998, pp. 18-27.

[13] Ada Reference Manual, ISO/IEC 8652:2007(E) Ed. 3,
pp. 181-186.

[14] “Introductory Ada Concurrency Summary”, 2009-01-
10, Available at:
http://www.seas.gwu.edu/~csci51/fall99/ada_task.html.

[15] D. A. Wheeler, “Lovelace tutorial”, Section 13.2-
Creating and Communicating with Tasks, 2009-01-10,
Available at:
http://www.dwheeler.com/lovelace/s13s2.htm.

[16] Negin Mahani, Parniyan Mokri, Zainalabedin navabi,
“System Level Hardware Design and Simulatin with
System Ada” ACM SIGADA AdaLetters, vol. XXIX ,
no. 1 , April 2009 , pp.19 -22.

[17] Negin Mahani, Parniyan Mokri, Mahshid Sedghi,
Zainalabedin navabi, “System Ada : An Ada based
Syste- Level Hardware Description Language” ACM
SIGADA AdaLetters, vol. XXIX , no. 2 , August 2009 ,
pp. 15-19.

Ada Letters, August 2012 16 Volume XXXII, Number 2

Gem #96: Code Archetypes for Real-Time Programming - Part 4

Author: Marco Panunzio, University of Padua

Let’s get started…

In the previous Ada Gem we started to describe a complete archetype for a sporadic task.
We illustrated the structure of the task and the realization of a complex queuing policy
for its synchronization agent (OBCS). In this Ada Gem, we complete the picture with the
description of the OPCS, which contains the functional code executed by the sporadic
task, and show how we complete the declaration of the OBCS and of the provided
interface exposed to clients of the sporadic task.

Sporadic Task -- Functional code and complete OBCS

It is now time to create the functional code for the procedures executed by our sporadic
task. Suppose we want a Consumer that provides operations Op1 and Op2 as depicted in
the figure below.

The operations Op1 and Op2 would be included in an OPCS structure which encapsulates
their respective functional code, decoupling it from other nonfunctional concerns. The
OPCS is then embedded in the sporadic task structure.

First, we declare two simple enumeration types, T1 and T2, in a separate package, to be
used by our functional code:

package Types is
type T1 is (F1, F2);

 T1_Default_Value : constant T1 := F1;
type T2 is (X1, X2);

 T2_Default_Value : constant T2 := X1;
end Types;

Then in another package we declare a new type, say Consumer_FC, that extends
Controlled (thus it is a tagged type) and has two primitive procedures Op1(T1, T2) and
Op2(T1):

Ada Letters, August 2012 17 Volume XXXII, Number 2

with Types;
with Ada.Finalization; use Ada.Finalization;
package Consumer is

type Consumer_FC is new Controlled with private;
type Consumer_FC_Ref is access all Consumer_FC'Class;
type Consumer_FC_Static_Ref is access all Consumer_FC;
type Consumer_FC_Arr is array(Standard.Integer range <>) of

Consumer_FC_Ref;
type Consumer_FC_Arr_Ref is access Consumer_FC_Arr;
overriding
procedure Initialize(This : in out Consumer_FC);
procedure Op1 (This : in out Consumer_FC; a : in Types.T1; b : in

Types.T2);
procedure Op2 (This : in out Consumer_FC; a : in Types.T1);

private
type Consumer_FC is new Controlled with null record ...;

end Consumer;

Consumer_FC is the type that represents what we called the OPCS. The sequential code
is given in the bodies of the two procedures Op1 and Op2:

package body Consumer is
-- procedure Initialize omitted

procedure Op1(This : in out Consumer_FC; a : in Types.T1; b : in
Types.T2) is

begin
-- User-defined sequential code here --
end Op1;
procedure Op2 (This : in out Consumer_FC; a : in Types.T1) is
begin
-- User-defined sequential code here --
end Op2;

end Consumer;

Now let's complete the definition of the OBCS and discuss the instantiation of the
sporadic task.

with System;
with Types;
with System_Types;
with Ada.Real_Time;
with Consumer;
with Ada.Real_Time; use Ada.Real_Time;

Ada Letters, August 2012 18 Volume XXXII, Number 2

package Op1_Op2_Sporadic_Consumer is
use System; use Types;
use System_Types;
-- Nested generic package for instantiating a sporadic task:

generic
 Thread_Priority : Priority;
 Ceiling : Priority;
 MIAT : Integer;

-- The OPCS instance
 OPCS_Instance : Consumer.Consumer_FC_Static_Ref;

package My_Sporadic_Factory is
procedure Op1(a : in T1; b : in T2);
procedure Op2(a : in T1);

private
-- ...

end My_Sporadic_Factory;
private
 Param_Queue_Size : constant Integer := 3;
 OBCS_Queue_Size : constant Integer := Param_Queue_Size * 2;

-- Create data structures to reify invocations of Op1

type Op1_Param_T is new Param_Type with record
 OPCS_Instance : Consumer.Consumer_FC_Static_Ref;
 a : T1;
 b : T2;

end record;
type Op1_Param_T_Ref is access all Op1_Param_T;
type Op1_Param_Arr is array(Integer range <>) of aliased

Op1_Param_T;

overriding
procedure My_OPCS(Self : in out Op1_Param_T);
-- Create data structures to reify invocations of Op2

type Op2_Param_T is new Param_Type with record
 OPCS_Instance : Consumer.Consumer_FC_Static_Ref;
 a : T1;

end record;
type Op2_Param_T_Ref is access all Op2_Param_T;
type Op2_Param_Arr is array(Integer range <>) of aliased

Op2_Param_T;

Ada Letters, August 2012 19 Volume XXXII, Number 2

overriding
procedure My_OPCS(Self : in out Op2_Param_T);
-- Create an OBCS that matches the interface of the OPCS (FC)
protected type OBCS

 (Ceiling : Priority;
 Op1_Params_Arr_Ref_P : Param_Arr_Ref;
 Op2_Params_Arr_Ref_P : Param_Arr_Ref)

is
pragma Priority(Ceiling);
entry Get_Request(Req : out Request_Descriptor_T; Release : out

Time);
procedure Op2(a : in T1);
procedure Op1(a : in T1; b : in T2);

private
-- The queue system for the OBCS

 OBCS_Queue : Sporadic_OBCS(OBCS_Queue_Size);
-- Arrays to store a set of reified invocations for Op1 and Op2

 Op1_Params : Param_Buffer_T(Param_Queue_Size) :=
 (Size => Param_Queue_Size, Index => 1, Buffer =>
Op1_Params_Arr_Ref_P.all);
 Op2_Params : Param_Buffer_T(Param_Queue_Size) :=
 (Size => Param_Queue_Size, Index => 1, Buffer =>
Op2_Params_Arr_Ref_P.all);
 Pending : Standard.Boolean := False;

end OBCS;
end Op1_Op2_Sporadic_Consumer;

In essence, in the specification above: (i) we declare a nested generic package
(My_Sporadic_Factory) that we use to instantiate a sporadic task. In this manner we can
instantiate several sporadic tasks which only differ in their timing attributes and
properties (MIAT, priority and ceiling priority for the OBCS); the generic package
provides an interface to the rest of the system that matches its OPCS (it provides Op1 and
Op2 in our case); (ii) in the private part of the parent package
(Op1_Op2_Sporadic_Consumer), we create the data structures to store reified
invocations of Op1 and Op2. This is done by extending Param_Type (defined in
System_Types, see the previous Ada Gem in this series) by new types Op1_Param_T and
Op2_Param_T that are records containing the parameters of the call and a reference to
the OPCS (an access to FC in our case). Additionally, we override procedure My_OPCS.
Therefore, when My_OPCS is called on Op1_Param_T or Op2_Param_T, it will dispatch
to the appropriate procedure that we later define in the body of this package. The reader
can check again that this is what really happens when the sporadic task type (defined in
the previous Gem in this series) calls the procedure My_OPCS after fetching the request
descriptor from the OBCS.

with Ada.Real_Time; use Ada.Real_Time;
with Sporadic_Task;

Ada Letters, August 2012 20 Volume XXXII, Number 2

with Types; use Types;
package body Op1_Op2_Sporadic_Consumer is

use System_Types;
-- Redefinition of My_OPCS. Call Consumer_FC.Op1 and set In_Use to

False.

procedure My_OPCS(Self : in out Op1_Param_T) is
begin

 Self.OPCS_Instance.Op1(Self.a, Self.b);
 Self.In_Use := False;

end My_OPCS;
-- Redefinition of My_OPCS. Call Consumer_FC.Op2 and set In_Use to

False.
procedure My_OPCS(Self : in out Op2_Param_T) is
begin

 Self.OPCS_Instance.Op2(Self.a);
 Self.In_Use := False;

end My_OPCS;
protected body OBCS is

procedure Update_Barrier is
begin

 Pending := (OBCS_Queue.Pending) > 0;
end Update_Barrier;
-- Get_Request stores the time of the release of the task,
-- gets the next request (according to the OBCS queuing policy),
-- and updates the guard.

entry Get_Request (Req : out Request_Descriptor_T; Release : out
Time) when Pending is

begin
 Release := Clock;
 Get(OBCS_Queue, Req);
 Update_Barrier;

end Get_Request;
-- When a client calls Op1, the request is reified and put in the

OBCS queue.

procedure Op1(a : in T1; b : in T2) is
begin
if Op1_Params.Buffer(Op1_Params.Index).In_Use then

 Increase_Index(Op1_Params);
end if;

 Op1_Param_T_Ref(Op1_Params.Buffer(Op1_Params.Index)).a := a;
 Op1_Param_T_Ref(Op1_Params.Buffer(Op1_Params.Index)).b := b;
 Put(OBCS_Queue, START_REQ,
Op1_Params.Buffer(Op1_Params.Index));
 Increase_Index(Op1_Params);
 Update_Barrier;

Ada Letters, August 2012 21 Volume XXXII, Number 2

end Op1;
-- When a client calls Op2, the request is reified and put in the

OBCS queue.

procedure Op2(a : in T1) is
begin

if Op2_Params.Buffer(Op2_Params.Index).In_Use then
 Increase_Index(Op2_Params);

end if;
 Op2_Param_T_Ref(Op2_Params.Buffer(Op2_Params.Index)).a := a;
 Put(OBCS_Queue, ATC_REQ, Op2_Params.Buffer(Op2_Params.Index));
 Increase_Index(Op2_Params);
 Update_Barrier;

end Op2;
end OBCS;
package body My_Sporadic_Factory is

 Op1_Par_Arr : Op1_Param_Arr(1..Param_Queue_Size) := (others =>
 (False,
 OPCS_Instance,
 T1_Default_Value,
 T2_Default_Value));

 Op1_Ref_Par_Arr : aliased Param_Arr := (Op1_Par_Arr(1)'access,
 Op1_Par_Arr(2)'access, Op1_Par_Arr(3)'access);
 Op2_Par_Arr : Op2_Param_Arr(1..Param_Queue_Size) := (others =>
 (false,
 OPCS_Instance,
 T1_Default_Value));

 Op2_Ref_Par_Arr : aliased Param_Arr := (Op2_Par_Arr(1)'access,
 Op2_Par_Arr(2)'access, Op2_Par_Arr(3)'access);

-- Creation of the OBCS
 Protocol : aliased OBCS(Ceiling, Op1_Ref_Par_Arr'access,
 Op2_Ref_Par_Arr'access);

-- Indirection to Get_Request of the OBCS

procedure Getter(Req : out Request_Descriptor_T; Release : out
Time) is

begin
 Protocol.Get_Request(Req, Release);

end Getter;
-- Instantiate the generic package using the procedure above

package My_Sporadic_Task is new Sporadic_Task(Getter);
 Thread : My_Sporadic_Task.Thread_T(Thread_Priority, MIAT);

-- When a client calls Op1, redirect the call to the OBCS

Ada Letters, August 2012 22 Volume XXXII, Number 2

procedure Op1(a : in T1; b : in T2) is
begin

 Protocol.Op1(a, b);
end Op1;
-- When a client calls Op2, redirect the call to the OBCS
procedure Op2(a : in T1) is
begin

 Protocol.Op2(a);
end Op2;

end My_Sporadic_Factory;
end Op1_Op2_Sporadic_Consumer;

The package body above overrides My_OPCS for each operation provided to external
clients (Op1 and Op2). The overriding simply ensures that My_OPCS calls the correct
operation with the stored parameter of the original request and then signals that the
parameters are no longer in use (which ensures correct management of the circular
buffers in the OBCS).

The body of the OBCS follows the same logic as the simpler OBCS described in Gem
#92. Procedure Op1 and Op2 are simply extended to reify call requests and correctly
store the parameters of the calls in the request descriptor.

Finally, in the body of the generic package My_Sporadic_Factory, we create an OBCS
with a defined ceiling priority and the queues to store the parameters of reified calls to
Op1 and Op2. The sporadic thread is instantiated in the same package, and we complete
the picture by redirecting the calls from Op1 and Op2, in the provided interface of the
task structure, to the operations with the same names in the OBCS.

Related Source Code

Ada Gems example files are distributed by AdaCore and may be used or modified for any
purpose without restrictions.

Ada Letters, August 2012 23 Volume XXXII, Number 2

Gem #97: Reference Counting in Ada - Part 1

Author: Emmanuel Briot, AdaCore

Let’s get started…

Memory management is typically a complex issue to address when creating an
application, and even more so when creating a library to be reused by third-party
applications. It is necessary to document which part of the code allocates memory and
which part is supposed to free that memory. As we have seen in a previous Gem, a
number of tools exist for detecting memory leaks (gnatmem, GNATCOLL.Memory or
valgrind). But of course, it would be more convenient if the memory were automatically
managed.

