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1 Introduction

There is increasing recognition that the software components of critical real-time applications must 
be provably predictable.  This is particularly so for a hard real-time system, in which the failure of 
a component of the system to meet its timing deadline can result in an unacceptable failure of the 
whole system.  The choice of a suitable design and development method, in conjunction with 
supporting tools that enable the real-time performance of a system to be analysed and simulated, 
can lead to a high level of confidence that the final system meets its real-time constraints.

Traditional methods used for the design and development of complex applications, which 
concentrate primarily on functionality, are increasingly inadequate for hard real-time systems.  
This is because non-functional requirements such as dependability (e.g. safety and reliability), 
timeliness, memory usage and dynamic change management are left until too late in the 
development cycle.

The traditional approach to formal verification and certification of critical real-time systems has 
been to dispense entirely with separate processes, each with their own independent thread of 
control, and to use a cyclic executive that calls a series of procedures in a fully deterministic 
manner.  Such a system becomes easy to analyse, but is difficult to design for systems of more 
than moderate complexity, inflexible to change, and not well suited to applications where sporadic 
activity may occur and where error recovery is important.  Moreover, it can lead to poor software 
engineering if small procedures have to be artificially constructed to fit the cyclic schedule.

The use of Ada has proven to be of great value within high integrity and real-time applications, 
albeit via language subsets of deterministic constructs, to ensure full analysability of the code.  
Such subsets have been defined for Ada 83, but these have excluded tasking on the grounds of its 
non-determinism and inefficiency.  Advances in the area of schedulability analysis currently allow 
hard deadlines to be checked, even in the presence of a run-time system that enforces preemptive 
task scheduling based on multiple priorities.  This valuable research work has been mapped onto a 
number of new Ada constructs and rules that have been incorporated into the Real-Time Annex of 
the Ada language standard [RM D].  This has opened the way for these tasking constructs to be 
used in high integrity subsets whilst retaining the core elements of predictability and reliability.

The Ravenscar Profile is a subset of the tasking model, restricted to meet the real-time community 
requirements for determinism, schedulability analysis and memory-boundedness, as well as being 
suitable for mapping to a small and efficient run-time system that supports task synchronization 
and communication, and which could be certifiable to the highest integrity levels.  The 
concurrency model promoted by the Ravenscar Profile is consistent with the use of tools that allow 
the static properties of programs to be verified.  Potential verification techniques include 
information flow analysis, schedulability analysis, execution-order analysis and model checking.  
These techniques allow analysis of a system to be performed throughout its development life cycle, 
thus avoiding the common problem of finding only during system integration and testing that the 
design fails to meet its non-functional requirements.

It is important to note that the Ravenscar Profile is silent on the non-tasking (i.e. sequential) 
aspects of the language.  For example it does not dictate how exceptions should, or should not, be 
used.  For any particular application, it is likely that constraints on the sequential part of the 
language will be required.  These may be due to other forms of static analysis to be applied to the 
code, or to enable worst-case execution time information to be derived for the sequential code.  
The reader is referred to the ISO Technical Report, Guide for the Use of Ada Programming 
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Language in High Integrity Systems [GA] for a detailed discussion on all aspects of static analysis 
of sequential Ada.

The Ravenscar Profile has been designed such that the restricted form of tasking that it defines can 
be used even for software that needs to be verified to the very highest integrity levels.  The Profile 
has already been included in the ISO technical report [GA] referenced above.  The aim of this 
guide is to give a complete description of the motivations behind the Profile, to show how 
conformant programs can be analysed and to give examples of usage.

Structure of the Guide

The report is organized as follows.  The motivation for the development of the Ravenscar Profile is 
given in the next chapter.  Chapter 3 includes the definition of the profile as agreed by WG9; the 
definition is included here for convenience, but this report is not the definitive statement of the 
profile.  In Chapter 4, the rationale for each aspect of the profile is described.  Examples of usage 
are then provided in Chapter 5.  The need for verification is an important design goal for 
Ravenscar and Chapter 1 reviews the verification approach appropriate to Ravenscar programs.  
Finally in Chapter 7 an extended example is given.  Definitions and references are included at the 
end of the report.

Readership

This report is aimed at a broad audience, including application programmers, implementers of run-
time systems, those responsible for defining company/project guidelines, and academics.  
Familiarity with the Ada language is assumed.

Conventions

This report uses the italics face to flag the first occurrence of terms that have a defining entry in 
Chapter 8. For all Ada-related terms the report follows the language reference manual [RM] style: 
it uses the Arial font where there is a reference to defined syntax entities (e.g. 
delay_relative_statement). For all other names (e.g. Ada.Calendar) it uses normal text font, as do 
language keywords in the text except that they are in bold face.
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2 Motivation for the Ravenscar Profile

Before describing the Ravenscar Profile in detail, we will explain in this chapter some of the 
reasoning behind its features. These primarily come from the need to be able to verify concurrent 
real-time programs, and to have these programs implemented reliably and efficiently.

In this chapter we look mainly at scheduling theory, as this is the main driver for the definition of 
the restrictions of the Profile.  In addition there is a section that summarizes other program 
verification techniques that can be used with the Profile.

2.1 Scheduling Theory

Recent research in scheduling theory has found that accurate analysis of real-time behaviour is 
possible given a careful choice of scheduling/dispatching method together with suitable restrictions 
on the interactions allowed between tasks.  An example of a scheduling method is preemptive fixed 
priority scheduling.  Example analysis schemes are Rate Monotonic Analysis (RMA) [1] and 
Response Time Analysis (RTA) [2].

Priority-based preemptive scheduling is usually used with a Priority Ceiling Protocol (PCP) to 
avoid unbounded priority inversion and deadlocks.  It provides a model suitable for the analysis of 
concurrent real-time systems.  The approach supports cyclic and sporadic activities, the idea of 
hard, soft, firm, and non-critical components, and controlled inter-process communication and 
synchronization.  It is also scalable to programs for distributed systems.

Tool support exists for RMA and RTA, and for the static simulation of concurrent real-time 
programs.  The primary aim of analysing the real-time behaviour of a system is to determine 
whether it can be scheduled in such a way that it is guaranteed to meet its timing constraints.  
Whether the timing constraints are appropriate for meeting the requirements of the application 
is not an issue for scheduling analysis.  Such verification requires a more formal model of the 
program and the application of techniques such as model checking – see section 2.4.

2.1.1 Tasks Characteristics

The various tasks in an application will each have timing constraints.  For critical tasks these are 
normally defined in terms of deadlines.  The deadline is the maximum time within which a task 
must complete its operation in response to an event.

Each task is classified into one of the following four basic levels of criticality according to the 
importance of meeting its deadline:

• Hard
A hard deadline task is one that must meet its deadline.  The failure of such a task to meet 
its deadline may result in an unacceptable failure at the system level.

• Firm 
A firm deadline task is one that must meet its deadline under “average” or “normal” 
conditions.  An occasional missed deadline can be tolerated without causing system failure 
(but may result in degraded system performance).  There is no value, and thus there is a 
system-level degradation of service, in completing a firm task after its deadline.
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• Soft
A soft deadline task is also one that must meet its deadline under “average” or “normal” 
conditions.  An occasional missed deadline can be tolerated without causing system failure 
(but may result in degraded system performance).  There is value in completing a soft task 
even if it has missed its deadline.

• Non-critical
A non-critical task has no strict deadline.  Such a task is typically a background task that 
performs activities such as system logging.  Failure of a non-critical task does not endanger 
the performance of the system.

2.1.2 Scheduling Model

At any moment in time, some tasks may be ready to run (meaning that they are able to execute 
instructions if processor time is made available).  Others are suspended (meaning they cannot 
execute until some event occurs) or blocked (meaning that they await access to a shared resource 
that is currently exclusively owned by another task).  Suspended tasks may become ready 
synchronously (as a result of an action taken by a currently running task) or asynchronously (as a 
result of an external event, such as an interrupt or timeout, that is not directly stimulated by the 
current task).

With priority-based preemptive scheduling on a single processor, a priority is assigned to each task 
and the scheduler ensures that the highest priority ready task is always executing.  If a task with a 
priority higher than the currently running task becomes ready, the scheduler performs a context 
switch, as soon as it can, to enable the higher-priority task to resume execution.  The term 
“preemptive” indicates that this can occur because of an asynchronous event (i.e. one that is not 
caused by the running task).

Tasks will normally be required to interact as a result of contention for shared resources, exchange 
of data, and the need to synchronize their activities.  Uncontrolled use of such interactions can lead 
to a number of problems:

• Unbounded Priority Inversion / Blocking
where a high-priority task is blocked awaiting a resource in use by a low-priority task; as a 
result, ready tasks of intermediate priority may hold up the high priority task for an 
unbounded amount of time since they will run in preference to the low priority task that has 
locked the resource.

• Deadlock
where a group of tasks (possibly the whole system) block each other permanently due to 
circularities in the ownership of and the contention for shared resources.

• Livelock
where several tasks (possibly comprising the whole system) remain ready to run, and do 
indeed execute, but which fail to make progress due to circular data dependencies between 
the tasks that can never be broken.

• Missed Deadline
where a task fails to complete its response before its deadline has expired due to factors 
such as system overload, excessive preemption, excessive blocking, deadlocks, livelocks or 
CPU overrun.

The restricted scheduling model that is defined by the Ravenscar Profile is designed to minimize 
the upper bound on blocking time, to prevent deadlocks, and (via tool support) to verify that there 
is sufficient processing power available to ensure that all critical tasks meet their deadlines. 
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In this model, tasks do not interact directly, but instead interact via shared resources known as 
protected objects.  Each protected object typically provides either a resource access control 
function (including a repository for the private data to manage and implement the resource), or a 
synchronization function, or a combination of both.

A protected object that is used for resource access control requires a mutual exclusion facility, 
commonly known as a monitor or critical region, where at most one task at a time can have access 
to the object.  During the period that a task has access to the object, it must not perform any 
operation that could result in it becoming suspended.  Ada directly supports protected objects and 
disallows internal suspension within these objects.

A protected object that is used for synchronization provides a signalling facility, whereby tasks can 
signal and/or wait on events.  In the Profile definition, the use of protected objects for 
synchronization by the critical tasks is constrained so that at most one task can wait on each 
protected object.  A simplified version of wait/signal is also provided in the Profile via the Ada
Real-Time Annex functionality known as suspension objects [RM D.10].  These can be used in 
preference to the protected object approach for simple resumption of a suspended task, whereas the 
protected object approach should be used when more complex resumption semantics are required, 
for example including deterministic (race-condition-free) exchange of data between signaller and 
waiter tasks.

The Profile definition assures absence of deadlocks by requiring use of an appropriate locking 
policy.  This policy requires a ceiling priority to be assigned to each protected object that is no 
lower than the highest priority of all its calling tasks, and results in the raising of the priority of the 
task that is using the protected object to this ceiling priority value.  In addition to absence of 
deadlocks, this policy also allows an almost optimal time bound on the worst case blocking time to 
be computed for use within the schedulability analysis, thereby eliminating the unbounded priority 
inversion problem.  This time bound is calculated as the maximum time that the object is in use by 
lower-priority tasks.  Therefore, the smaller the worst-case time bound for this blocking period, the 
greater the likelihood that the task set will be schedulable.

The use of priority-based preemptive dispatching defines a mechanism for scheduling.  The 
scheduling policy is defined by the mapping of tasks to priority values.  Many different schemes 
exist for different temporal characteristics of the tasks and other factors such as criticality.  What 
most of these schemes require is an adequate range of distinct priority values.  Ada and the 
Ravenscar Profile ensure this.

2.2 Mapping Ada to the Scheduling Model

The analysis of an Ada application that makes unrestricted use of Ada run-time features including 
tasking rendezvous, select statements and abort is not currently feasible.  In addition, the non-
deterministic and potentially unbounded behaviour of many tasking and other run-time calls may 
make it impossible to provide the upper bounds on execution time that are required for 
schedulability analysis and simulation.  Thus Ada coding style rules and subset restrictions must be 
followed to ensure that all code within critical tasks is statically time-bounded, and that the 
execution of the tasks can be defined in terms of response times, deadlines, cycle times, and 
blocking times due to contention for shared resources.

The application must be decomposed into a number of separate tasks, each with a single thread of 
control, with all interaction between these tasks identified.  Each task has a single primary 
invocation event.  The tasks are categorized as time-triggered (meaning that they execute in 
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response to a time event), or event-triggered (meaning that they execute in response to a stimulus 
or event external to the task).  If a time-triggered task receives a regular invocation time event with 
a statically-assigned rate the task is termed periodic or cyclic.

Protected objects must be introduced to provide mutually-exclusive access to shared resources 
(e.g. for concurrent access to writable global data) and to implement task synchronization (e.g. via 
some event signalling mechanism).  This decomposition is normally the result of applying a design 
methodology suitable to describe real-time systems.

In order to be suitable for schedulability analysis, the task set to be analysed must be static in 
composition and have all its dependencies between tasks via protected objects.  Tasks nested inside 
other Ada structures cause unwanted visibility dependencies and termination dependencies.  
Therefore, this model only permits tasks to be created at the library level, at system initialization 
time.

This implies that all tasks in the program are created at the library level.

Another consequence of requiring a static task set for schedulability analysis purposes is that the 
Ravenscar Profile must prohibit the dynamic creation of tasks and protected objects via allocators.  
This implies that the memory requirements for the execution of the task set (e.g. the task stacks) 
are resolved prior to, or during, elaboration of the program.  In addition, the Profile prohibits the 
implementation from implicitly acquiring dynamic memory from the standard storage pool [RM 
13.11(17)].  The data structures that are required by the run-time system should either be declared 
globally, so that the memory requirements can be determined at link time, or in such a way as to 
cause the storage to be allocated on the stack (of the environment task) during elaboration of the 
run-time system.

The Profile places no restrictions on the declaration of large or dynamic-sized Ada objects in the 
application other than prohibiting the implementation from implicitly using the standard storage 
pool to acquire the storage for these objects.  It is acceptable for the memory for such objects to be 
allocated on the task stack.

2.3 Non-Preemptive Scheduling and Ravenscar

The definition of Ravenscar requires preemptive scheduling of tasks. However a similar profile 
could be defined that specified non-preemptive execution.  Much of the material and guidelines 
contained in this report would also apply to the non-preemptive case.  Non-preemptive 
implementation for a mono-processor is in between the cyclic executive approach and the 
preemptive tasking approach with regard to ease of timing analysis, flexibility with regard to 
change, and responsiveness to asynchronous events.  In common with the cyclic executive 
approach, there is no contention for shared resources, and there is no need to analyse the impact 
from asynchronous events.  There is still, however, the need to break up long code sequences using 
voluntary suspension points (e.g. a delay_until_statement with a wakeup time argument that denotes 
a time in the past) to obtain reasonable responsiveness to asynchronous events.
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2.4 Other Program Verification Techniques

In addition to the provision of support for schedulability analysis, the rationale behind the 
Ravenscar Profile definition is also to support other static program verification techniques, and to 
simplify the formal certification process.  These other techniques are discussed briefly in this 
section.

2.4.1 Static Analysis

Static analysis is recognized as a valuable mechanism for verifying software.  It is mandated for 
safety critical applications that are certified to the UK Defence Standard 00-55 [DS].  Industrial 
experience shows that the use of static analysis during development eliminates classes of errors 
that can be hard to find during testing.  Moreover, these errors can be eliminated by the developer 
before the code has been compiled or entered into the configuration management system, saving 
the cost of repeated code review and testing which results from faults that are discovered during 
dynamic testing.

Static analysis as a technology has a fundamental advantage over dynamic testing.  If a program 
property is shown to hold using static analysis, then the property is guaranteed for all scenarios.  
Testing, on the other hand, may demonstrate the presence of an error, but the correct execution of a 
test only indicates that the program behaves correctly for the specific set of inputs provided by the 
test, and within the specific context that the test harness sets up.  For all but the simplest systems, 
exhaustive testing of all possible combinations of input values and program contexts is infeasible.  
Typically, test cases are devised to represent broad classes of inputs, so that tests can be created 
that use a representative value from each possible input class.  However complex program state 
contexts are usually only creatable during integration and system testing, when it may be very 
difficult to simulate all possible operational states.  Further, the impact of correcting errors that are 
found only at this stage of the lifecycle is generally large in comparison to errors found during 
development.