Some languages include an automatic garbage collector. The Ada Reference Manual has
an implementation permission allowing a conformant compiler to provide one, although
none of the mainstream compilers do so. Ada's design allows implementations to use the
stack in many situations where other languages use the heap; this reduces the need for a
garbage collector.

An alternative implementation for getting automatic memory management is to use
reference counting: every time some object is allocated, a counter is associated with it.
This counter records how many references to that object exist. When that counter goes
down to zero, it means the object is no longer referenced in the application and can
therefore be safely deallocated.

The rest of this Gem will show how to implement such a mechanism in Ada. As we will
see, there are a number of minor but delicate issues involved, so implementing such types
is not as trivial as it first seems. The GNAT Components Collection (GNATcoll) now
includes a reusable generic package that simplifies this, and we will discuss this briefly at
the end of this Gem.

As stated above, we need to associate a counter with the objects of all types we want to
monitor. The simplest is to create a tagged type hierarchy where the root type defines the
counter:

type Refcounted is abstract tagged private;
procedure Free (Self : in out Refcounted) is null;

private
type Refcounted is abstract tagged record

 Refcount : Integer := 0;
end record;

This approach is mostly suitable when building a reusable library for reference-counted
types, such as GNATcoll. If you just want to do this once or twice in your application,

Ada Letters, August 2012 24 Volume XXXII, Number 2

you can simply add a new Refcount field to your record type (which doesn't need to be
tagged).

Next, we need to determine when to increment and decrement this counter. In some
languages this counter needs to be manually modified by the application whenever a new
reference is created, or when one is destroyed. This is, for instance, how the Python
interpreter is written (in C). But we can do better in Ada, by taking advantage of
controlled types. The compiler calls special primitive operations each time a value of
such a type is created, copied, or destroyed.

If we wrap a component of a simple access type in a type derived from
Ada.Finalization.Controlled, we can then have the compiler automatically increment or
decrement the reference count of the designated entity each time a reference is
established or removed. We thus create a smart pointer: a pointer that manages the life
cycle of the block of memory it points to.

type Refcounted_Access is access all Refcounted'Class;
type Ref is tagged private;
procedure Set (Self : in out Ref; Data : Refcounted'Class);
function Get (Self : Ref) return Refcounted_Access;
procedure Finalize (P : in out Ref);
procedure Adjust (P : in out Ref);

private
type Ref is new Ada.Finalization.Controlled with record

 Data : Refcounted_Access;
end record;

Let's first see how a user would use the type. Note that Get returns an access to the data.
This might be dangerous, since the caller might want to free the data (which should
remain under control of Ref). In practice, the gain in efficiency is worth it, since it avoids
making a copy of a Refcounted'Class object. This is also essential if we want to allow the
user to easily modify the designated entity. The user is ultimately responsible for
ensuring that the lifetime of the returned value is compatible with the lifetime of the
corresponding smart pointer.

declare
type My_Data is new Refcounted with record

 Field1 : ...;
end record;

 R1 : Ref;

begin
 Set (R1, My_Data'(Refcounted with Field1 => ...));
-- R1 holds a reference to the data

declare

Ada Letters, August 2012 25 Volume XXXII, Number 2

 R2 : Ref;
begin

 R2 := R1;
-- R2 also holds a reference to the data (thus 2 references)

 ...
-- We now exit the block. R2 is finalized, thus only 1 ref left

end;
 Put_Line (Get (R1).Field1); -- For instance

-- We now leave R1's scope, thus refcount is 0, and the data is
freed.
end;

Now let's look at the details of the implementation. First consider the two subprograms
for setting and getting the designated entity. Note that the default value for the reference
count is zero in the Refcounted type. The implementation of Set is slightly tricky: it needs
to decrement the reference count of the previously designated entity, and increment the
reference count for the new data. Instead of calling Adjust and Finalize explicitly (which
is not a recommended practice when it can be avoided), we use an aggregate and let the
compiler generate the calls for us.

procedure Set (Self : in out Ref; Data : Refcounted'Class) is
 D : constant Refcounted_Access := new Refcounted'Class'(Data);
begin
 if Self.Data /= null then
 Finalize (Self); -- decrement old reference count
 end if;

 Self.Data := D;
 Adjust (Self); -- increment reference count (set to 1)
end Set;
function Get (P : Ref) return Refcounted_Access is
begin

return P.Data;
end Get;

In GNATCOLL.Refcount, we provide a version of Set that receives an existing access to
Refcount'Class, and takes responsibility for freeing it when it is no longer needed. The
implementation is very similar to the above (although we need to be careful that we do
not Finalize the old data if it happens to be the same as the new, since otherwise we
might end up freeing the memory).

Adjust is called every time a new reference is created. Nothing special here:

overriding procedure Adjust (P : in out Ref) is
begin

if P.Data /= null then
 P.Data.Refcount := P.Data.Refcount + 1;

end if;

Ada Letters, August 2012 26 Volume XXXII, Number 2

end Adjust;

The implementation of Finalize is slightly more complicated: the Ada reference manual
indicates that a Finalize procedure should always be idempotent. An Ada compiler is free
to call Finalize multiple times on the same object, in particular when exceptions occur.
This means we must be careful not to decrement the reference counter every time
Finalize is called, since a given object only owns one reference. Hence the following
implementation:

overriding procedure Finalize (P : in out Ref) is
 Data : Refcounted_Access := P.Data;
begin

-- Idempotence: the next call to Finalize will have no effect
 P.Data := null;

if Data /= null then
 Data.Refcount := Data.Refcount - 1;

if Data.Refcount = 0 then
 Free (Data.all); -- Call to user-defined primitive
 Unchecked_Free (Data);

end if;
end if;

end Finalize;

That's it for the basic implementation. The next Gem in this series will discuss issues of
task safety associated with reference-counted types.

Related Source Code

Ada Gems example files are distributed by AdaCore and may be used or modified for any
purpose without restrictions.

Ada Letters, August 2012 27 Volume XXXII, Number 2

Gem #98: High Performance Multi-core Programming - Part 2

Author: Pat Rogers, AdaCore

Let’s get started…

Chameneos-Redux is part of the Computer Language Shootout, a suite of benchmarks
that compares the implementations of various programming languages across different
kinds of applications and platforms. The program is required to perform a specified
number of rendezvous between mythical "chameneos" creatures, where each creature is
represented by a distinct thread. Each rendezvous is symmetric, in that the participating
creatures can be either the caller or the called member in any given encounter. The multi-
core benchmark results for all implementations of Chameneos-Redux are available here:
Chameneos-Redux.

In the previous Gem in this series, we made the point that design trumps tuning: when it
comes to performance, no amount of tweaking can compensate for an inherently slow
design. In this Gem we explore another important aspect of the design: minimizing
resource conflicts via processor assignments for threads. This issue arises because the
Chameneos-Redux benchmark requires two distinct "games," in which a number of
threads perform the required number of rendezvous. (One game has a different number of
threads, but both must execute the same number of rendezvous.) When multiple
processors are available the program runs the two games concurrently, so it would be
possible for the two sets of threads to run on the same cores.

To prevent the threads of one game from interfering with the threads of another game
running concurrently, we permanently assign threads to processors rather than let the
operating system assign them dynamically. Specifically, we allow a thread to execute on
any of the cores within a single assigned processor. All of the leading Chameneos-Redux
implementations use the same approach to prevent this sharing.

Assigning threads to processors is specified in terms of "slots" instead of directly in terms
of processors. A slot is an integer value corresponding to a processor number, but since
there are likely more threads than processors, when the slot number exceeds the number
of processors present in the machine, the slot number "wraps around" back to the
beginning processor. As a result, there is effectively no limit to the number of slots
available. This does not prevent threads from sharing (cores on) processors, it simply
makes assignment convenient. If there are too many threads, sharing will be unavoidable.

Slot assignment is achieved using pragma Task_Info within the task type declaration
representing the chameneos creatures' threads. The argument to the pragma is an access
value designating a value of type Thread_Attributes, which on the benchmark operating
system is a record type containing a single affinity bit-mask component. The affinity
mask indicates the cores on which tasks may execute. We define a function Affinity that
returns a value of that type. The following code fragment illustrates use of the pragma
and the function:

Ada Letters, August 2012 28 Volume XXXII, Number 2

task type Thread (This : access Creature; Slot : Natural) is
pragma Task_Info (new Thread_Attributes'(CPU_Affinity => Affinity

(Slot)));
end Thread;

The argument to the Affinity function is a task type discriminant indicating the slot to
use. A slot logically contains an affinity mask that indicates the cores in the
corresponding processor, and it is this mask that is returned by the function.

Slot zero is used to hold a bit-mask indicating all the cores known to the system. We
import function Sched_Getaffinity to get this value. For example, imagine the function
returns a mask with the first eight bits enabled, indicating that a total of eight cores are
available. Slot zero will then hold a bit mask with eight bits set. Assuming two cores per
processor, and assuming that every two contiguous bits represent cores on the same
processor, the following illustrates the resulting masks per slot:

 Bit #
 Slot # 0123456789...
 0 1111111100
 1 1100000000
 2 0011000000
 3 0000110000
 4 0000001100
 5 1100000000
 6 0011000000

Observe that at slot 5 the two cores on the first processor are again involved. You can see
the details of the implementation by examining the Chameneos.Processors package.

Getting back to the game, the main program determines whether the target is a multi-core
machine and assigns slots for the two required games, and thus the threads in the games,
accordingly:

if Processor_Count < 4 then -- run the games sequentially
 Game1.Start (Game1_Creature_Colors, N, Slot => 0);
 Game1.Await_Completion;
 Game2.Start (Game2_Creature_Colors, N, Slot => 0);
 Game2.Await_Completion;

else -- run the games in parallel
 Game1.Start (Game1_Creature_Colors, N, Slot => 1);
 Game2.Start (Game2_Creature_Colors, N, Slot => 2);
 Game1.Await_Completion;
 Game2.Await_Completion;

end if;

In this manner the two games do not share processors, so they do not conflict with each
other.

Ada Letters, August 2012 29 Volume XXXII, Number 2

In the next Gem in this series we will explore another aspect of the implementation
relative to the cache, specifically a user-defined storage allocator that allocates dynamic
memory on cache-aligned boundaries.

Related Source Code

Ada Gems example files are distributed by AdaCore and may be used or modified for any
purpose without restrictions.

Ada Letters, August 2012 30 Volume XXXII, Number 2

Gem #99: Reference Counting in Ada - Part 2: Task Safety

Author: Emmanuel Briot, AdaCore

Let’s get started…

In Part 1, we described a reference-counted type that automatically frees memory when
the last reference to it disappears. But this type is not task safe: when we decrement the
counter, it might happen that two tasks see it as 0, and thus both will try to free the data.
Likewise, the increment of the counter in Adjust is not an atomic operation, so it is
possible that we will be missing some references.

In some applications this restriction is not a big issue (for instance, if there are no tasks,
or if the types are only ever used from a single task). However, let's try to improve the
situation.

The traditional solution is to use a lock while we are manipulating the counter. We could,
for instance, use a protected type for this. However, this means that a nontasking
application using our reference-counted types would have to initialize the whole tasking
run-time, which could impact execution somewhat, since part of the code goes through
slower code paths.

GNAT provides a global lock that we can reuse for that, and that does not require the full
tasking run-time. We could use that lock in a function that changes the value of the
counter atomically. We need to return the new value from that function: changing the
value atomically solves the problem we highlighted for Adjust, but not the one we
showed for Finalize, where two tasks could see the value as 0 if they read it separately.

function Atomic_Add
 (Ptr : access Integer; Inc : Integer) return Integer
is
 Result : Integer;
begin
 GNAT.Task_Lock.Lock;
 Ptr.all := Ptr.all + Value;
 Result := Ptr.all;
 GNAT.Task_Lock.Unlock;

return Result;
end Atomic_Add;

On some systems there is actually a more efficient way to do this, by using an intrinsic
function: this is a function provided by the compiler, generally implemented directly in
assembly language using low-level capabilities of the target machine. We need special
handling to check whether this facility is available, but if it is, we no longer need a lock.
The GNATCOLL.Refcount package takes full advantage of this.

function Atomic_Add
 (Ptr : access Integer; Inc : Integer) return Integer
is

Ada Letters, August 2012 31 Volume XXXII, Number 2

function Intrinsic_Sync_Add_And_Fetch
 (Ptr : access Interfaces.Integer_32;
 Value : Interfaces.Integer_32) return Interfaces.Integer_32;

pragma Import
 (Intrinsic, Intrinsic_Sync_Add_And_Fetch,
"__sync_add_and_fetch_4");
begin

return Intrinsic_Sync_Add_And_Fetch (Ptr, Value);
end Atomic_Add;

(Note: In actual practice, it would be necessary to declare the access parameter of
function Atomic_Add with type Interfaces.Integer_32, for type compatibility with the
intrinsic.)

Once we have this Atomic_Add function we need to modify our reference-counted type
implementation. The first change is to declare the Refcount field as aliased, in the
definition of Refcounted. We then revise the code as follows:

overriding procedure Adjust (P : in out Ref) is
 Dummy : Integer;
begin

if P.Data /= null then
 Dummy := Atomic_Add (P.Data.Refcount'Access, 1);

end if;
end Adjust;
overriding procedure Finalize (P : in out Ref) is
 Data : Refcounted_Access := P.Data;
begin
 P.Data := null;

if Data /= null
and then Atomic_Add (Data.Refcount'Access, -1) = 0

then
 Free (Data.all);
 Unchecked_Free (Data);

end if;
end Finalize;

The last Gem in this series will talk about a different kind of reference, generally known
as a weak reference.