There are many methods of static analysis.  By using combinations of these methods, a variety of 
properties can be guaranteed for a program.  The following list of forms of analysis is drawn from 
a study of a variety of standards that is presented in the ISO Technical Report [GA].  Section 6.2
discusses how these analyses may be applied in the context of a concurrent Ravenscar Profile 
program.

Control Flow

Control flow analysis ensures that code is well structured, and does not contain any syntactically or 
semantically unreachable code.

Data Flow

Data flow analysis ensures that there is no executable path through the program that would result 
in access to a variable that does not have a defined value.  Data flow analysis is only feasible on 
code that has valid control flow properties.
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Information Flow

Information flow analysis is concerned with the dependencies between inputs and outputs within 
the code.  It checks the specified dependencies against the implemented dependencies to ensure 
consistency.  To be effective, information flow analysis needs to be performed with knowledge of 
the system requirements.  It can be a powerful tool for demonstrating properties such as non-
interference between critical and non-critical data.

Symbolic Execution

Symbolic execution generates a model of the function of the software in terms of parallel 
assignments of expressions to outputs for each possible path through the code.  This can be used to 
verify the code without the need for a formal specification.

Formal Code Verification

Formal code verification is the process of proving the code is correct against a formal specification 
of its requirements.  Each operation is specified in terms of the pre-conditions that need to be 
satisfied for the operation to be callable, and the post-conditions that hold following a successful 
call to the operation.  The verification process demonstrates that, given the pre-conditions, 
execution of the operation always gives rise to the post-conditions.  The level of proof depends on 
the information provided in the formal specification.  This can vary depending on the aspects of 
the code that need to be verified; this can vary from the proof of a single invariant right up to full 
functional behaviour.

Proof of absence of run time errors is a special form of formal code verification.  This does not 
require the provision of a formal specification of the program.  Instead, formal code verification 
techniques are used to demonstrate that, at every point in the code where a run-time error may 
occur, the pre-conditions on execution of that code and the current set of data values in the 
expression guarantee that the run-time error cannot occur.  This is a very valuable property to be 
able to demonstrate, especially in systems where the occurrence of an unexpected run-time 
exception is generally unrecoverable, and the overhead of dynamic defensive mechanisms for 
preventing all such faults is unacceptable.

2.4.2 Formal Analysis

The formal analysis of concurrent programs has been a fruitful research topic for a number of 
years.  Current standard techniques allow many important properties of programs to be statically 
checked.

Concurrent programs, whilst more expressive than their sequential counterparts, have a number of 
distinct error conditions that must be addressed during program development.  The most common 
of these is deadlock where all processes are blocked on a synchronization primitive with no 
processes left to undertake the necessary unblocking actions.  In general, a concurrent program 
should possess two important properties:

1. Safety - the system of tasks should not get into an unsafe (undesirable) state (for 
example; deadlock, livelock).

2. Liveness - all desirable states of the task must be reached eventually (that is, useful 
progress should always be made).
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In a real-time concurrent system, ‘liveness’ becomes ‘bounded liveness’ as desirable states must be 
reached by known deadlines.

Ada, like all other engineering languages, does not have its semantics defined in a formal 
mathematical way.  Hence it is necessary to link a model of the program with the program itself.  
This link cannot be formal but can be precise.  The use of standard patterns for Ada tasks helps this 
linkage.  The formal model could be derived from the code or, more likely in an engineering 
process, the model is derived from requirements, and the code is obtained via a series of 
refinements from the model.

There are two general forms for these models and two methods of extracting properties 
(behaviours) from these descriptions.  First, an algebraic form could be used in one of the 
concurrency languages that does have formally defined semantics; examples being CSP and CCS.  
The other, more common approach, is to view the program as a collection of state-transition 
systems.

Verification comes from either a proof theoretic approach or via model checking.  An algebraic 
description can be proved to be deadlock free, for example, by the use of a theorem prover.  
Alternatively, a state-transition description (or an algebraic one) can be exercised by an exhaustive 
search of the set of states the program can enter. This 'checking of the model' can deduce that all 
safe states, and no unsafe states, can be reached.

The disadvantage of model checking is that an explosion of states can make it impossible to 
terminate the search.  However, there have been considerable (and continuing) advances in the 
tools for model checking, and now sizeable systems can be verified in a respectably small number 
of hours of processing time.  Theorem proving does not have this problem but it is a more skilled 
activity and theorem proving tools are not simple to use (i.e. the verification process is not 
automatic).  A proof theoretic approach also has the advantage that it can show that a property is 
true 'for any number of tasks'; whereas model checking cannot generalize in this way - it will show 
it is true for six client tasks, say, but for seven the check must be made again.  Combinations of 
proof and model checking are possible and are the subject of current research.

For real-time systems, it is possible to add time to the concurrency model and to then validate 
temporal aspects of program.  Timed versions of formalisms such as CSP exist and state-transition 
systems with clocks allow timing requirements to be expressed and subsequently verified by model 
checking.  A common formalism for this type of state-transition system is called timed automata.  
Again, tool support for model checking sets of timed automata is well advanced.  One of the very 
useful features of model checking tools is that they all produce a well-defined counter example for 
any failed check.

2.4.3 Formal Certification

In order to achieve formal certification of a software architecture and of its Ada implementation, it 
is necessary to provide verification evidence of safety and reliability of the Ada run-time system as 
well as for the application-specific components.  The run-time system that is needed to implement 
the dynamic semantics of the full Ada concurrency model is complex, and the number of states 
that may be represented by its dynamic data structures is large.  As a result, it is very challenging 
for a commercial Ada vendor to produce certification evidence to the highest integrity levels for an 
entire Ada run-time system.
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The Ravenscar Profile definition greatly reduces the size and complexity of the required run-time 
system so as to simplify the process of providing evidence of its safety and reliability.  Ada 
concurrency features that have major impact on the run-time system semantics, such as abort, 
asynchronous transfer of control, multiple entry queues each with a list of waiting tasks, requeue 
statements, task hierarchy and dependency, and finalization actions of local protected objects, are 
eliminated.  As a result, it is possible to create not only a small and highly efficient run-time 
system implementation, but also one that is amenable to the forms of verification applicable to 
sequential code as described in [GA], which may then be used as evidence to support the formal 
certification of an entire software system to the highest integrity levels.
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3 The Ravenscar Profile Definition

3.1 Development History

The 8th International Real-Time Ada Workshop (IRTAW) was held in April 1997 at the small 
Yorkshire village of Ravenscar.  Two position papers [3][4] led to an extended discussion on 
tasking profiles.  By the end of the workshop, the Ravenscar Profile had been defined [5] in a form 
that is almost identical to its current specification.

At the 9th IRTAW [6] (March 1999) the Ravenscar Profile was again discussed at length.  The 
definition was reaffirmed and clarified.  The most significant change was the incorporation of 
Suspension Objects.  An Ada Letters paper [5] became the de facto defining statement of the 
Profile.

By the 10th IRTAW [7] (September 2000) many of the position papers were on aspects of the 
Profile and its use and implementation.  No major changes were made although an attempt to 
standardize on the Restriction identifiers was undertaken.  Time was spent on a non-preemptive 
version of the Profile.  Following the 10th workshop the participants decided to forward the 
Ravenscar Profile to the ARG – the ISO body in charge of the maintenance of the Ada language –
so that its definition could move from a de facto to a real standard.  The HRG – the ISO body in 
charge of the high integrity aspects of the Ada language – was also tasked with producing a 
Rationale for the Profile, action that has resulted in the production of this guide.

At the 11th IRTAW [8] (April 2002) the formal definition of the profile as formulated by the ARG 
was agreed.  It was confirmed that the Profile requires task dispatching policy 
FIFO_Within_Priorities and locking policy Ceiling_Locking.

3.2 Definition

The definition of the Profile has now been approved by WG9 for inclusion in the revision of the 
Ada 95 Standard. The definition is reported here for information only, in a form that matches its 
latest formal definition by the ARG [AI 249], [AI 305]; in due course, an appropriate WG9 
document shall provide the definitive specification for inclusion in the revised language standard.

An application requests the use of the Ravenscar Profile by means of the configuration pragma 
Profile with the Ravenscar identifier:

pragma Profile(Ravenscar);

There are, in general, two distinct ways of defining the details of the Profile.  Either by defining 
what is in it, or by declaring those parts of Ada that are not.  The ‘official’ definition defines the 
restrictions that are needed to reduce the full tasking model to Ravenscar.  However, this gives a 
rather negative definition.  So we shall first introduce the Profile by focusing on the features it 
does contain.
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3.2.1 Ravenscar Features

Following from the discussion on verification in the previous chapter we are able to define an 
adequate set of tasking features.  The Profile allows programs to contain:

• Task types and objects, defined at the library level.

• Protected types and objects, defined at the library level, with a maximum of one entry per 
object and with a maximum of one task queued at any time on that entry.  The entry barrier 
must be a single Boolean variable (or a Boolean literal).

• Atomic and Volatile pragmas.

• delay_until_statements.

• Ceiling_Locking policy and FIFO_Within_Priorities dispatching policy.

• The E’Count attribute for protected entries except within entry barriers.

• The Ada.Task_Identification package plus task attributes T'Identity and E'Caller.

• Synchronous task control.

• Task type and protected type discriminants.

• The Ada.Real_Time package.

• Protected procedures as statically bound interrupt handlers.

Together these form a coherent set of features that define an adequate language for expressing the 
programming needs of statically defined real-time systems.

3.3 Summary of Implications of pragma Profile(Ravenscar)

The following restrictions apply to the alternative mode of operation defined by the Ravenscar 
Profile.  The first set comes from the existing Ada definition of restrictions:

Restrictions(Max_Protected_Entries=>1);
Restrictions(Max_Task_Entries=>0);
Restrictions(No_Abort_Statements);
Restrictions(No_Asynchronous_Control);
Restrictions(No_Dynamic_Priorities);
Restrictions(No_Implicit_Heap_Allocations);
Restrictions(No_Task_Allocators);
Restrictions(No_Task_Hierarchy);

In addition to these restriction identifiers the dispatching and locking policies defined by the 
Ravenscar profile are:

Task_Dispatching_Policy(FIFO_Within_Priorities);
Locking_Policy(Ceiling_Locking);

The following new pragma Restrictions identifiers are defined for the Ravenscar Profile.

No_Calendar
There are no semantic dependencies on package Ada.Calendar.

No_Dynamic_Attachment
There is no call to any of the operations defined in package Ada.Interrupts (Is_Reserved, 
Is_Attached, Current_Handler, Attach_Handler, Exchange_Handler, Detach_Handler, 
Reference).
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No_Local_Protected_Objects
Protected objects shall be declared only at library-level.

No_Protected_Type_Allocators
There are no allocators for protected types or types containing protected type components.

No_Relative_Delay
There are no delay_relative_statements.

No_Requeue_Statements
There are no requeue_statements.

No_Select_Statements
There are no select_statements.

No_Task_Attributes_Package
There are no semantic dependencies on package Ada.Task_Attributes.

No_Task_Termination
All tasks are non-terminating.  It is implementation-defined what happens if a task attempts to 
terminate.

Simple_Barriers
The Boolean expression in an entry barrier shall be either a static Boolean expression or a 
Boolean component of the enclosing protected object.

Max_Entry_Queue_Length
Max_Entry_Queue_Length defines the maximum number of calls that are queued on an entry.  
Violation of this restriction results in the raising of Program_Error at the point of the call.  For 
the Ravenscar Profile, the value of this restriction is 1. 

Note that the effect of this restriction applies only to protected entry queues due to the 
accompanying restriction of Max_Task_Entries => 0.

The remainder of the definition concerns errors.  The bounded error that is the invocation of one 
of the following potentially blocking operations during a protected action shall be detected:

• a protected entry_call_statement

• a delay_until_statement

• a call to a language-defined subprogram that is potentially blocking, for example 
Ada.Synchronous_Task_Control.Suspend_Until_True

This is indicated by

pragma Detect_Blocking;

that forms part of the Ravenscar definition.

Note the detection of these bounded error cases results in Program_Error being raised ([RM] 9.5.1 
(17)).  Potentially blocking operations that occur in a foreign language domain need not be 
detected.
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The definition of these new restrictions and the motivation for the complete set of restrictions is 
given in the next chapter.  For completeness, the definition of the Ravenscar Profile as it will 
appear in the amended Ada reference manual is as follows:

pragma Task_Dispatching_Policy(FIFO_Within_Priorities);

pragma Locking_Policy(Ceiling_Locking);

pragma Detect_Blocking;

pragma Restrictions(
Max_Entry_Queue_Length => 1,
Max_Protected_Entries => 1,
Max_Task_Entries => 0,
No_Abort_Statements,
No_Asynchronous_Control,
No_Calendar,
No_Dynamic_Attachment,
No_Dynamic_Priorities,
No_Implicit_Heap_Allocations,
No_Local_Protected_Objects,
No_Protected_Type_Allocators,
No_Relative_Delay,
No_Requeue_Statements,
No_Select_Statements,
No_Task_Allocators,
No_Task_Attributes_Package,
No_Task_Hierarchy,
No_Task_Termination,
Simple_Barriers);
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4 Rationale

This chapter provides a detailed rationale for the imposition of each restriction and some general 
discussion about how to work within the restrictions while still retaining flexibility in the design 
and coding processes.

4.1 Ravenscar Profile Restrictions

4.1.1 Static Existence Model

The restrictions listed below ensure that the set of tasks and interrupts to be analysed is fixed and 
has static properties (in particular, base priority) after program elaboration.  If a variable task set 
were to exist, then it would be impractical to perform static timing analysis of the program because 
of the dynamic nature of the requirements for CPU time and the meeting of deadlines.

No_Task_Hierarchy
[RM D.7] All (nonenvironment) tasks depend directly on the environment task of the partition.

The restriction No_Task_Hierarchy prevents the declaration of tasks local to procedures or to 
other tasks.  Thus tasks may only be created at the library level, i.e. within the declarative part 
of library level package specifications and bodies, including child packages and package 
subunits.

No_Task_Allocators
[RM D.7] There are no allocators for task types or types containing task subcomponents.

The restriction No_Task_Allocators prevents the dynamic creation of tasks via the execution of 
Ada allocators.

No_Task_Termination
[AI 305] All tasks are non-terminating.  It is implementation-defined what happens if a task 
attempts to terminate.

The restriction attempts to mitigate the hazard that may be caused by tasks terminating silently.  
Real-time tasks normally have an infinite loop as their last statement.

No_Abort_Statements
[RM D.7] There are no abort_statements, and there are no calls to 
Task_Identification.Abort_Task.

The restriction No_Abort_Statements ensures that tasks cannot be aborted.  The removal of 
abort statements (and select then abort) significantly reduces the size and complexity of the run-
time system.  It also reduces non-determinacy.

No_Dynamic_Attachment
[AI 305] There is no call to any of the operations defined in package Ada.Interrupts 
(Is_Reserved, Is_Attached, Current_Handler, Attach_Handler, Exchange_Handler, 
Detach_Handler, Reference).
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The restriction No_Dynamic_Attachment excludes use of the operations in predefined package 
Ada.Interrupts, which contains primitives to attach and detach handlers dynamically during 
program execution.  In conjunction with restriction No_Local_Protected_Objects (see below) 
this implies that interrupt handlers can only be attached statically by use of pragma
Attach_Handler applying to protected procedures within library-level protected objects.  Note 
the types and names defined in Ada.Interrupts can be used.

No_Dynamic_Priorities
[RM D.7] There are no semantic dependencies on the  package Ada.Dynamic_Priorities.