Related Source Code

Ada Gems example files are distributed by AdaCore and may be used or modified for any
purpose without restrictions.

Ada Letters, August 2012 32 Volume XXXII, Number 2

Gem #100: Reference Counting in Ada - Part 3: Weak References

Author: Emmanuel Briot, AdaCore

Let’s get started…

As we mentioned in the first two parts of this Gem series, GNATCOLL now includes a
package that provides support for memory management using reference counting,
including taking advantage of the efficient synchronized add-and-fetch intrinsic function
on systems where it is available.

There is one thing that reference-counted types cannot handle as well as a full-scale
garbage collector: cycles. If A references B which references A, neither of them will ever
get freed. A garbage collector is often able to detect such cycles and deallocate all the
objects as appropriate, but such a case cannot be handled automatically through reference
counting. However, there's a variant approach that can handle such cases with only minor
changes in the code.

Let's take an example: you are retrieving values from some container (a database for
instance), and want to have a local cache to speed things up. The code would likely be
organized as follows:

� Get a reference-counted value from the container. Its counter is 1.
� Put it in the cache for later use. The counter is now 2, since the cache itself owns a

reference.
� When you are done using the value in your algorithm, you release the reference

you had. Its counter goes down to 1 (the cache still owns the reference).

Because of the cache, the value is never freed from memory. This is not good, since
memory usage will only keep increasing.

GNATCOLL provides a solution for this issue, through the use of weak references. This
is a standard industry term for a special kind of reference: you have a type that points to
the same object as a true reference-counted type would, but that type does not hold a
reference. Thus, it does not prevent the counter from reaching 0, and the object from
being freed.

When the deallocation occurs, the internal data of the weak reference is reset. Thus, if
you retrieve the data stored in the weak reference, you get null, not an erroneous access to
some freed memory (which might sooner or later result in a Storage_Error).

If we set up the cache so that it uses weak references, the code becomes:

� Get a reference-counted value from the container. Its counter is 1.
� Put it in the cache, through a weak reference. The counter is still 1.

Ada Letters, August 2012 33 Volume XXXII, Number 2

� When you are done using the value, the counter goes down to 0, and the memory
is freed.

� At this point, the cache still contains the weak reference, but the latter uses just a
little memory.

Using slightly more complex code, it is possible, in fact, to remove the entry for the
cache altogether when the value is freed, thus really releasing all memory to the system.
Though GNATCOLL does provide a capability for using weak references, a future
package will provide easier handling of such caches.

One way to implement weak references is by adding an extra pointer in type Refcount.
GNATCOLL chooses to make this optional: if you want to systematically have that extra
pointer in your data structure, you can use weak references. Otherwise, you still have
access to the code we described in the first part of this Gem series.

We will not go into the details of the implementation for a weak reference. Interested
parties can look at the code in GNATCOLL.Refcount.Weakref, which is relatively small.

Related Source Code

Ada Gems example files are distributed by AdaCore and may be used or modified for any
purpose without restrictions.

Ada Letters, August 2012 34 Volume XXXII, Number 2

Gem #101: SOAP/WSDL server part

Author: Pascal Obry, EDF R&D

Let’s get started…

This is the first part of a two-part Gem on SOAP (Simple Object Access Protocol).

In this Gem we will be building a SOAP server and you'll see that with Ada it is quite
simple!

Let's take a simple package spec such as the following:

package Temperatures is
type Celsius is new Float;
type Fahrenheit is new Float;
function To_Fahrenheit (C : Celsius) return Fahrenheit;
function To_Celsius (F : Fahrenheit) return Celsius;

end Temperatures;

The body is not shown here but it's part of the source packages that can be downloaded
(see below).

The first step is to generate the WSDL (Web Service Description Language). A WSDL is
an XML language for describing Web services. In the WSDL we find a description of the
types and the specs of the routines. A WSDL is similar to an IDL but based on XML.

To generate the WSDL, AWS come with the ASIS-based ada2wsdl tool:

$ ada2wsdl temperatures.ads -a http://localhost:8888 -o
temperatures.wsdl

The options are:

-a http://... Specifies the end-point for the Web services.

-o temperatures.wsdl Outputs WSDL into temperatures.wsdl.

Out of this WSDL it's possible to generate stubs (for calling Web services) or skeletons
(for implementing Web services). In this first part we're building a server, so we don't
need the stubs. AWS comes with a second tool called wsdl2aws to generate all the
necessary the code:

$ wsdl2aws -nostub -cb -spec temperatures -main soap_server
temperatures.wsdl

Ada Letters, August 2012 35 Volume XXXII, Number 2

The options are:

-spec temperatures To use the routines as implemented in Temperatures
 unit.

-cb Generates the SOAP callbacks using the routines
 found in the spec specified above.

-main soap_server Generates a main named soap_server, this main
 program starts the SOAP server by referencing a
SOAP
 dispatcher using the callback routines.

Using the three options above is very handy for building a server that provides Web
services and nothing more. The last actions are just to compile the server and run it:

$ gnatmake -gnat05 -Psoap_server
$./server

At this point the services are available on the network and can be called by other
programs, possibly built with other languages (Java and C# are the most common ones).

In the second part of this series we will see how to call those services from Ada using
AWS.

1.1.1.1 Attached Files

� soap_server.zip - (890 B)

Related Source Code

Ada Gems example files are distributed by AdaCore and may be used or modified for any
purpose without restrictions.

Ada Letters, August 2012 36 Volume XXXII, Number 2

Gem #102: SOAP/WSDL client part

Author: Pascal Obry, EDF R&D

Let’s get started…

This is the second part of a two-part Gem series on SOAP and WSDL.

In this Gem we will be using a Web Service as described in a WSDL document. These
services could be implemented in Java, C#, or Ada, because the WSDL is universal in the
Web Services world.

In the previous Gem we generated a WSDL from a simple Ada spec. Let's use it to
generate the necessary code to use these Web services. We again use the wsdl2aws tool,
but this time to generate only the stubs:

$ wsdl2aws -f -noskel temperatures.wsdl

A set of packages is generated. Two are of interest to us at the moment, namely:

Package temperatures_service-types.ads, containing the types used by the Web services.

Package temperatures_service-client.ads, containing the Web services client spec.

For each Web Service routine, two specs are generated:

function To_Fahrenheit
 (C : Celsius_Type;
 Endpoint : String := Temperatures_Service.URL;
 Timeouts : AWS.Client.Timeouts_Values :=
Temperatures_Service.Timeouts)

return To_Fahrenheit_Result;
function To_Fahrenheit
 (Connection : AWS.Client.HTTP_Connection;
 C : Celsius_Type)

return To_Fahrenheit_Result;
-- Raises SOAP.SOAP_Error if the operation fails

The first connects and closes the connection for each call, whereas the second uses a
persistent connection. The usage is straightforward. Now, let's build a small program
which converts Celsius to Fahrenheit:

with Ada.Text_IO;
with Temperatures_Service.Client;
with Temperatures_Service.Types;
procedure SOAP_Client is

use Ada;

Ada Letters, August 2012 37 Volume XXXII, Number 2

use Temperatures_Service;
 C : constant Types.Celsius_Type := 20.0;
 F : constant Types.Fahrenheit_Type := Client.To_Fahrenheit (C);

package C_IO is new Text_IO.Float_IO (Types.Celsius_Type);
package F_IO is new Text_IO.Float_IO (Types.Fahrenheit_Type);

begin
 Text_IO.Put ("Celsius "); C_IO.Put (C, Aft => 1, Exp => 0);
 Text_IO.New_Line;
 Text_IO.Put ("Fahrenheit "); F_IO.Put (F, Aft => 1, Exp => 0);
 Text_IO.New_Line;
end SOAP_Client;

We can use the following simple project file to build this program:

with "aws";
project SOAP_Client is

for Source_Dirs use (".");
for Main use ("soap_client.adb");

end SOAP_Client;
$ gnatmake -gnat05 -Psoap_client

Now let's test it, first by starting the server we have built last week:

$./soap_server

Then running soap_client:

$./soap_client
Celsius 20.0
Fahrenheit 68.0

That's all there is to it. As we've shown, it's easy to use a Web Service in Ada when the
WSDL is provided. It's still possible to use a Web Service without a WSDL, but in that
case it would be necessary to hand-code it.

1.1.1.2 Attached Files

� soap_client.zip - (691 B)

Related Source Code

Ada Gems example files are distributed by AdaCore and may be used or modified for any
purpose without restrictions.

Ada Letters, August 2012 38 Volume XXXII, Number 2

Gem #103: Code Archetypes for Real-Time Programming—Part 5

Author: Marco Panunzio, University of Padua

Let’s get started…

In the previous Ada Gem we completed the creation of a complete sporadic task. In this
Ada Gem that ends our mini-series, we want to complete the example by adding the
realization of the communication between different tasks. In particular, we investigate
how we can correctly manage the calls of operations outside a task. Those calls are
performed from an OPCS and they have to be correctly routed to the endpoint of the
communication.

Intertask communication -- A producer-consumer example

Suppose we want to realize the simple producer-consumer collaboration pattern depicted
in the figure below.

The Producer is a cyclic task which, after some processing, produces some data that is
sent to a Consumer sporadic task. Data is passed as a parameter of operation Op1.

This implies that we have to equip the Producer cyclic task with the means to
communicate with the Consumer sporadic task. However, the task structure that we
created encapsulates the functional code inside a structure called the OPCS. Therefore,
inside the functional code of the Producer we cannot directly call Op1 of the Consumer

Ada Letters, August 2012 39 Volume XXXII, Number 2

(i.e., the functional/sequential code), but we have to call the appropriate provided
interface of the whole Consumer task.

Let us see how we can achieve this goal when creating the package Producer (analogous
to the package Consumer that we presented in the previous Ada Gem of the series).

package Producer is
type Producer_FC is new Controlled with private;
type Producer_FC_Ref is access all Producer_FC'Class;
type Producer_FC_Static_Ref is access all Producer_FC;
-- [code omitted]

overriding
procedure Initialize(This : in out Producer_FC);
procedure Op0 (This : in out Producer_FC);
procedure Set_x(This : in out Producer_FC;

 v : in Consumer.Consumer_FC_Ref);
private

type Producer_FC is new Controlled with record
 x : Consumer.Consumer_FC_Ref;

end record;
end Producer;

We are adding a member x in the record of Producer_FC that represents a reference to
the Consumer that provides Op1, which consumes the data produced by the Producer.
The reader should note that the static type of this reference is the OPCS of the Consumer
(which was called Consumer_FC).

package body Producer is
-- [procedure Initialize omitted]

procedure Op0(This : in out Producer_FC) is
begin

 This.x.Op1([T1_VALUE]);
end Op1;
procedure Set_x(This : in out Producer_FC;

 v : in Consumer.Consumer_FC_Ref)
is
begin

 This.x := v;
end Set_x;

end Producer;

In the body of procedure Op0 (where the sequential code executed by the Producer task is
specified), we insert the call to Op1 that is performed using reference x.

Ada Letters, August 2012 40 Volume XXXII, Number 2

-- Package spec
type s1_T is new Consumer.Consumer_FC with record
 Op1_Ref : access procedure (a : in Types.T1; b : in Types.T2);
 Op2_Ref : access procedure (a : in Types.T1);
end record;
overriding
procedure Op1(This : in out s1_T; a : in Types.T1; b : in Types.T2);
overriding
procedure Op2(This : in out s1_T; a : in Types.T1);
-- Package body
procedure Op1(This : in out s1_T; a : in Types.T1; b : in Types.T2) is
begin
 This.Op1_Ref.all(a,b);
end Op1;

Above, in another package, we create a new type s1_T. This type extends Consumer_FC
and adds a pointer to a procedure with the signature of Op1, the operation that we call at
the Producer side, and Op2. We also override Op1 for s1_T, so that a call to Op1 is
reissued to the pointer just defined.

Analogously, suppose we create a new type s0_T that extends Producer_FC.

In the few remaining code excerpts below, we complete the example with the
instantiation of the cyclic task for the Producer and the sporadic task for the Consumer.

s0_Instance : aliased s0_T;
package My_Cyclic_Producer_Task is new
 Op0_Cyclic_Producer.My_Sporadic_Factory(
 Thread_Priority => 1,
 Period => 2000,
 OPCS_Instance =>
 Producer.Producer_FC(s0_Instance)'access);
s1_Instance : aliased s1_T;
package My_Sporadic_Consumer_Task is new
 Op1_Op2_Sporadic_Consumer.My_Sporadic_Factory(
 Thread_Priority => 2,
 Ceiling => 2,
 MIAT => 500,
 OPCS_Instance =>
 Consumer.Consumer_FC(s1_Instance)'access);

Note that we pass a pointer to s0_Instance (respectively s1_Instance) as the OPCS during
the instantiation of the Producer (respectively Consumer) cyclic (respectively sporadic)
task.

s1_Instance.Op1_Ref := My_Sporadic_Consumer_Task.Op1'access;
s1_Instance.Op2_Ref := My_Sporadic_Consumer_Task.Op2'access;

Ada Letters, August 2012 41 Volume XXXII, Number 2

Finally, with the assignment above, we are able to impose that whenever Op1 is called on
s1_Instance, then the call is directed to the operation Op1 on the provided interface of the
Consumer Sporadic Task, and from there it follows the correct delegation chain
(redirection to the OBCS and reification of the request in the OBCS queue).

s0_Instance.Set_x(Consumer.Consumer_FC_Ref(s1_Instance'access));

Finally, we establish the binding between the Producer and the Consumer with the call
above. In fact, it ensures that the call of Op1 inside the OPCS of the Producer
(Producer_FC) is a call to the provided interface of the Consumer sporadic task.

Conclusion

In this Ada Gems miniseries we described a set of Ravenscar-compliant code archetypes
for the realization of recurrent patterns in real-time systems. We presented two basic
patterns for the realization of cyclic and sporadic tasks, commented on their drawbacks,
and showed how to improve them to realize sporadic operations with parameters and an
example of complex queuing policy. Finally, we showed how to perform intertask
communication.

The code archetypes we described were used for the code generation in the HRT-
UML/RCM track of the EU-funded ASSERT project.

Related Source Code

Ada Gems example files are distributed by AdaCore and may be used or modified for any
purpose without restrictions.

Ada Letters, August 2012 42 Volume XXXII, Number 2

Gem #104: Gprbuild and Configuration Files—Part 1

Author: Johannes Kanig, AdaCore

Let’s get started…

Gem #65 introduced gprbuild, GNAT's program build tool that supports driving the build
process of an Ada project with a project file. In particular, gprbuild is capable of building
projects that use source files in programming languages other than Ada, whereas
gnatmake only supports pure Ada projects.

Gprbuild needs two files: a project file (with the extension .gpr) defining characteristics
of the project, such as the programming languages, source directories, compiler switches,
main file(s), and so on, and a configuration file (with the extension .cgpr) describing the
compilers to be used.

Project files are now widely used, most GNAT tools know how to deal with project files
and how to take advantage of the information they contain, and many Ada projects are
now described using project files. On the other hand, configuration files are not as easy to
develop. Fortunately, the gprconfig tool, which is distributed with gprbuild, can
autogenerate a configuration file which suits the most common situations. Even better,
when one does not give a configuration file to gprbuild (using the --config" switch),
gprbuild will automatically call gprconfig.

In this first Gem, we explain how to configure gprbuild to use a custom compiler.

A configuration file lists the compilers to be used for each language, as well as describing
configuration options such as the needed compiler switches, the suffix for generated
object files, the command-line switch for obtaining dependency information, and so on.
Let's look at a simple example. While defining one's own compiler is useful mostly for
nonstandard compilers, we will use GCC and the C programming language in our
example, because most readers are familiar with this particular language and compiler.
The configuration file gcc.cgpr looks like this:

configuration project GCC is
package Compiler is

for Driver ("C") use "/usr/gnat/bin/gcc";
for Leading_Required_Switches ("C") use ("-c");
for Object_File_Suffix ("C") use ".o";
for Dependency_Switches ("C") use ("-MMD","-MF","");
for Include_Switches ("C") use ("-I");

end Compiler;
package Naming is

for Spec_Suffix ("C") use ".h";
for Body_Suffix ("C") use ".c";

end Naming;
end GCC;

Ada Letters, August 2012 43 Volume XXXII, Number 2

This simple configuration file is sufficient to compile C files and is reasonably self-
explanatory. The package "Compiler" defines the compiler executable, with required
command-line switches, and the object file suffix. The package "Naming" introduces the
usual naming scheme for C files.

Gprbuild has a built-in dependency mechanism that serves to avoid unnecessary
recompilation when the relevant source files have not changed. It is of course desirable to
use this mechanism. We achieve this here by setting the variable
"Dependency_Switches", which gives the command-line options that trigger the
generation of dependency files, in parallel to compilation. There is also a variable
"Dependency_Driver" that can be set if one prefers to generate the dependency file
independently from the invocation of the compiler. If your compiler supports the output
of dependencies using Makefile syntax, then this mechanism is a simple way to obtain
efficient incremental compilation for the given language.

The other parts of a configuration file, such as those that describe the linking process,
will be described in a future Gem.

Now, given a C project, the following project file main.gpr is sufficient to describe it:

project Main is
for Languages use ("C");

end Main;

As stated, gprbuild needs to be passed both the project file and the configuration file:

gprbuild --config=gcc.cgpr -P main.gpr

We have already described that if the "--config" switch is omitted, gprbuild generates a
suitable configuration file automatically. It does so using the gprconfig tool. When
executed, gprconfig reads a knowledge base describing a number of compilers with their
options, their applicability to different platforms, and so on. Given this knowledge,
gprconfig determines which compiler is available on the system. Gprconfig can then
generate a configuration file containing only the descriptions of the available and relevant
compilers.

The default knowledge base already contains complete descriptions of the GNAT and gcc
compilers, and a few others. In the next Gem we will see the other parts of gprbuild that
can be configured. In the third Gem of this series, we will see how to add a compiler to
the knowledge base.

Related Source Code

Ada Gems example files are distributed by AdaCore and may be used or modified for any
purpose without restrictions.

Ada Letters, August 2012 44 Volume XXXII, Number 2

Gem #105: Lady Ada Kisses Python—Part 1

Author: Emmanuel Briot, AdaCore

Let’s get started…

The GNAT Components Collection (GNATCOLL) has included, since the beginning, a
collection of packages to easily interface your Ada applications with scripting languages.
This is the layer used in the GPS IDE to provide extensibility via the GPS shell or
Python. The use with the GPS shell is just a toy we initially used to bootstrap the process,
and was kept for backward compatibility only. On the other hand, Python is an
extensively used object-oriented language that comes with its own run-time library, and
can be easily extended in C or Ada.

This Gem will not go into the details of Python itself. There are excellent tutorials on the
Internet. Instead, we will focus on the benefits that GNATCOLL provides over a direct
interface via pragma Import, and show how to make your application scriptable in
Python.

The package providing this support is called GNATCOLL.Scripts. As its name implies, it
is meant to be a scripting-language-agnostic API. What this means is that your
application will not know anything about Python or its API. Instead, you will export
some classes and functions from Ada to GNATCOLL. The latter will then make sure that
these functions are available for all the supported languages. Although currently we only
support Python and the GPS shell, additional languages could conceivably be added in
the future (such as JavaScript, Lisp, or Caml), and your application would automatically
be scriptable through these.

GNATCOLL also does most of the memory management on your behalf. Python, for
instance, uses reference counting to detect when an object can be freed. Lisp
implementations, such as Scheme, generally use a form of garbage collection. But these
are details you do not need to know about when you program via GNATCOLL.Scripts. In
this package, the Ada types are controlled (and themselves use reference counting, as we
detailed in an earlier Gem) and will automatically free memory when no longer used.
This is of course less error prone, and will avoid a lot of memory leaks in your
application.

In fact, GNATCOLL also provides a few minor extensions to the scripting package if you
also program a GUI based on GtkAda. The latter (or rather the underlying gtk+ library)
also uses its own reference counting. As a result, things can become really complex when
you have an Ada object that's exported to Python, and this object is associated with one
of the GUI elements in your application. Finding out when the memory is safe to
deallocate requires a lot of care, but GNATCOLL takes care of it all on your behalf!

What are the benefits of interfacing with Python? Python, like a lot of scripting
languages, has a rather high-level programming API. In particular, it makes the

Ada Letters, August 2012 45 Volume XXXII, Number 2

construction of complex data structures relatively easy, both because it provides an
important collection of such data structures that are fully integrated in the language, and
also through its introspection and reflection capabilities. Our experience from GPS is that
a lot of users (provided they are programmers, of course) will readily be able to
understand Python script, and by using simple copy-paste will be able to quickly write
their own scripts.

For GPS there are a number of user groups that have developed extensive Python
modules to change the behavior of GPS and better integrate it in their own environment.
Had we chosen to use Ada as the language for such extensions, it would have required
users to have the full GPS development environment in order to build them, relink GPS
(or create dynamically loaded libraries), and finally to test their changes. By comparison,
the Python cycle is much faster: just edit and reload. Supportwise, it is also often
convenient for us to provide a quick and short Python script to work around a GPS
limitation and unblock customers, until we have time to do the proper work at the Ada
level. Finally, there are features that are required by one customer, but which would make
no sense for others; in such a case, the easiest thing to do is to implement it via a short
Python script in coordination with the customer. If the Python API is kept stable, the
script will continue to work from version to version of GPS.

In the second part of this Gem series, we'll show specific technical details of how to
interface an application with Python using GNATCOLL.

Related Source Code

Ada Gems example files are distributed by AdaCore and may be used or modified for any
purpose without restrictions.

Ada Letters, August 2012 46 Volume XXXII, Number 2

Gem #106: Lady Ada Kisses Python—Part 2

Author: Emmanuel Briot, AdaCore

Let’s get started…

The first part of this Gem described why having a Python interface might provide an
effective way to customize and extend your application. It also highlighted how the
GNAT Components Collection takes care of a good part of the work. This Gem will now
go into the technical details of how you can use GNATCOLL.Scripts in practice. The
GNATCOLL documentation provides additional details, so please refer to it if you need
more information (see GNATColl: GNAT Reusable Components).

Your application needs to indicate which scripting languages it wants to support. Handles
to those languages are stored in a global variable called a Scripts_Repository (which your
application provides, so it could be stored in your own record type, or wrapped in a
protected object, etc.).

with GNATCOLL.Scripts.Python;
use GNATCOLL.Scripts, GNATCOLL.Scripts.Python;
declare
 Repo : Scripts_Repository := new Scripts_Repository_Record;
begin
 Register_Python_Scripting (Repo, "GPS");
end;

The second parameter on the last line is the name of the Python module that your
application exports. This example is extracted from GPS, where all functions and classes
are available as GPS.Console, GPS.Logger, etc. This parameter is the namespace in
which your exports will go.

The next step is to register some of the standard classes that are needed by GNATCOLL
itself. The most important of these is the Console class, which provides input/output
between your application and Python. In many cases you do not want to allow Python to
output to stdout; for instance, if you are writing a GUI application you would have an
interactive Python console for this. As a result, the standard Python input/output will be
redirected to instances of the Console class.

Register_Standard_Classes (Repo, "Console");

We now need to define how a console behaves at the Ada level (either to the usual stdin
and stdout, or to a GUI window for instance). We will not go into the details of creating
custom consoles, but GNATCOLL comes with examples for the two usual cases in its
examples/textconsole.ads and examples/gtkconsole.ads files.

Console := GtkConsole.Create (...); -- See the examples directory

Ada Letters, August 2012 47 Volume XXXII, Number 2

Set_Default_Console
 (Lookup_Scripting_Language (Repo, "python"), Virtual_Console
(Console));

At this point, your application can show a GUI window to interact with Python, in which
users can write usual Python commands. But your application still hasn't exported
anything useful.

Let's take a simple example. We want to export from Ada a function that performs the
addition of two integers (of course, this is already provided by Python, but this is just an
example). We first need to declare what we are exporting:

Register_Command
 (Repo,
 Command => "add",
 Params => (1 => Param("p1"), 2 => Param("p2"),
 3 => Param("p3", Optional => True)),
 Handler => Handler'Access);

This indicates that from Python we will be able to make calls such as:

 n = add(p1=23, p2=45)
 n = add(p2=45, p1=23) # order of parameters is irrelevant
 n = add(23, 45, 67) # three parameters

The first version shows the use of named parameters in Python (one of the nice features it
inherited from Ada). These parameters can be specified in any order in Python, and
GNATCOLL will automatically reorder them so that your application always accesses
"p1" as the first parameter and "p2" as the second parameter.

As you can see in the Ada code, there is no reference to Python. In fact, "add" will be
available in all registered languages (Python here, but also potentially the GPS shell, and
in the future other languages). If new languages are added in GNATCOLL, your code
will not need any change to benefit from these.

We now need to provide the implementation:

procedure Handler (Data : in out Callback_Data'Class; Command : String)
is
 P1, P2 : Integer;
begin

if Command = "add" then
 P1 := Nth_Arg (Data, 1);
 P2 := Nth_Arg (Data, 2);
 P3 := Nth_Arg (Data, 3, 0); -- Default value is 0

 Set_Return_Value (Data, P1 + P2 + P3);
end if;

end Handler;

Ada Letters, August 2012 48 Volume XXXII, Number 2

Again, this code is independent of Python. We always access "P1" as the first parameter
(through the call to Nth_Arg), and GNATCOLL will automatically take care of
reordering the parameters if the user has specified them in a different order.

GNATCOLL will automatically raise a Python exception if the user calls "add" with an
incorrect number of parameters. Note that it's also possible to export functions with
optional parameters (P3 in our example). Nth_Arg can then be used to specify the default
value for parameter.

Also worth noting is that Nth_Arg will raise an exception if the corresponding parameter
has an incorrect type. There exist several variants of Nth_Arg (for strings, integers,
booleans, and a few other types). In our case, if the user calls "add" with a string,
Nth_Arg will raise an Ada exception that your application can handle. If your application
does not catch the exception, it will be propagated to Python.

The example in this Gem has a limited scope, but highlights some of the fundamental
features and services that GNATCOLL offers on top of Python. Once GNATCOLL has
been properly initialized, exporting new commands requires little additional glue code.
Exporting classes and functions is very similar to what the example described. For more
information, see the online GNATCOLL documentation at GNATCOLL: Embedding
Script Languages.

At this stage, the most difficult task is to define a clear Python API to your application,
one that users can understand relatively easily, and yet that can be extended in the future
by exporting even more capabilities from Ada, without breaking the whole design of the
API.

Related Source Code

Ada Gems example files are distributed by AdaCore and may be used or modified for any
purpose without restrictions.

Ada Letters, August 2012 49 Volume XXXII, Number 2

SIGAda
The ACM Special Interest Group on Ada

Ricky E. Sward
Chair, ACM SIGAda
1155 Academy Park Loop
Colorado Springs, CO August 30, 2012

Dear SIGAda Members,

It’s hard to believe that almost four years have passed since the current officers were elected and
took office. Over the next few months, SIGAda will hold officer elections and the new
Executive Committee will take office in the summer of 2013. If you are interested in
participating in SIGAda as one of the elected officers, please contact John McCormick, our past
Chair, about how to volunteer. John will be selecting two candidates for each position for the
upcoming elections.