The restriction No_Dynamic_Priorities disallows the use of the predefined package 
Ada.Dynamic_Priorities, thereby ensuring that the priority assigned at task creation is 
unchanged during task execution, except when the task is executing a protected operation and 
during which time it inherits the ceiling priority.

4.1.2 Static Synchronization and Communication Model

These restrictions are a natural consequence of the static existence model, since a locally declared 
protected object is meaningless for mutual exclusion and task synchronization purposes if it can 
only be accessed by one task.  Furthermore, a static set of protected objects is required for 
schedulability analysis.

No_Local_Protected_Objects
[AI 305] Protected objects shall be declared only at library-level..

The restriction No_Local_Protected_Objects prevents the declaration of protected objects local 
to subprograms, tasks, or other protected objects.

No_Protected_Type_Allocators
[AI 305] There are no allocators for protected types or types containing protected type 
components.

The restriction No_Protected_Type_Allocators prevents the dynamic creation of protected 
objects via Ada allocators.

No_Select_Statements
[AI 305] There are no select_statements. 

Max_Task_Entries => N
[RM D.7] Specifies the maximum number of entries per task.

For the Ravenscar Profile, the value of Max_Task_Entries is zero.

The restrictions Max_Task_Entries => 0 and No_Select_Statements prohibit the use of Ada 
rendezvous for task synchronization and communication.  This ensures that these operations are 
achieved using only the two supported task synchronization primitives: protected object entries 
and suspension objects, which both exhibit time-deterministic execution properties needed for 
static timing analysis.
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4.1.3 Deterministic Memory Usage

The Profile contains two restrictions that are designed to prevent implicit dynamic memory 
allocation by the implementation.  Note that the Profile does not prevent the use of the standard 
storage pool or a user-defined storage pool via explicit allocators, although if there were no 
application-level visibility or control over how the storage in the standard storage pool was 
managed, the use of this pool would not be recommended.

No_Implicit_Heap_Allocations
[RM D.7] There are no operations that implicitly require heap storage allocation to be 
performed by the implementation.  The operations that implicitly require heap storage 
allocation are implementation defined.

The restriction No_Implicit_Heap_Allocations prevents the implementation from allocating 
memory from the standard storage pool other than as part of the execution of an Ada allocator.

No_Task_Attributes_Package
[AI 305] There are no semantic dependencies on the package Ada.Task_Attributes.

The restriction No_Task_Attributes_Package prevents use of the predefined package 
Ada.Task_Attributes, which is used to dynamically create attributes of each task in the 
application.  Attribute creation may cause implicit dynamic allocation of memory.  Although an 
implementation is allowed to statically reserve space for such attributes and then to impose a 
restriction on usage, it is felt that support of this feature is not compatible with the static nature 
of Ravenscar programs.

4.1.4 Deterministic Execution Model 

The following restrictions ensure deterministic execution:

Max_Protected_Entries => N
[RM D.7] Specifies the maximum number of entries per protected type.  The bounds of every 
entry family of a protected unit shall be static, or shall be defined by a discriminant of a subtype 
whose corresponding bound is static.

For the Ravenscar Profile, the value of Max_Protected_Entries is 1.

Max_Entry_Queue_Length => N
[AI 305] Specifies the maximum number of calls that are queued on an entry.  Violation of this 
restriction results in the raising of Program_Error exception at the point of the call.

For the Ravenscar Profile, the value of Max_Entry_Queue_Length is 1, and a call can only be 
queued on a protected entry, since Max_Task_Entries is 0.

The restrictions Max_Protected_Entries => 1 and Max_Entry_Queue_Length => 1 ensure that 
at most one task can be suspended waiting on a closed entry barrier for each protected object 
which is used as a task synchronization primitive.  This avoids the possibility of queues of tasks 
forming on an entry, with the associated non-determinism of the length of the waiting time in 
the queue.  It also avoids two or more barriers becoming open simultaneously as the result of a 
protected action, with the associated non-determinism of selecting which entry should be 
serviced first.  The restriction also enables a tight time bound on the epilogue code to be 
determined.
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The Max_Entry_Queue_Length restriction may only be checkable at run time, in which case 
violation would result in the raising of the Program_Error exception at the point of the entry 
call.  This is consistent with the Ada rule that states that Program_Error exception is raised upon 
calling Suspend_Until_True if another task is waiting on that suspension object [RM D.10].  An 
application could further restrict a Ravenscar program so that only one task is able to call each 
entry.  A static check could then be provided, but this goes beyond what the Profile defines.

Note that, when the restriction Max_Entry_Queue_Length => 1 is in force, pragma
Queuing_Policy ([RM D.4]) has no effect, since there are no queues.

Simple_Barriers
[AI 305] The Boolean expression in an entry barrier shall be either a static Boolean expression 
or a value of a Boolean component of the enclosing protected object.

The restriction Simple_Barriers, coupled with Max_Protected_Entries => 1, ensures a 
deterministic execution time and absence of side effects for the evaluation of entry barriers at 
the epilogue of protected actions within a protected object that is used for task synchronization.  
There is also scope for additional optimization by the implementation since the barrier value is 
either static or can be read directly from one of the protected object components, without 
needing to be computed separately.  If the application requires composite entry barrier 
expressions, this can be achieved by declaring an additional Boolean in the protected data and 
assigning the composite expression to the Boolean whenever its evaluation result may change.  
Note the Boolean variable must be declared immediately within the protected object (or type).

No_Requeue_Statements
[AI 305] There are no requeue_statements. 

The restriction No_Requeue_Statements ensures deterministic task release from protected entry 
barriers used for task synchronization.  The requeue_statement in Ada causes the current caller of 
a protected entry to be requeued to a different entry dynamically, thereby making it difficult to 
perform static analysis of task release.

No_Asynchronous_Control
[RM D.7] There are no semantic dependencies on the package 
Ada.Asynchronous_Task_Control.

The restriction No_Asynchronous_Control excludes the use of asynchronous suspension of 
execution.  This ensures that task execution is temporally deterministic.  See also the comments 
made on No_Abort_Statements.

No_Relative_Delay
[AI 305] There are no delay_relative_statements. 

The restriction No_Relative_Delay prohibits use of the delay_relative_statement based on type 
Duration.  This statement exhibits non-determinism with respect to the absolute time at which 
the delay expires in the case when the delaying task is preempted after calculating the required 
relative delay, but before actual suspension occurs.  In contrast, the delay_until_statement is 
deterministic and should be used for accurate release of time-triggered tasks.

No_Calendar
[AI 305] There are no semantic dependencies on the package Ada.Calendar.
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The restriction No_Calendar ensures that all timing is performed using the high precision 
afforded by the time type in package Ada.Real_Time, or by an implementation-defined time 
type.  The Ada.Real_Time time type has a precision of the same order of magnitude as the real-
time clock device on the underlying processor board.  In contrast, the time type in package 
Calendar generally has much coarser precision than the real-time clock, due to the need to 
support a 200 year range, and so its use could result in less accuracy in task release times.

4.1.5 Implicit Restrictions

The set of restriction identifiers for Ada does not represent an orthogonal set of restrictions with 
the result that some restrictions are implied by others.  For example, No_Select_Statements implies 
Max_Select_Alternatives must be zero.

4.2 Ravenscar Profile Dynamic Semantics

4.2.1 Task Dispatching Policy

The task dispatching policy that is required by pragma Profile(Ravenscar) is 
FIFO_Within_Priorities [RM D.2].

4.2.2 Locking Policy

The locking policy that is required by pragma Profile(Ravenscar) is Ceiling_Locking [RM D.3].  
This policy provides one of the lowest worst case blocking times for contention for shared 
resources, and so maximizes the schedulability of the task set when preemptive scheduling is used.

4.2.3 Queuing Policy

The queuing policy is not meaningful for pragma Profile(Ravenscar) since no entry queues can 
form.  Thus queuing policy identifiers FIFO_Queuing and Priority_Queuing have no effect.

4.2.4 Additional Run Time Errors Defined by the Ravenscar Profile

The Ada language standard defines a number of concurrency-related run-time checks that may lead 
to the raising of an exception.  The Ravenscar Profile restrictions greatly reduce the quantity of 
these checks, and thus the number of exception cases that can occur.   The two concurrency-related 
run-time checks that apply to Ravenscar programs are:

• detection of priority ceiling violation as defined by Ceiling_Locking policy;

• detection of violation of not more than one task waiting concurrently on a suspension object 
(via the Suspend_Until_True operation).