In our last viability review, the ACM SIG Governing Board commented on how many elected
officer positions SIGAda currently has. There are other SIGs that have about the same number
of members as SIGAda, and they have only three or four elected officers. SIGAda currently has
six: Chair, Vice Chair for Meetings and Conferences, Vice Chair for Liaison, Secretary,
Treasurer and International Representative. At the last Extended Executive Committee (EEC)
meeting held in Denver during SIGAda 2011, the EEC discussed a possible reorganization of the
Executive Committee to include fewer elected officer positions.

We are proposing to combine the current Vice Chair positions into one position and to also
combine the Secretary and Treasurer positions into one position. This reorganization would
reduce the number of elected SIGAda officers from six to four: Chair, Vice Chair, Secretary-
Treasurer and International Representative. The justification for this change is that it will reduce
the number of volunteers that SIGAda needs to find to fill the officer positions. It also enables
other volunteers to serve in Conference Chair and Local Arrangements chair positions to support
the SIGAda annual conferences.

This proposed reorganization requires a change to the SIGAda Bylaws. The Bylaws were
originally approved by ACM in 1984 and revised under Currie Colket in 2005. The proposed
revised bylaws are published in this copy of Ada Letters for your review. Here is a detailed
summary of the proposed changes to the SIGAda Bylaws.

1) Article 4 – Officers: Combine the current Vice Chair for Meetings and Conferences
position with the Vice Chair for Liaison. The new name of this position is Vice
Chair. The duties have been combined and reworded appropriately.

2) Article 4 – Officers: Combine the current Secretary position with the Treasurer
position. The new name of this position is Secretary-Treasurer. The duties have been
combined and reworded appropriately.

3) Article 6 – Vacancies and Appointments: Change the reference to the Vice Chair for
Meetings and Conferences to reflect the new name, Vice Chair.

Ada Letters, August 2012 50 Volume XXXII, Number 2

Over the next few months, ACM will inform the SIGAda membership about these changes to the
SIGAda Bylaws. We anticipate that these changes will be considered minor changes by ACM
and that we can approve the new reorganization before the upcoming elections.

If you have any questions or comments about the Bylaws changes, please feel free to contact me
at ricky.sward@acm.org. Thank you for your consideration.

Cheers,

Ricky E. Sward
SIGAda Chair

Ada Letters, August 2012 51 Volume XXXII, Number 2

SIGAda Awards

Started in 1994, the ACM SIGAda Awards recognize individuals and organizations that have
made outstanding contributions to the Ada community and to SIGAda. The Outstanding Ada
Community Contribution Award is given for broad, lasting contributions to Ada technology and
usage. The Distinguished Service Award is given for exceptional contributions to SIGAda
activities and products.

This year the Outstanding Ada Community Contribution Awards were awarded to Stephen
Michell and Tullio Vardanega.

Stephen Michell - Member of the ISO/IEC JTC 1/SC 22/WG 9 and Ada Rapporteur Group
(ARG). Frequent participant in the International Real-Time Ada Workshop (IRTAW). Involved
with the Ada High Integrity Rapporteur Group (HRG). 18 citations for papers and works
involving Ada. Currently the Canadian Head Of Delegation for WG23, Software Vulnerabilities.

Tullio Vardanega - Member of the ISO/IEC JTC 1/SC 22/WG 9 and Ada Rapporteur Group
(ARG). Frequent participant in the International Real-Time Ada Workshop (IRTAW). Served as
Editor-in-Chief of Ada-Europe's Ada User Journal (AUJ). Served on the Ada-Europe Board.
Served as Program Co-Chair for four Ada-Europe conferences. Served as Conference Chair for a
memorable conference. Served as president of Ada-Europe.

This year the Distinguished Service Award was awarded to Alok Srivastava.

Alok Srivastava - Editor, Ada Letters. Alok has done an outstanding job publishing three issues
of Ada Letters each year, which is one of the key member benefits advertised by the SIGAda
organization. Two time Conference Chair (2007 and 2010). The 2007 conference was the most
financially successful conference in recent history. Vice Chair for Meetings and Conferences
since 2009. He has done an outstanding job overseeing the organization of the SIGAda
conferences for the past three years. He has also stepped in several times for the SIGAda Chair to
run bi-weekly meetings and to attend ACM SIG Governing Board meetings.

Significant Papers published in proceedings

This year’s conference included three outstanding keynote speeches. The keynote speakers
presented on the following topics:

Grady Booch. IBM Fellow. Chief Scientist for Software Engineering, IBM Research.
Everything I Know I Learned from Ada

SIGAda Annual Report
July 1, 2011 - June 30, 2012

June 30, 2012

Ada Letters, August 2012 52 Volume XXXII, Number 2

Martin Carlisle, Ph.D. US Air Force Academy. Why I Came Back To Ada

Jim Rogers. MEI Technologies, Inc. Software Safety, and Related Language Considerations

This year’s conference included an outstanding panel session that was very well received by the
attendees:

Panel: How to Make Ada Go "Viral". Chair: JP Rosen (AdaLog), with Brad Moore
(General Dynamics Canada), David Sauvage (AdaLabs, Mauritius), Tucker Taft
(Sofcheck)

There were several outstanding papers in the conference this year with equally outstanding
presentations. For example:

Stack Safe Parallel Recursion with Paraffin by Brad Moore (General Dynamics, Canada)

Software Vulnerabilities Precluded by SPARK by Paul E. Black (National Institute of
Standards and Technology), Chris E. Dupilka (US DoD), F. David Jones and Joyce Tokar
(Pyrrhus Software)

Enhancing SPARK's Contract Checking Facilities Using Symbolic Execution by John
Hatcliff, Jason Belt (Kansas State University), Patrice Chalin (Concordia University), David
Hardin (Rockwell Collins Advanced Technology Center), and Xianghua Deng (Google, Inc.)

An Ada Design Pattern Recognition Tool for AADL Performance Analysis by V. Gaudel, F.
Singhoff, A. Plantec, S. Rubini (University of Brest, France), P. Dissaux (Ellidiss Software),
and J. Legrand (Ellidiss Software)

Overall, the papers being submitted to the SIGAda conference continue to be of high quality.

Significant Programs that provided a springboard for further technical
efforts

A formal liaison exists between SIGAda and WG9. ISO/IEC JTC1/SC22 WG9 is that body of
international representatives responsible for the maintenance and evolution of the Ada
International Standard. The National Bodies represented on WG9 are Belgium, Canada, France,
Germany, Italy, Japan, Switzerland, the United Kingdom, and the United States.

In March 2007 the ISO (the International Organization for Standardization) in Geneva,
Switzerland announced the formal completion of the process to revise the Ada 95 language, with
the publication of the Ada 2005 standard — officially named ISO/IEC 8652:1995/Amd 1:2007.
This announcement culminates a collaborative international effort under ISO's Ada Working
Group (WG9) to enhance the 1995 version of the Ada language.

At least one SIGAda Officer participates and represents the membership at the WG9 meetings
held twice each year.

Ada Letters, August 2012 53 Volume XXXII, Number 2

Innovative Programs which provide service to some part of our technical
community

Since 1994 SIGAda has conducted an "Ada Awareness Initiative". Its centerpiece has been our
SIGAda professional booth display unit in exhibition halls at important software engineering
conferences. This lets folks know that Ada is very much alive and a sound part of any software
engineering effort having real-time, high integrity, high-assurance, and highly distributed
requirements. We brought the booth to the SIGCSE conference this year providing good
visibility for SIGAda to the Computer Science educational community. We decided not to take
the booth to the Software and Systems Technology Conference (SSTC) due to declining
attendance at the conference.

Via this exhibiting, SIGAda sustains Ada visibility ("name recognition"), provides various Ada-
advocacy materials and makes available Ada experts (our booth staff volunteers) who can
intelligently answer questions, provide pointers and help, and debunk the misinformation about
Ada that many attendees at these shows have. This program continues to be extremely successful
and viewed as a highly important thrust by the SIGAda membership.

Summary of key issues to deal with in the next 2-3 years

One of the key issues for SIGAda is a proposed revision of the bylaws that includes a
reorganization of the Executive Committee. There are currently six elected officers including the
International Representative, who is elected by the Ada Europe members. Due to the size of
SIGAda, we propose a smaller Executive Committee that consists of just four elected officers:
Chair, Vice Chair, Secretary/Treasurer, and International Representative. Since the International
Representative will still be elected by Ada Europe members, this new organization includes only
three officers that will be elected by the SIGAda membership. This simplifies the organization
and eases the burden of finding willing candidates to fill the officer positions.

Another key issue is continuing to host a financially successful conference. Last year the
conference in Denver had a surplus in revenues of $9180.00. This reversed the trend of holding
conferences that had a loss in revenues, and was we will strive to continue this trend. We will
continue to encourage our SIGAda members to participate in and to attend the conference.

We decided to rename the SIGAda annual conference in order to focus on a niche in the safety
critical, high integrity area of Computer Science. The SIGAda 2012 annual conference is called
the High Integrity Language and Technology (HILT) conference. We already have confirmed
that several well-known researchers in this area will attend and give keynote speeches, including
Barbara Liskov, Nancy Leveson, and Guy Steele.

We will continue to publish three issues of the Ada Letters journal and seek participation in the
form of contributing articles and papers.

Ricky E. Sward
Chair ACM SIGAda

Ada Letters, August 2012 54 Volume XXXII, Number 2

REUSABLE SOFTWARE COMPONENTS

Trudy Levine
Fairleigh Dickinson University

Teaneck, NJ 07666
levine@fdu.edu

http://alpha.fdu.edu/~levine/reuse_course/columns

This column consists of our August 2012 listing of sources for reusable software components. All
information is obtained directly from web sites or from parties affiliated with the sites. As always, no
recommendations or guarantees are implied.

For anyone interested, I have hard copies of Ada Letters going back to 1988, available for reuse.

We appreciate comments, corrections, and suggestions from our readers.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The Ada-Belgium Archive 
  
One of the aims of the Ada-Belgium organization is to disseminate Ada-related information. So, in 
addition to the organization of seminars, workshops, etc., and the management of two mailing lists, it also 
has set up an Ada archive which enables everyone interested to consult and download a large variety of 
Ada software and documents using a server in Belgium. 
Key items include: 
* A disk copy of the last version of the Ada and Software Engineering 

Library (ASE2, a 2 disk CD-ROM set). 
   <ftp://ftp.cs.kuleuven.be/pub/Ada-Belgium/cdrom/index.html> 
* A complete archive of the last public GNAT distribution that uses the GNAT Modified General Public 
License (3.15p). 

<ftp://ftp.cs.kuleuven.be/pub/Ada-Belgium/mirrors/gnu-ada/> 
* A directory with Free Ada Software provided by Belgian Ada users.  

 <http://www.cs.kuleuven.be/~dirk/ada-belgium/software/> 
New - a link to Rob Veenker’s description of how to use an Ada application on an Android device: 

http://rveenker.home.xs4all.nl/Ada%20on%20Android.html 
The Ada-Belgium archive is primarily intended for the Belgian Ada community, but anyone interested is 
welcome to use it. 

http://people.cs.kuleuven.be/~dirk.craeynest/ada-belgium/ (last update 2012)      

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Ada Class Library

ACL is an object oriented library for Ada.Text search and replace. Scripting (small tool programs). CGI
scripts. Execution of external programs (incl. I/O redirection). Garbage Collection. Extended Booch
Components. CD-Recorder.
An AdaCL release for Ada 2005 is included.

http://sourceforge.net/projects/adacl/ or http://adacl.sourceforge.net (last update 2011)


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Ada Letters, August 2012 55 Volume XXXII, Number 2



Ada Core 

AdaCore provides open source tools and expertise for the development of mission-critical, safety-critical, 
and security-critical software. AdaCore’s flagship products are the GNAT Pro and SPARK Pro 
development environments and the CodePeer automatic code reviewer and validator. The GNAT 
technology is the first to support all three ISO standards of the Ada programming language - Ada 83, Ada 
95, Ada 2005, as well as supporting the key features of Ada 2012. GNAT Pro also comes with Frontline 
Support (provided by the developers of the toolset) and expert Ada consulting. 

The GNAT technology includes: 
� GNAT Programming Studio IDE 
� Full Ada Compiler (Ada 83/Ada 95/Ada 2005/Ada 2012) Utilities for Analysis, Testing and Code 

Navigation Visual Debugger Libraries and Bindings Runtime Profiles  
� GNAT Pro High-Integrity Family of products supporting safety and security standards such as DO-

178B and MILS Support for over 70 native and cross platforms including Unix, Linux, Windows, 
.NET, the JVM, bare boards, VxWorks 5/6/653/MILS, LynxOS, and PikeOS 

Add-on technologies: 
� GNATbench - Plug-In for Eclipse (GNAT Pro) GNATstack - Stack Analysis Tool (GNAT Pro) Ada 

Web Services - Web-Based Technologies GtkAda - Intuitive GUI Builder and Extensive Widget Set 
XML/Ada - XML library GLADE Ada 95 Distributed Systems Annex Implementation PolyORB - 
Middleware ASIS-for-GNAT - Ada Semantic Analysis. CodePeer - automatic code review and 
robustness validation. SPARK Pro - code verification, based on information-flow analysis and 
theorem-proving. 

� GNAT AJIS - allows Ada projects to integrate Java code and allows Ada projects to develop code for 
teams developing in Java, C and C++ binding generators - generation of bindings for C and C++ 
headers.

� GNATcheck - qualified coding standard checker 

The GNAT Academic Program (GAP) was created to help bring Ada to the forefront of university study. 
It includes a comprehensive toolset and support package designed to give educators the tools they need to 
teach Ada. 
Free Software developers and students can download GNAT GPL from  
http://libre.adacore.com/libre  
http://www.adacore.com/home/academia 
or contact: gap-contact@adacore.com  (Site updated 2012) 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Ada-Europe

Ada-Europe is an international organization, set up to promote the use of Ada. Ada-Europe represents
European interests in Ada and Ada-related matters. Member organizations include:
Ada-Belgium, Ada-Denmark, Ada-Deutschland, Ada-France, Ada-Spain, Ada in Sweden, and Ada in
Switzerland. All of these organizations maintain web sites with available resources.
See: http://www.ada-europe.org
http://www.ada-europe.org/resources/online/ for Annotated Ada 2012 Language Reference Manual

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Ada Letters, August 2012 56 Volume XXXII, Number 2



Ada IC 
 
The Ada Information Clearinghouse has been providing free information about Ada and software 
engineering for over fifteen years. Sponsored by the Ada Resource Assoc. (http://www.adaresource.com)
a consortium of Ada tool vendors and developers, the AdaIC maintains close contact with the Ada 
community in order to obtain the latest information on a variety of topics.  

Visit their website, http://www.adaic.org, to see the latest in news, implementation guidelines, 
compilers and tools, reusable Ada code, education and training, Ada successes, and lessons learned by 
software developers.  The site remains current with many resources targeted for Ada 2012.  Several blogs 
are maintained to continue conversion on listed topics. 

The Ada-wide search engine indexes all known Ada content (more than 76,000 pages according 
to Randy’s last count).  General search engines, such as Google, have too many references to the term 
“Ada” to make them practical for the purposes of the Ada community.

Please send any news you have on Ada to  <news@adaic.org>. The Ada News of the AdaIC 
sometimes transmits press releases about the programming language to about 500 technical journalists 
and editors, as well as citing it on the AdaIC Website, as a free service to its users. 

A comprehensive collection of Ada articles, reports, textbooks, videos, and CD-ROMS is 
available for browsing on-line through the AdaIC website. Users may access older components at the 
Virtual Library: http://archive.adaic.com (updated 7/12)
Reusable software components are available at  
http://www.adaic.org/ada-resources/tools-libraries/ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

AJPO

The Ada Joint Project Office was closed on October 1998. For information on the AJPO see
http://sw-eng.falls-church.va.us/ajpofaq.html
http://sw-eng.falls-church.va.us/ajpo_databases/products_tools1.html

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Adalog 

Adalog  offers Ada utilities, Ada components, and Adapplets. These can be freely used and modified for 
any purpose, under the GMGPL license. Functions include Protection, Debugging, and OS_Services, 
among others. 

The site also contains Adasubst/Adadep programs which are useful utilities for rearranging Ada 
programs, and AdaControl, a powerful utility for checking and enforcing style and coding rules. 
AdaControl is a free (GMGPL) tool that detects the use of various kinds of constructs in Ada programs. 
Its first goal is to control proper usage of style or programming rules, but it can also be used as a powerful 
tool to search for use (or non-use) of various forms of programming styles or design patterns. Searched 
elements range from very simple, like the occurrence of certain entities, declarations, or statements, to 
very sophisticated, like verifying that certain programming patterns are being obeyed. 
Since it is GMGPL, all of its parts can be reused for any purpose. 

 These programs are built on top of ASIS and include valuable packages providing higher level 
queries for ASIS (package Thick_Queries). For example, look for the function called 
“Full_Name_Image,” which returns the unique name of any Identifier.

In addition, there is sc_timer, the Session Chair universal clock, which is very useful to those 
who have to chair a session, and a demo of GTK-Ada. 

SEE:  http://www.adalog.fr/                          (site updated 2012)     
Ada components available at http://www.adalog.fr/compo1.htm 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Ada Letters, August 2012 57 Volume XXXII, Number 2

AdaPower

AdaPower's website has been entirely redone in Ada, using GRAW, a rapid agile web development
framework, to maintain their repository of Ada information, links to resources, source code examples,
and packages for reuse.
AdaPower contains:
� Articles and Links to Ada Related Topics, Ada learning materials, and people in the Ada on-line

community
� The Ada Source Code Treasury

 Source code examples of using Ada and Ada related bindings and tools for both beginner and
 advanced students of Ada

� Packages for Reuse
 An extensive repository of categorically arranged packages for download and links to packages
 available for reuse on the internet
http://www.adapower.com/ (Site last updated 2012)
http://www.adapower.com/index.php?Command=Packages&Title=Packages+for+Reuse
http://www.adapower.com/index.php?Command=Class&ClassID=AdaLibs&Title=Ada+Libraries

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

Ada Structured Library Version 1.4 
 
Ada structured Library is a set of general containers and utilities. The library is licensed under the same 
license as GNAT (see GNU, below), which is GPL but is modified to allow inclusion into a program 
without bringing the whole program under the GPL. 

The utilities include some things lacking in Ada95, including: 
* Abstract I/O - allows the I/O user and the I/O to be decoupled, so you can do file I/O, socket I/O, 

serial I/O telnet, etc. by changing the I/O object the user references.  Includes many functions of 
Ada.Text_IO. 

* Calendar - Full-featured time and calendar manipulation. 
* Telnet - A general telnet library implemented over sockets. 
* Command processor - Does string tokenizing and command processing over Abstract I/O. 
* A set of general-purpose containers, including Lists, Vectors, Trees, Graphs, and a Btree, with lots of 

options. 
See: http://adasl.sourceforge.net/

http://sourceforge.net/projects/adasl          (Site updated 2009) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Booch Components

The Ada 95 Booch Components began in late 1994 when David Weller began a port of Grady Booch's
C++ components to Ada95. They have since been taken over by Simon Wright and at this time, include
implementations of bags, collections, dequeues, graphs, lists, maps, queues, rings, sets, stacks, and trees.
These include definite and indefinite types, bounded and unbounded implementations, dynamic and static
storage allocations. Filtering and sorting operations are supported. The Containers are compatible with
both Ada 95 and Ada 2005. Backward compatibility with Ada 95 is retained.
http://sourceforge.net/projects/booch95/
http://sourceforge.net/projects/booch95/develop (Site updated 2012)

CONTACT: Simon Wright (simon@pushface.org) or Martin Krischik (martin@krischik.com)

Ada Letters, August 2012 58 Volume XXXII, Number 2

DMOZ

DMOZ is a free, open directory project, with Ada components submitted and maintained by volunteers.
The site links to several of the items that are listed elsewhere in this column, as well as many more,
including Ada Lexer, a lexical analyzer written in Ada that recognizes Ada 2012 reserved words.

http://dmoz.org/Computers/Programming/Languages/Ada/Bindings_and_Libraries/ (updated 2011)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Free Software Foundation 

The Free Software Foundation is dedicated to eliminating restrictions on people's right to use, copy, 
modify, and redistribute computer programs. It promotes the development and use of free software and its 
documentation in all areas using computers.  Specifically, it is maintaining a complete, integrated 
software system named "GNU". ("GNU" is pronounced "guh-new" and stands for "GNU's Not Unix".)  

The word "free" in "Free Software Foundation" refers to freedom, not price. You may or may 
not pay money to get GNU software, but regardless you have specific freedoms once you get it:  the 
freedom to copy a program and give it away to your friends and co-workers; and the freedom to change a 
program as you wish, by having full access to source code.  You can study the source and learn how such 
programs are written.  You may then be able to port it, improve it, and share your changes with others.  If 
you redistribute GNU software you may charge a distribution fee or give it away. 
For the Free Software Definition, see: www.gnu.org/philosophy/free-sw.html 
What is Copyleft? 

The simplest way to make a program free is to put it in the public domain, uncopyrighted.  But 
this permits proprietary modifications, denying others the freedom to use and freely redistribute 
improvements; it is contrary to the intent of increasing the total amount of free software.  To prevent this, 
copyleft uses copyrights in a novel manner.  Typically copyrights take away freedoms; copyleft preserves 
them.  It is a legal instrument that requires those who pass on programs to include the rights to use, 
modify, and redistribute the code; the code and rights become legally inseparable.  

The copyleft used by the GNU Project is made from the combination of a regular copyright 
notice and the "GNU General Public License."  (www.gnu.org/copyleft/gpl.html) GPL is a copying 
license which basically says that you have the aforementioned freedoms.  An alternate form, the "GNU 
Lesser General Public License" applies particularly to certain GNU libraries.  This license permits linking 
the libraries into proprietary executables under certain conditions.   
See   www.gnu.org/copyleft/copyleft.html 

www.gnu.org/licenses/licenses.html 
GNAT is listed in the Free Software Directory, which catalogs useful free software that runs under 

free operating systems, particularly the GNU operating system and its GNU/Linux variants. The GNAT 
Technology includes the implementation of the ASIS standard (Ada Semantic Interface Specification), 
GtkAda to build portable and efficient GUIs in Ada, AWS (Ada Web Server) the framework to develop 
Web-based applications in Ada, the XML/Ada library to process XML streams in Ada, GLADE to 
develop distributed applications following the Ada Distributed Systems Annex standards, and PolyORB
to develop distributed applications following the CORBA standard. 

The GNAT GPL 2012 Edition, which is available free of charge from libre.adacore.com/, is licensed 
for Free Software development under the terms and conditions of the GNU General Public License..
For more information visit the following links: 

GNAT Pro: www.adacore.com/gnatpro/ 
 http://directory.fsf.org/wiki/GNAT (site updated 2010) 

Free Software Foundation, Inc.            +1 617 542 5942 x 23 
51 Franklin Street, Fifth Floor  +1 617 542 2652 (fax) 
Boston, MA 02110-1301                 email: info@fsf.org 
See:   http://www.fsf.org                    http://www.gnu.org 

Ada Letters, August 2012 59 Volume XXXII, Number 2



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Kazakov Objects

Dmitry Kazakov maintains a web site of free Ada components. The license is GM GPL, where
appropriate. The library conforms to both Ada 95 and Ada 2005 language standards and includes:

1. Objects and handles (smart pointers)
2. Persistency
3. Sets and maps
4. Unbounded arrays
5. Unbounded arrays of pointers
6. Stacks
7. Pools
8. Doubly-linked networks
9. Graphs
10. Lock-free structures
11. Locking synchronization primitives
12. Parsers
13. Cryptography
14. Numerics
15. Miscellany
16. Packages
17. Installation
18. Changes log

See: www.dmitry-kazakov.de/ada/components.htm
www.download25.com/simple-components-for-ada-download.html (site updated 2012)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Leake Components 

Stephen Leake maintains the following Ada components: 
com ports: An Ada binding, based on Win32Ada, to the Win32 com port facilities.  
Auto_Text_IO: automatically generates Text_IO packages for Ada packages  

 Stephe's Ada Library: another entry in the Standard Ada Library sweepstakes 
A large part of SAL provides math operations for kinematics and dynamics of masses in 3 
dimensional space. Cartesian vectors, quaternions, orthonormal rotation matrices, moments of 
inertia, forces, acceleration, velocity are supported, in 3 and 6 degrees of freedom (translation 
and rotation). This library has been used for both robotics and satellite simulation.   

http://stephe-leake.org/
http://stephe-leake.org/emacs/ada-mode/emacs-ada-mode.html 
http://stephe-leake.org/ada/arm.html contains, in  tar gzip format, an info version of the Ada 2005 and 
2012 Reference Manuals  

Ada Letters, August 2012 60 Volume XXXII, Number 2



Matreshka 

Matreshka is an Ada framework to help develop information systems. It includes:  
� League --- provides support for localization, internationalization and globalization; including:  

o unbounded form of string of Unicode characters; cursors to iterate other characters and 
grapheme clusters; advanced locale tailored operations such as case conversion, case 
folding, collation, normalization;  

o calendars and calendrical calculations;  
o regular expression engine with Perl-style syntax and Unicode extensions;  
o text codec to convert data streams into/from internal representation;  
o message translator to translate messages into natural language which is selected by user;  
o access to command line arguments and environment variables as Unicode encoded strings.  
o persistent application settings to manage application settings, supports INI files and 

Windows Registry. 
� XML processor --- provides capability to manipulate with XML streams and documents; including:  

o SAX reader to read XML streams and documents; it supports both XML1.0/XML1.1 
specifications as well as corresponding Namespaces in XML specifications;  

o SAX writer to generate XML streams and documents from application.  
� Web framework  

o FastCGI module assists with developing server side applications completely in Ada and 
using them with standard HTTP servers.  

� SQL database access provides simple generic API to access to SQL databases. Supported databases:  
o Oracle, PostgreSQL , and SQLite3

Two new features were added to Matreshka last year: 
� Support for Firebird/Interbase database; 
� The Ada Modeling Framework now provides implementation of OMG's Meta Object Facility 

(MOF) written completely in Ada. Extension modules are provided to analyze/modify: 
� UML models and their extensions: 
�              MOF Extensions to support meta-modeling 
�              OCL models 
�              UML Testing Profile to support Model-Driven Testing 

http://forge.ada-ru.org/matreshka (site updated 2012)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

QtAda
QtAda is an Ada2005 language binding to the Qt libraries and a set of useful tools. Qt is a cross-

platform C++ development framework developed and supported by Qt Software. QtAda supports Qt
version 4.4 and later. QtAda supports the development of a cross-platform powerful graphical user
interface completely in Ada 2005. QtAda applications will work on most popular platforms — Microsoft
Windows, Mac OS X, Linux/Unix — without any changes and platform specific code. QtAda
applications use native look and feel (and even utilize user Control Panel settings) on every supported
platform.