The Ravenscar Profile introduces some additional concurrency-related checks that are potentially 
detectable only at execution time:

• the maximum number of calls that are queued concurrently on an entry must not exceed 
one.  Program_Error exception is raised if the error occurs (pragma
Restrictions(Max_Entry_Queue_Length => 1));

• all tasks are non-terminating (pragma Restrictions(No_Task_Termination)).
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A conforming implementation must document the effect of a task that attempts to terminate.  
Possible effects may include:

• allowing the task to terminate silently;

• holding the task in a permanent pre-terminated state;

• executing an application-specific task termination handler via a non-portable feature of the 
implementation.

Whatever action is taken by the implementation, the application cannot assume that full task 
termination actions (including finalization) have been executed.

4.2.5 Potentially-Blocking Operations in Protected Actions

The Ravenscar Profile requires detection of the following bounded error in the Ada standard, with 
the consequential raising of Program_Error exception:

• execution of a potentially-blocking operation during a protected action (pragma
Detect_Blocking).

The Profile definition does however significantly reduce the list of potentially-blocking operations 
that may occur during a protected action.  In particular, the following potentially-blocking 
operations are eliminated by the Profile definition:

• a select_statement

• an accept_statement

• a task entry call

• a delay_relative_statement

• an abort_statement

• task creation or activation

• an external requeue_statement with the same target object as that of the protected action.

The Profile definition does not require detection of the potentially blocking operation that is 
defined by the language standard [RM 9.5.1 (16)].  In this case, it is allowed for the detection to 
occur at the point of execution of the potentially blocking operation within the called subprogram 
body.

The rationale for requiring detection of potentially-blocking operations is to allow a highly 
efficient and temporally deterministic implementation of Ceiling_Locking policy on a 
mono-processor.  In effect, the ceiling priority alone is sufficient to provide the required mutual 
exclusion without the need to use locks such as mutexes once it is guaranteed that the task cannot 
suspend co-operatively whilst inside the protected operation.  This form of locking is also 
non-queuing on a mono-processor, with the associated benefit of removing the need to compute 
the worst time that a task may wait in the queue.

4.2.6 Exceptions and the No_Exceptions Restriction

The general concern within high integrity systems of the occurrence of unhandled exceptions is not 
addressed directly by the Ravenscar Profile since exceptions relate to the sequential, rather than the 
concurrent, part of the language.  Consequently, whereas an unhandled exception will cause a 
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sequential program to terminate, and hence offer an immediate opportunity for some program level 
control to invoke recovery actions, an unhandled exception during the execution phase of a 
concurrent program may not be detected.  In particular, an unhandled exception can cause any of 
the following effects:

• silent abandonment of the execution of an interrupt handler;

• silent termination of a task;

• premature exit from a protected action.

The Ravenscar Profile statically avoids the possibility that an exception can be raised by an entry 
barrier via the restriction Simple_Barriers.  In addition, the Profile imposes the restriction 
No_Task_Termination that requires the implementation to document the effect of a task attempting 
to terminate.  Nevertheless, this is inadequate for most high integrity applications that require static 
demonstration of absence of exceptions due to run-time check failure.  Some techniques are 
presented in section 6.2 to address the topic of proof of absence of the concurrency-related run-
time errors that may occur in a Ravenscar Profile program, using static analysis.

The Ada standard includes the identifier No_Exceptions as a valid argument for the Restrictions 
pragma.  It should be noted that the inclusion of this pragma does not provide a static guarantee of 
exception freedom - it merely guarantees that the application code does not contain any explicit 
raise_statement, nor code generation for language-defined checks, nor any exception handlers.  
However, it is possible for an exception to be raised automatically by the underlying hardware, or 
by build-in code in the run-time system.  There is a documentation requirement on the 
implementation to define such cases [RM H.4 (25)].

In addition, the language standard defines execution of a program to become erroneous if a 
language-defined check is suppressed via the No_Exceptions restriction and the conditions arise 
that would have caused the check to fail [RM H.4 (26)].  This is consistent with the suppression of 
checks using pragma Suppress [RM 11.5 (26)].  Since erroneous execution results in the 
behaviour of a program becoming undefined, the recommendation for high integrity systems is that 
the No_Exceptions restriction should only be used in conjunction with verification and analysis 
techniques (see chapter 1) that can statically prove that no exceptions due to run-time check failure 
can occur.  In this case, the No_Exceptions restriction is providing the additional safeguard that 
exception raising via explicit raise_statements will be prohibited at compile time.

4.2.7 Access to Shared Variables

The Ravenscar Profile requires all synchronization and communication between tasks and interrupt 
handlers to use data which has mutually-exclusive access.  This prevents any erroneous execution 
that might arise if concurrent access (that includes a write operation) to the same unprotected 
shared variable is permitted.  Such access control is provided in Ada  using one of the following 
constructs:

• a protected object;

• a suspension object;

• an atomic object (to which pragma Atomic applies).

This access control model applies to the operational phase of the application, after program 
initialization via elaboration of library-level packages is complete.  For each class of object above, 
it is possible to ensure that its initialization is completed as part of program elaboration.
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There is an issue however in that the semantics of Ada define task activation and interrupt handler 
attachment to occur during library-level elaboration code for objects that are declared within 
library-level packages.  Consequently it is the case that tasks will execute their declarative part and 
may proceed into their sequence_of_statements, and that interrupt handlers may execute, prior to the 
elaboration code for program initialization being completed.  This scenario could give rise to the 
following undesirable effects:

• a task body or interrupt handler may suffer an access-before-elaboration exception;

• a task body or interrupt handler may access uninitialized data;

• a task body or interrupt handler may access unprotected data concurrently that it shares only 
with the thread of control that is performing the data initialization

It is possible to program each task such that it suspends itself at the start of its sequence of 
statements, but this is not possible for interrupt handlers (although an application may be able to 
inhibit interrupts if the device allows).  Furthermore, the code executed as part of task activation 
(prior to the suspension point) may suffer the effects listed above.  In order to address this issue, 
the Partition_Elaboration_Policy pragma has been proposed for the amendment of the Ada 
standard (see below).  If this pragma is used with argument Sequential, then all task activation and 
interrupt handler attachment is deferred until after all program elaboration code is complete, i.e. 
just prior to the call of the main subprogram.  This pragma complements those that are defined by 
the Ravenscar Profile to provide the verification that the Profile's goal of controlled access to 
global shared variables is met during program initialization.

4.3 Elaboration Control

Although not part of Ravenscar, a closely associated new pragma is Partition_Elaboration_Policy 
[AI 265].  If given the argument Sequential, this defines an alternative elaboration behaviour in 
which all tasks declared at the library level only proceed to their activation after the environment 
task has completed all its elaborations and has reached its ‘begin’.  All library-based tasks are then 
activated and executed concurrently.  This pragma provides a more deterministic start for a 
program.

The pragma cannot be used with general Ada programs, but it can be employed with Ravenscar.  
Note the pragma also prohibits the delivery of interrupts until the environment task has completed 
its elaboration.  This will also be an attractive feature to many users of Ravenscar.
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5 Examples of Use

This chapter illustrates some simple uses of the Ravenscar Profile.  The Profile can be used with a 
variety of coding styles.  However if the user is required to perform program analysis, for example 
to check the schedulability of the tasks, then certain coding styles are recommended.  Indeed, a 
small number of templates can cater for a large class of application needs.  In the first eight 
sections of this chapter we give examples that illustrate the straightforward use of Ravenscar.  
After that, in sections 5.9 to 5.12, we show how Ravenscar can deal with requirements that would 
appear to lie outside the scope of what is supported by the Profile.

5.1 Cyclic Task

The task body for a cyclic (or periodic) task typically has, as its last statement, an outermost 
infinite loop containing one or more delay_until_statements.  The basic form of a cyclic task has just 
a single delay statement either at the start or at the end of the statements within the loop.  The 
Ravenscar Profile supports only one time type for use as the argument – Ada.Real_Time.Time, 
although a user-defined time type could be used.