QtAda is not just a binding to the existent Qt widgets. It also allows the development of your own
widgets and integrates them into the Qt Designer for high speed visual GUI development. QtAda uses
native thread safe signal/slot mechanism and provides full transparent integration with Ada tasks. QtAda
provides support for application localization/internationalization, including message translations, local
specific character and string processing, date/time and numeric formatting.

QtAda Academic Edition is suitable for educational purposes and includes free support for professors
and teachers.

See: http://www.qtada.com/en/index.html
Email: sales@qtada.com (Site updated 2010)

Ada Letters, August 2012 61 Volume XXXII, Number 2


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

USAFA 
 
Professor Martin Carlisle at the US Air Force Academy continues to develop free software for use by the 
computer science community. Although previously known for tools specifically for Ada programmers (in 
particular A#, AdaGIDE, and RAPID), his more recent development has targeted the computer science 
education and computer security audiences.  The newest tools, RAPTOR and IRONSIDES, have Ada 
inside and are developed using AdaGIDE, GNAT, SPARK Ada, and A#. RAPTOR is a flowchart-based 
programming environment useful for teaching introductory computer science and is taught in at least 22 
countries. 

IRONSIDES is an authoritative DNS server implemented in SPARK Ada using formal methods to prove 
the absence of many major categories of security vulnerabilities. 

More information on these projects can be found at: 

http://ironsides.martincarlisle.com
http://raptor.martincarlisle.com 
http://adagide.martincarlisle.com 
http://www.martincarlisle.com/ada_stuff.html 
http://asharp.martincarlisle.com 
http://rapid.martincarlisle.com 

CONTACT:         Martin C. Carlisle,  Professor of Computer Science, US Air Force Academy   
  carlislem@acm.org 

Ada Letters, August 2012 62 Volume XXXII, Number 2



ACM SIGAda Annual International Conference 

High Integrity Language Technology  
HILT 2013 

Call for Technical Contributions 
Developing and Certifying Critical Software 

Pittsburgh, Pennsylvania, USA 
Fall of 2013 [Mid-October to Mid-November]  

Sponsored by ACM SIGAda 
SIGAda.HILT2013@acm.org 

http://www.sigada.org/conf/hilt2013

SUMMARY 
High integrity software must not only meet correctness and performance criteria but also satisfy stringent safety 
and/or security demands, typically entailing certification against a relevant standard. A significant factor 
affecting whether and how such requirements are met is the chosen language technology and its supporting tools: 
not just the programming language(s) but also languages for expressing specifications, program properties, 
domain models, and other attributes of the software or overall system. 
HILT 2013 will provide a forum for experts from academia/research, industry, and government to present the 
latest findings in designing, implementing, and using language technology for high integrity software. To this 
end we are soliciting technical papers, experience reports (including experience in teaching), and tutorial 
proposals on a broad range of relevant topics. 
POSSIBLE TOPICS INCLUDE BUT ARE NOT LIMITED TO:  
� New developments in formal methods 
� Multicore and high integrity systems 
� Object-Oriented Programming in high integrity systems 
� High-integrity languages (e.g., SPARK) 
� Use of high reliability profiles such as Ravenscar 
� Use of language subsets (e.g., MISRA C, MISRA C++) 
� Software safety standards (e.g., DO-178B and DO-178C) 
� Typed/Proof-Carrying Intermediate Languages 
� Contract-based programming (e.g., Ada 2012) 
� Model-based development for critical systems 
� Specification languages (e.g., Z) 
� Annotation languages (e.g., JML) 

� Teaching high integrity development 
� Case studies of  high integrity systems  
� Real-time networking/quality of service guarantees  
� Analysis, testing, and validation 
� Static and dynamic analysis of code 
� System Architecture and Design including  

Service-Oriented Architecture and Agile Development 
� Information Assurance 
� Security and the Common Criteria /  

Common Evaluation Methodology 
� Architecture design languages (e.g., AADL) 
� Fault tolerance and recovery 

KINDS OF TECHNICAL CONTRIBUTIONS  
TECHNICAL ARTICLES present significant results in research, practice, or education. Articles are typically 
10-20 pages in length. These papers will be double-blind refereed and published in the Conference Proceedings 
and in ACM Ada Letters. The Proceedings will be entered into the widely consulted ACM Digital Library 
accessible online to university campuses, ACM’s 100,000 members, and the software community. 
EXTENDED ABSTRACTS discuss current work for which early submission of a full paper may be premature. 
If your abstract is accepted, a full paper is required and will appear in the proceedings. Extended abstracts will 
be double-blind refereed. In 5 pages or less, clearly state the work’s contribution, its relationship with previous 
work by you and others (with bibliographic references), results to date, and future directions. 

Ada Letters, August 2012 63 Volume XXXII, Number 2



EXPERIENCE REPORTS present timely results and “lessons learned”. Submit a 1-2 page description of the 
project and the key points of interest. Descriptions will be published in the final program or proceedings, but a 
paper will not be required. 

PANEL SESSIONS gather groups of experts on particular topics. Panelists present their views and then 
exchange views with each other and the audience. Panel proposals should be 1-2 pages in length, identifying the 
topic, coordinator, and potential panelists. 

INDUSTRIAL PRESENTATIONS Authors of industrial presentations are invited to submit a short overview (at 
least 1 page in size) of the proposed presentation and, if selected, a subsequent abstract for a 30-minute talk. The 
authors of accepted presentations will be invited to submit corresponding articles for ACM Ada Letters.

WORKSHOPS are focused sessions that allow knowledgeable professionals to explore issues, exchange views, 
and perhaps produce a report on a particular subject. Workshop proposals, up to 5 pages in length, will be 
selected based on their applicability to the conference and potential for attracting participants. 

TUTORIALS can address a broad spectrum of topics relevant to the conference theme. Submissions will be 
evaluated based on applicability, suitability for presentation in tutorial format, and presenter’s expertise. Tutorial 
proposals should include the expected level of experience of participants, an abstract or outline, the 
qualifications of the instructor(s), and the length of the tutorial (half day or full day).  

HOW TO SUBMIT: Send in Word, PDF, or text format: 

Submission Deadline Send to
Technical articles, extended abstracts, 
experience reports, panel session 
proposals, or workshop proposals 

June 29, 2013 Tucker Taft, Program Chair 
taft@adacore.com 

Industrial presentation proposals August 1, 2013 (overview) 
September 30, 2013 (abstract) 

Tutorial proposals June 29, 2013 John McCormick, Tutorials Chair 
mccormick@cs.uni.edu 

At least one author is required to register and make a presentation at the conference. 

FURTHER INFORMATION 
CONFERENCE GRANTS FOR EDUCATORS: The ACM SIGAda Conference Grants program is designed to 
help educators introduce, strengthen, and expand the use of Ada and related technologies in school, college, and 
university curricula. The Conference welcomes a grant application from anyone whose goals meet this 
description. The benefits include full conference registration with proceedings and registration costs for 2 days 
of conference tutorials/workshops. Partial travel funding is also available from AdaCore to faculty and students 
from GNAT Academic Program member institutions, which can be combined with conference grants. For more details 
visit the conference web site or contact Prof. Michael B. Feldman (MFeldman@gwu.edu)

OUTSTANDING STUDENT PAPER AWARD: An award will be given to the student author(s) of the paper 
selected by the program committee as the outstanding student contribution to the conference. 

SPONSORS AND EXHIBITORS: Please contact Greg Gicca (gicca@adacore.com) to learn the benefits of 
becoming a sponsor and/or exhibitor at HILT 2013. 

IMPORTANT INFORMATION FOR NON-US SUBMITTERS: International registrants should be particularly 
aware and careful about visa requirements, and should plan travel well in advance. Visit the conference website 
for detailed information pertaining to visas. 
ANY QUESTIONS?
Please send email to SIGAda.HILT2013@acm.org, or contact the Conference Chair (Jeff Boleng, 
jlboleng@SEI.CMU.EDU), SIGAda’s Vice-Chair for Meetings and Conferences (Alok Srivastava, 
alok.srivastava@tasc.com), or SIGAda’s Chair (Ricky E. Sward, rsward@mitre.org).

Ada Letters, August 2012 64 Volume XXXII, Number 2



IRTAW 2013
The 16th International Real-Time Ada 

Workshop  - IRTAW 2013
http://www.cs.york.ac.uk/~andy/IRTAW2013/ 

17-19 April 2013 

Kings Manor, York, England 

Call for Papers

Since the late Eighties the International Real-Time Ada Workshop series has provided a forum for identifying 
issues with real-time system support in Ada and for exploring possible approaches and solutions, and has 
attracted participation from key members of the research, user, and implementer communities worldwide. 
Recent IRTAW meetings have significantly contributed to the Ada 2005 and Ada 2012 standards, especially 
with respect to the tasking features, the real-time and high-integrity systems annexes, and the standardization 
of the Ravenscar profile. 

In keeping with this tradition,  the goals of IRTAW-16 will be to: 

� review the current status of the Ada 2012 Issues that are related with the support of real-time systems;
� examine experiences in using Ada for the development of real-time systems and applications, 

especially – but not exclusively – those using concrete implementation of the new Ada 2012 real-time 
features;

� report on or illustrate implementation approaches for the real-time features of Ada 2012;
� consider the added value of developing other real-time Ada profiles in addition to the Ravenscar 

profile;
� examine the implications to Ada of the growing use of multiprocessors in the development of real-

time systems, particularly with regard to predictability, robustness, and other extra-functional 
concerns;

� examine and develop paradigms for using Ada for real-time distributed systems, with special 
emphasis on robustness as well as hard, flexible and application-defined scheduling;

� consider the definition of specific patterns and libraries for real-time systems development in Ada;
� identify how Ada relates to the certification of safety-critical and/or security-critical real-time 

systems;
� examine the status of the Real-Time Specification for Java and other languages for real-time systems 

development, and consider user experience with current implementations and with issues of 
interoperability with Ada in embedded real-time systems;

� consider the lessons learned from industrial experience with Ada and the Ravenscar Profile in actual 
real-time projects;

� consider the language vulnerabilities of the Ravenscar and full language definitions.

Participation at IRTAW-16 is by invitation following the submission of a position paper addressing one or 
more of the above topics or related real-time Ada issues. Alternatively, anyone wishing to receive an invitation, 

Ada Letters, August 2012 65 Volume XXXII, Number 2



but for one reason or another is unable to produce a position paper, may send in a one-page position statement 
indicating their interests. Priority will, however, be given to those submitting papers. 

Submission Requirements

Position papers should not exceed ten pages in typical IEEE conference layout, excluding code inserts. All 
accepted papers will appear, in their final form, in the Workshop Proceedings, which will be published as a 
special issue of Ada Letters (ACM Press). Selected papers will also appear in the Ada User Journal. 

Please submit position papers, in PDF format, to the Program Chair by e-mail: 
alan.burns@york.ac.uk

Important Dates

� Paper Submission: 1 February, 2013 
� Notification of Acceptance: 1 March, 2013
� Confirmation of Attendance: 14 March, 2013
� Final Paper Due: 1 April, 2013
� Workshop: April 17-19, 2013

Program Chair: Alan Burns, University of York

Workshop Chair: Andy Wellings, University of York

Program Committee Members: Mario Aldea Rivas, John Barnes, Ben Brosgol, Alan Burns, Michael 
Gonzàlez Harbour, José Javier Gutiérrez, Stephen Michell, Brad Moore, Luís Miguel Pinho, Juan Antonio de 
la Puente, Jorge Real, Jose F. Ruiz, Joyce Tokar, Tullio Vardanega, Andy Wellings and Rod White.  

Sponsors

Ada Letters, August 2012 66 Volume XXXII, Number 2



�

Call�for�Papers�
18th � International�Conference�on��
Reliable�Software�Technologies�

Ada�Europe�2013�
10�14�June�2013,�Berlin,�Germany�

http://www.ada�europe.org/conference2013�

Special�Interest�
Group�Ada�of�the�
German�Informatics��
Society�

Conference�and�Program�
�Co�Chairs�

Hubert B. Keller
Karlsruhe Institute of Technology  
hubert.keller@kit.edu 
Erhard Plödereder
University of Stuttgart
ploedere@iste.uni-stuttgart.de

Tutorial�Chair�

Jürgen�Mottok�
Regensburg�University�of�Applied�
Sciences�
Juergen.Mottok@hs�
regensburg.de�

Industrial�Chair�

Jørgen�Bundgaard�
Ada�in�Denmark�
jb@ada�dk.org�

Exhibition�Chair�

Peter�Dencker�
ETAS�GmbH�
peter.dencker@etas.com�

Publicity�Chair�

Dirk�Craeynest�
Ada�Belgium�&�KU Leuven�
Dirk.Craeynest@cs.kuleuven.be�

Local�Chair�

Raúl�Rojas�
FU�Berlin�
Raul.Rojas@fu�berlin.de

Local�Organizer�

Christine�Harms�
christine.harms@ccha.de�

�
�

In�cooperation�(requests�
pending)�with�

ACM�SIGAda,�SIGBED,�SIGPLAN�

�

General�Information�
The�18th�International�Conference�on�Reliable�Software�Technologies�–�Ada�Europe�2013�will�take�
place� in� Berlin,� Germany.� Following� its� traditional� style,� the� conference� will� span� a� full� week,�
including,� from� Tuesday� to� Thursday,� three� days� of� parallel� scientific,� technical� and� industrial�
sessions,�along�with�parallel�tutorials�and�workshops�on�Monday�and�Friday.�

Schedule�

�

Topics�
The� conference� has� successfully� established� itself� as� an� international� forum� for� providers,�
practitioners� and� researchers� into� reliable� software� technologies.� The� conference� presentations�
will� illustrate� current� work� in� the� theory� and� practice� of� the� design,� development� and�
maintenance�of�long�lived,�high�quality�software�systems�for�a�variety�of�application�domains.�The�
program�will� allow�ample� time� for�keynotes,�Q&A�sessions,�panel�discussions�and� social�events.�
Participants� will� include� practitioners� and� researchers� representing� industry,� academia� and�
government� organizations� active� in� the� promotion� and� development� of� reliable� software�
technologies.��
To�mark�the�completion�of�the�Ada�2012�standard�revision�process,�contributions�are�sought�that�
discuss�experiences�with�the�revised�language.��
Topics�of�interest�to�this�edition�of�the�conference�include�but�are�not�limited�to:�
� Multicore� Programming:� Reliable� Parallel� Software,� Scheduling� on� Multi�Core� Systems,�

Compositional�Parallelism�Models,�Performance�Modelling,�Deterministic�Debugging.�
� Real�Time� and� Embedded� Systems:� Real�Time� Software,� Architecture� Modelling,� HW/SW� Co�

Design,�Reliability�and�Performance�Analysis.�
� Theory�and�Practice�of�High�Integrity�Systems:�Distribution,�Fault�Tolerance,�Security,�Reliability,�

Trust�and�Safety,�Languages�Vulnerabilities.�
� Software� Architectures:� Design� Patterns,� Frameworks,� Architecture�Centered� Development,�

Component�and�Class�Libraries,�Component�based�Design�and�Development.�
� Methods� and� Techniques� for� Software� Development� and� Maintenance:� Requirements�

Engineering,� Object�Oriented� Technologies,� Model�driven� Architecture� and� Engineering,� Formal�
Methods,�Re�engineering�and�Reverse�Engineering,�Reuse,�Software�Management�Issues.�

� Enabling� Technologies:� Compilers,� Support� Tools� (Analysis,� Code/Document� Generation,� Profiling),�
Run�time�Systems,�Distributed�Systems,�Ada�and�other�Languages�for�Reliable�Systems.�

� Software�Quality:�Quality�Management�and�Assurance,�Risk�Analysis,�Program�Analysis,�Verification,�
Validation,�Testing�of�Software�Systems.�

� Mainstream� and� Emerging� Applications:� Manufacturing,� Robotics,� Avionics,� Space,� Health� Care,�
Transportation,�Energy,�Games�and�Serious�Games,�etc.�

� Experience� Reports� in� Reliable� System� Development:� Case� Studies� and� Comparative�
Assessments,�Management�Approaches,�Qualitative�and�Quantitative�Metrics.�

� Experiences� with� Ada� and� its� Future:� New� Language� Features,� Implementation� and� Use� Issues;�
Positioning� in� the� Market� and� in� Education;� where� should� Ada� stand� in� the� Software� Engineering�
Curriculum;� Lessons� Learned� on� Ada� Education� and� Training� Activities� with� bearing� on� any� of� the�
conference�topics.�

3�December�2012 Submission�of�regular�papers,�tutorial�and�workshop�proposals
14�January�2013 Submission�of�industrial�presentation�proposals�
11�February�2013 Notification�of�acceptance�to�all�authors

10�March�2013 Camera�ready�version�of�regular�papers�required�
11�May�2013 Industrial�presentations,�tutorial�and�workshop�material�required

Ada Letters, August 2012 67 Volume XXXII, Number 2



Program�Committee
Ted Baker, US National Science 

Foundation, USA 
Johann Blieberger, Technische 

Universität Wien, Austria 
Bernd Burgstaller, Yonsei University, 

Korea 
Alan Burns, University of York, UK 
Rod Chapman, Altran Praxis Ltd, UK 
Dirk Craeynest, Ada-Belgium & 

KU Leuven, Belgium 
Juan A. de la Puente, Universidad 

Politécnica de Madrid, Spain 
Franco Gasperoni, AdaCore, France 
Michael González Harbour,

Universidad de Cantabria, Spain 
Xavier Grave, Centre National de la 

Recherche, France 
Christoph Grein, Ada Germany, 

Germany 
J. Javier Gutiérrez, Universidad de 

Cantabria, Spain 
Peter Hermann, Universität Stuttgart, 

Germany 
Jérôme Hugues, ISAE Toulouse, France 
Pascal Leroy, Google, Switzerland 
Albert Llemosí, Universitat de les Illes 

Balears, Spain 
Kristina Lundqvist, Mälardalen 

University, Sweden 
Franco Mazzanti, ISTI-CNR Pisa, Italy 
John McCormick, University of 

Northern Iowa, USA 
Stephen Michell, Maurya Software, 

Canada
Luís Miguel Pinho, CISTER Research 

Centre/ISEP, Portugal 
Jürgen Mottok, Regensburg University 

of Applied Sciences, Germany 
Manfred Nagl, RWTH Aachen 

University, Germany 
Laurent Pautet, Telecom ParisTech, 

France 
Jorge Real, Universitat Politécnica de 

València, Spain 
Jean-Pierre Rosen, Adalog, France 
José Ruiz, AdaCore, France 
Ed Schonberg, AdaCore, USA 
Tucker Taft, AdaCore, USA 
Theodor Tempelmeier, Univ. of Applied 

Sciences Rosenheim, Germany 
Elena Troubitsyna, Åbo Akademi 

University, Finland
Tullio Vardanega, Università di Padova, 

Italy 
Juan Zamorano, Universidad 

Politécnica de Madrid, Spain 

Industrial�Committee�
Jørgen Bundgaard, Rambøll Danmark, 

Denmark 
Jacob Sparre Andersen, JSA, Denmark
Jamie Ayre, AdaCore, France 
Ian Broster, Rapita Systems, UK 
Rod Chapman, Altran Praxis Ltd, UK
Dirk Craeynest, Ada-Belgium & 

KU Leuven, Belgium
Michael Friess, AdaCore, France
Ismael Lafoz, Airbus Military, Spain
Ahlan Marriott, White-Elephant GmbH, 

Switzerland 
Steen Ulrik Palm, Terma, Denmark
Paolo Panaroni, Intecs, Italy
Paul Parkinson, Wind River, UK 
Ana Isabel Rodríguez, GMV, Spain
Jean-Pierre Rosen, Adalog, France
Alok Srivastava, TASC Inc, USA
Claus Stellwag, Elektrobit AG, Germany
Jean-Loup Terraillon, European Space 

Agency, The Netherlands 
Rod White, MBDA, UK

Call�for�Regular�Papers

Authors� of� regular� papers� which� are� to� undergo� peer� review� for� acceptance� are� invited� to� submit�
original�contributions.�Paper�submissions�shall�be�in�English,�complete�and�not�exceeding�14�LNCS�style�
pages� in� length.� Authors� should� submit� their� work� via� the� EasyChair� conference� system�
(http://www.easychair.org/conferences/?conf=ae13).�The� format� for� submission� is� solely�PDF.�For�any�
remaining�questions,�please�contact�a�Program�Co�Chair.�

Proceedings�
The�conference�proceedings�will�be�published�in�the�Lecture�Notes�in�Computer�Science�(LNCS)�series�
by�Springer,�and�will�be�available�at�the�start�of�the�conference.�The�authors�of�accepted�regular�papers�
shall� prepare� camera�ready� submissions� in� full� conformance� with� the� LNCS� style,� not� exceeding� 14�
pages� and� strictly� by� March� 10,� 2013.� For� format� and� style� guidelines� authors� should� refer� to� the�
following�URL:�http://www.springer.de/comp/lncs/authors.html.� Failure� to� comply� and� to� register� for�
the�conference�by�that�date�will�prevent�the�paper�from�appearing�in�the�proceedings.��

The� conference� is� ranked� class� A� in� the� CORE� ranking,� is� among� the� top� quarter� of� CiteSeerX�
Venue�Impact�Factor,�and�listed�in�DBLP,�SCOPUS�and�the�Web�of�Science�Conference�Proceedings�
Citation�index,�among�others.��

Awards�

Ada�Europe�will�offer�honorary�awards�for�the�best�regular�paper�and�the�best�presentation.�

Call�for�Industrial�Presentations�

The�conference�also�seeks�industrial�presentations�which�deliver�value�and�insight,�but�may�not�fit�the�
selection� process� for� regular� papers.� Authors� of� industrial� presentations� are� invited� to� submit� � � an�
overview� (at� least� 1� full� page� in� length)� of� the� proposed� presentation� by� January� 14,� 2013,� via� the�
EasyChair� conference� system� (http://www.easychair.org/conferences/?conf=ae13).� The� Industrial�
Committee�will� review� the� proposals� and�make� the� selection.� The� authors� of� selected� presentations�
shall� prepare� a� final� short� abstract� and� submit� it� by�May� 13,� 2013,� aiming� at� a� 20�minute� talk.� The�
authors�of�accepted�presentations�will�be�invited�to�submit�corresponding�articles�for�publication�in�the�
Ada�User�Journal,�which�will�host�the�proceedings�of�the�Industrial�Program�of�the�Conference.�For�any�
further�information�please�contact�the�Industrial�Chair�directly.�

Call�for�Tutorials�
Tutorials�should�address�subjects�that�fall�within�the�scope�of�the�conference�and�may�be�proposed�as�
either�half��or�full�day�events.�Proposals�should�include�a�title,�an�abstract,�a�description�of�the�topic,�a�
detailed�outline�of�the�presentation,�a�description�of�the�presenter's�lecturing�expertise�in�general�and�
with�the�proposed�topic�in�particular,�the�proposed�duration�(half�day�or�full�day),�the�intended�level�of�
the� tutorial� (introductory,� intermediate,� or� advanced),� the� recommended� audience� experience� and�
background,�and�a�statement�of�the�reasons�for�attending.�Proposals�should�be�submitted�by�e�mail�to�
the�Tutorial�Chair.�The�authors�of�accepted�full�day�tutorials�will� receive�a�complimentary�conference�
registration� as� well� as� a� fee� for� every� paying� participant� in� excess� of� 5;� for� half�day� tutorials,� these�
benefits� will� be� accordingly� halved.� The� Ada� User� Journal� will� offer� space� for� the� publication� of�
summaries�of�the�accepted�tutorials.�

Call�for�Workshops�

Workshops� on� themes� that� fall� within� the� conference� scope� may� be� proposed.� Proposals� may� be�
submitted�for�half��or�full�day�events,�to�be�scheduled�at�either�end�of�the�conference�week.�Workshop�
proposals�should�be�submitted�to�a�Conference�Co�Chair.�The�workshop�organizer�shall�also�commit�to�
preparing�proceedings�for�timely�publication�in�the�Ada�User�Journal.�

Call�for�Exhibitors�

The�commercial�exhibition�will�span�the�three�days�of�the�main�conference.�Vendors�and�providers�of�
software�products�and�services�should�contact�a�Conference�Co�Chair�for�information�and�for�allowing�
suitable�planning�of�the�exhibition�space�and�time.�

Grant�for�Reduced�Student�Fees�

A� limited�number�of� sponsored�grants� for� reduced� fees� is�expected� to�be�available� for� students�who�
would�like�to�attend�the�conference�or�tutorials.�Contact�a�Conference�Co�Chair�for�details.�

�

Ada Letters, August 2012 68 Volume XXXII, Number 2


	SIGAdaV32N2covsREVPROOF
	SIGAdaV32N2insideREVPROOF
	21992p1x68_001_Final
	21992p1x68_002_Final
	21992p1x68_003_Final
	21992p1x68_004_Final
	21992p1x68_005_Final
	21992p1x68_006_Final
	21992p1x68_007_Final
	21992p1x68_008_Final
	21992p1x68_009_Final
	21992p1x68_010_Final
	21992p1x68_011_Final
	21992p1x68_012_Final
	21992p1x68_013_Final
	21992p1x68_014_Final
	21992p1x68_015_Final
	21992p1x68_016_Final
	21992p1x68_017_Final
	21992p1x68_018_Final
	21992p1x68_019_Final
	21992p1x68_020_Final
	21992p1x68_021_Final
	21992p1x68_022_Final
	21992p1x68_023_Final
	21992p1x68_024_Final
	21992p1x68_025_Final
	21992p1x68_026_Final
	21992p1x68_027_Final
	21992p1x68_028_Final
	21992p1x68_029_Final
	21992p1x68_030_Final
	21992p1x68_031_Final
	21992p1x68_032_Final
	21992p1x68_033_Final
	21992p1x68_034_Final
	21992p1x68_035_Final
	21992p1x68_036_Final
	21992p1x68_037_Final
	21992p1x68_038_Final
	21992p1x68_039_Final
	21992p1x68_040_Final
	21992p1x68_041_Final
	21992p1x68_042_Final
	21992p1x68_043_Final
	21992p1x68_044_Final
	21992p1x68_045_Final
	21992p1x68_046_Final
	21992p1x68_047_Final
	21992p1x68_048_Final
	21992p1x68_049_Final
	21992p1x68_050_Final
	21992p1x68_051_Final
	21992p1x68_052_Final
	21992p1x68_053_Final
	21992p1x68_054_Final
	21992p1x68_055_Final
	21992p1x68_056_Final
	21992p1x68_057_Final
	21992p1x68_058_Final
	21992p1x68_059_Final
	21992p1x68_060_Final
	21992p1x68_061_Final
	21992p1x68_062_Final
	21992p1x68_063_Final
	21992p1x68_064_Final
	21992p1x68_065_Final
	21992p1x68_066_Final
	21992p1x68_067_Final
	21992p1x68_068_Final