Remember that task termination is considered to be an error condition in Ravenscar Profile 
compliant code since there is no dynamic task creation (and hence the thread of control would be 
permanently lost).  Hence the loop that is presented in the template below is infinite.

A cyclic task will not usually contain any other form of voluntary-suspension statement in the 
infinite loop, since this would undermine the schedulability analysis

The Ravenscar Profile supports the use of discriminants for task types and protected types.  One 
use of a discriminant is to set differing priorities for task objects or protected objects that are of the 
same type by using it as the argument of pragma Priority.  Discriminants can also be used to 
indicate the period of a cyclic task or other task parameters.

Example 1, Cyclic Template
task type Cyclic(Pri : System.Priority; Cycle_Time : Positive) is

pragma Priority(Pri);
end Cyclic;

task body Cyclic is
   Next_Period : Ada.Real_Time.Time;
   Period : constant Ada.Real_Time.Time_Span :=
                                       Ada.Real_Time.Microseconds(Cycle_Time);

-- Other declarations
begin

-- Initialization code
   Next_Period := Ada.Real_Time.Clock + Period;

loop
delay until Next_Period; -- wait one whole period before executing
-- Non-suspending periodic response code
-- May include calls to protected procedures

      Next_Period := Next_Period + Period;
end loop;

end Cyclic;

-- now we declare two task objects of this type
C1 : Cyclic(20,200);
C2 : Cyclic(15,100);
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Cyclic tasks normally exchange data through protected operations.  In this coding style, there are 
no protected entries since the only activation event is on delay until.  It is recommended that all 
shared data be placed in protected objects to avoid corruption.

5.2 Co-ordinated release of Cyclic Tasks

The simple example illustrated above has a number of cyclic tasks that each read the clock and 
then suspend for time 'period'.  It can however by useful for all such tasks to co-ordinate their start 
times so that they share a common epoch.  This can help to enforce precedence relations across 
tasks.  To achieve this a protected object is used which reads the clock on creation and then makes 
this clock value available to all cyclic tasks.

Example 2, Protected Object Implementing an Epoch
protected Epoch is

function Start_Time return Ada.Real_Time.Time;
private

pragma Priority(System.Priority’Last); 
   Start : Ada.Real_Time.Time := Ada.Real_Time.Clock;
end Epoch;

protected body Epoch is
function Start_Time return Ada.Real_Time.Time is
begin

return Start;
end Start_Time;

end Epoch;

Note, a protected object is not strictly needed as a shared variable appropriately initialized will 
suffice.  A more robust scheme and one that only reads the epoch time once a task actually needs it 
is as follows.

Example 3, Caller Initialized Epoch
protected Epoch is

procedure Get_Start_Time(T : out Ada.Real_Time.Time);
private

pragma Priority(System.Priority’Last); 
   Start : Ada.Real_Time.Time;
   First : Boolean := True;
end Epoch;

protected body Epoch is
procedure Get_Start_Time(T : out Ada.Real_Time.Time) is
begin
 if First then

        First := False;
        Start := Ada.Real_Time.Clock;

end if;
      T := Start;

end Get_Start_Time;
end Epoch;

This leads to the following further example.
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Example 4, Cyclic Task Using Epoch
task type Cyclic(Pri : System.Priority; Cycle_Time : Positive) is

pragma Priority(Pri);
end Cyclic;

task body Cyclic is
   Next_Period : Ada.Real_Time.Time;
   Period : constant Ada.Real_Time.Time_Span :=

Ada.Real_Time.Microseconds(Cycle_Time);
-- Other declarations

begin
-- Initialization code

   Epoch.Get_Start_Time(Next_Period);
   Next_Period := Next_Period + Period;   

loop
delay until Next_Period;   -- wait until next period after epoch
-- Non-suspending periodic response code
-- May include calls to protected procedures

      Next_Period := Next_Period + Period;   
end loop;

end Cyclic;

5.3 Cyclic Tasks with Precedence Relations

The use of priorities and a shared epoch can be used to enforce precedence, between tasks with the 
same period, if the application can be restricted so that the tasks do not block during execution.  
An alternative scheme is to use an offset in time.  Here scheduling analysis is used to ensure that 
each task has completed before the next is released.

Example 5, Cyclic Tasks with Offsets
task type Cyclic(Pri : System.Priority; Cycle_Time, Offset : Natural) is
pragma Priority(Pri);

end Cyclic;

task body Cyclic is
   Next_Period : Ada.Real_Time.Time;
   Period : constant Ada.Real_Time.Time_Span :=
                                  Ada.Real_Time.Microseconds(Cycle_Time);

-- Other declarations
begin

-- Initialization code
   Next_Period := Epoch.Start_Time + Ada.Real_Time.Microseconds(Offset);

loop
delay until Next_Period;  -- wait until next period after offset
-- Non-suspending periodic response code
-- May include calls to protected procedures

      Next_Period := Next_Period + Period; 
end loop;

end Cyclic;

First : Cyclic(20,200,0);  -- required to complete with deadline 70
Second : Cyclic(20,200,70);

5.4 Event-Triggered Tasks 

The task body for an event-triggered task that conforms to the Profile typically has, as its last 
statement, an outermost infinite loop containing as the first statement either a call to a protected 
entry or a call to Ada.Synchronous_Task_Control.Suspend_Until_True using a Suspension Object.  
The suspension object is used when no other effect is required in the signalling operation; for 
example, no data is to be transferred from signaller to waiter.  In contrast, the protected entry is 

Burns, Dobbing and Vardanega                                                                                              Ada Letters - June 2004



Guide for the use of the Ada Ravenscar Profile in high integrity systems26

used for more elaborate event signalling, when additional operations must accompany the 
resumption of the event-triggered task.

An event-triggered task will not usually contain any other form of voluntary-suspension statement 
in the infinite loop.

Example 6,  An Event-Triggered Task
-- A suspension object, SO, is declared in a visible library unit and is
-- set to True in another (releasing) task

task type Sporadic(Pri : System.Priority) is
pragma Priority(Pri);

end Sporadic;

task body Sporadic is
-- Declarations

begin
-- Initialization code
loop

      Ada.Synchronous_Task_Control.Suspend_Until_True(SO);
-- Non-suspending sporadic response code

end loop;
end Sporadic;

Sp : Sporadic(17);

5.5 Shared Resource Control using Protected Objects

A protected object used to ensure mutually exclusive access to a shared resource, such as global 
data, typically contains only protected subprograms as operations, i.e. no protected entries.  
Protected entries are used only for task synchronization purposes where data exchange is involved.  
A protected procedure should be used when the internal state of the protected data must be altered, 
and a protected function should be used for information retrieval from the protected data, when the 
data remains unchanged.

The Ada Reference Manual states that the use of any form of voluntary-suspension statement 
during the execution of a protected operation is a bounded error [RM 9.5.1 (8)].  The Ravenscar 
Profile requires, via pragma Detect_Blocking, an implementation to detect this error (and hence to 
raise Program_Error exception), other than in the case when suspension is due to execution outside 
of the Ada environment, for example within an underlying operating system call or within 
imported code that is written in another language.

It is essential to choose the correct value for the ceiling priority of the protected object.  By default, 
the value is System.Priority’Last, unless the protected object contains interrupt handlers (see 
below).  The chosen value must be at least as high as the highest priority task that calls one of the 
protected operations.  If this is not the case, the Ada Reference Manual requires Program_Error 
exception to be raised when a task with a priority higher than the ceiling priority makes a call to 
one of the protected operations.  However, if the ceiling value is higher than necessary, there may 
be an increase in the blocking time that high priority tasks will suffer, and consequently a decrease
in the overall schedulability of the system.  Tool support may be available to determine the optimal 
ceiling value when the calling sequences can be statically analysed.
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Example 7, Use of Protected Object for Mutual Exclusion
protected Shared_Data is

function Get return Data;  -- for some global type, Data
procedure Put(D : in Data);

private
pragma Priority(10); -- All callers must have priority no greater than 10

   Current : Data;  -- Shared data declaration
end Shared_Data;

protected body Shared_Data is
function Get return Data is
begin

return Current;
end Get;
procedure Put(D : in Data) is
begin

      Current := D;
end Put;

end Shared_Data;

5.6 Task Synchronization Primitives

Task synchronization, in the form of a wait/signal event model, can be achieved in the Ravenscar 
Profile using either a protected entry or a suspension object, as described above for event-triggered 
tasks.

The suspension object is the optimized form for a simple suspend/resume operation.  The package 
Ada.Synchronous_Task_Control is used to declare a suspension object, and the primitives 
Suspend_Until_True and Set_True are used for the suspend and resume operations respectively.

The use of protected objects with entries for task synchronization is restricted by the Ravenscar 
Profile.  The protected object can have at most one entry declaration; the entry barrier must be a 
simple value that is either a Boolean literal or a Boolean variable that is part of the protected state; 
and at most one task is allowed to wait on the protected entry at any time.  These restrictions 
provide the necessary determinism in knowing which waiting task is serviced first when barriers 
become true, since there can be at most one such task.  This approach is very similar to the 
suspension object approach except that:

• Data can be transferred from signaller to waiter atomically (i.e. without risk of a race 
condition) by use of parameters to the protected operations and additional protected data.

• Additional code can be executed atomically as part of signalling by use of the bodies of the 
protected operations.
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Example 8, Event-Triggered Tasks Suspending on a Protected Entry
protected type Event(Ceiling : System.Priority) is

entry Wait(D : out Data);
procedure Signal(D : in Data);

private
pragma Priority(Ceiling);  -- Ceiling priority defined for each object

   Current : Data;  -- Event data declaration
   Signalled : Boolean := False;
end Event;

protected body Event is
entry Wait(D : out Data) when Signalled is
begin

      D := Current;
      Signalled := False;

end Wait;
procedure Signal(D : in Data) is
begin

      Current := D;
      Signalled := True;

end Signal;
end Event;

Event_Object : Event(15);

task Event_Handler is
pragma Priority(14);  -- i.e. this must be not greater than 15

end Event_Handler;

task body Event_Handler is
-- Declarations, including D of type Data

begin
-- Initialization code
loop

     Event_Object.Wait(D);
-- Non-suspending event handling code

end loop;
end Event_Handler;

5.7 Minimum Separation between Event-Triggered Tasks 

To ensure the timely execution of all tasks in a system it may be necessary to enforce a separation 
between sporadic tasks so that they cannot execute more frequently than some agreed value.  This 
is easily achieved with a delay_until_statement.  Note however that this now introduces a second 
activation event into the code of the task’s outer loop.  In general this can make the task more 
difficult to analyse; but in this example it actually facilitates the analysis by ensuring a minimum 
separation between task activations.
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Example 9, Event-Triggered Task with Minimum Separation
task Event_Handler is

pragma Priority(14);  
end Event_Handler;
task body Event_Handler is

-- Declarations, including D of type Data
   Minimum_Separation : constant Ada.Real_Time.Time_Span :=

-- some appropriate value
   Next : Ada.Real_Time.Time;
begin

-- Initialization code
loop

      Event_Object.Wait(D);
      Next := Ada.Real_Time.Clock + Minimum_Separation;

-- Non-suspending event handling code
delay until Next;  -- this ensures minimum temporal separation

end loop;
end Event_Handler;

5.8 Interrupt Handlers

The code of an interrupt handler will often be used to initiate a response in an event-triggered task.  
This is because the code in the handler itself executes at the hardware interrupt level, and typically 
the major part of the processing of the response to the interrupt is moved into an event response 
task, which executes at a software priority level with interrupts fully enabled.

In Example 8 above, if signalling is to be achieved via an interrupt, then procedure Signal is 
identified as an interrupt handler by pragma Attach_Handler.  This pragma includes an argument 
of type Ada.Interrupts.Interrupt_ID that identifies the interrupt to which the handler applies.  Note 
however that procedure Signal must now be defined as a parameterless procedure so as to match 
the definition of pragma Attach_Handler.

The ceiling priority of a protected object that contains an interrupt handler must be in the range of 
System.Interrupt_Priority.

Example 10, Interrupt Handling via a Protected Entry
protected Interrupt_Event is

entry Wait(D : out Data);
procedure Signal;  -- Must be parameterless

private
pragma Attach_Handler(Signal, <interrupt_id> );
pragma Interrupt_Priority(System.Interrupt_Priority’Last);

-- Wait and Signal will execute with full interrupt lockout
   Current : Data;  -- Event data declaration
   Signalled : Boolean := False;
end Interrupt_Event;

protected body Interrupt_Event is -– similar to the code in Example 8
-- except that the setting of Current is obtained via a register during
-- the execution of Signal rather than as an in parameter

5.9 Catering for Entries with Multiple Callers 

In this and the following three sections we illustrate how to cater for situations that appear to need 
more functionality than provided by Ravenscar.  In doing this we are not attempting to say that 
Ravenscar will deal with all situations that full Ada covers.  The tasking features of Ada represent 
a powerful set of abstractions for programming concurrent and real-time systems.  To gain 
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predictability and efficiency Ravenscar has had to drop many of these features, and it is not 
appropriate to try and reintroduce them via a combination of programming tricks and conventions.  
However there are some situations in which a requirement in just part of a program seems outside 
of the Profile’s definition.  These can often be catered for by straightforward techniques that 
benefit from the other restrictions of Ravenscar.

Here we focus on the requirement for two (or more) tasks to call the same entry of some protected 
object.  As an illustration, consider a situation in which a series of tasks create work items, while 
others consume them.  If more than 10 (say) outstanding items ever accumulate then the two 
separate event-triggered tasks must be released.  An atomicity requirement is that the two tasks are 
only released if both are available and only when new work items are created.

A non Ravenscar Example
protected Controller is

entry Overload;  -- called by two tasks
procedure Create; 
procedure Consume; 

private
   Work_Items : Integer := 0;

Released : Boolean := False;
end Controller;

protected body Controller is
entry Overload when Released is
begin
 if Overload’Count = 0 then –- barrier is closed when both tasks have left

     Released := False;
end if;
end Overload; 
procedure Create is
begin

      Work_Items := Work_Items + 1;
      Released := (Work_Items > 10 and Overload’Count = 2);

-- barrier is opened when more than 10 items and both tasks are waiting
end Create;
procedure Consume is
begin

      Work_Items := Work_Items – 1;
end Consume;

end Controller;

In Ravenscar two Controller protected objects are needed, one for each task.  To get the required 
atomicity the second Controller must be called from the first.
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Example 11, Using Multiple Protected Objects to Mimic an Entry Queue
protected First_Controller is

entry Overload;  -- called by one task
procedure Check_Called(OK : out Boolean); 

private
   Released : Boolean := False;
end First_Controller;

protected body First_Controller is
entry Overload when Released is
begin

      Released := False; -- barrier set to False once task has been released
end Overload; 
procedure Check_Called(OK : out Boolean) is
begin

      Released := (Overload’Count = 1);
      OK := Released; -- returns True if task waiting

end Check_Called;
end First_Controller;

protected Second_Controller is
entry Overload;  -- called by the other task
procedure Create; 
procedure Consume; 

private
   Work_Items : Integer := 0;
   Released : Boolean := False;
end Second_Controller;

protected body Second_Controller is
entry Overload when Released is
begin

      Released := False; -- barrier set to False once task has been released
end Overload; 
procedure Create is
begin

      Work_Items := Work_Items + 1;
 if Work_Items > 10 and Overload’Count = 1 then

         First_Controller.Check_Called(Released);
end if;  -- if Released is true then the first task has been released

-- and the second one must also be released
end Create;
procedure Consume is
begin

      Work_Items := Work_Items – 1;
end Consume;

end Second_Controller;

Note that once a task calls an entry then, in Ravenscar, it cannot cancel the call hence the above 
algorithm is safe.  In the full language task calls can be cancelled and therefore the above approach 
would not be guaranteed to work.

5.10 Catering for Protected Objects with more than one Entry

To illustrate the way a two entry protected object can be transformed, consider the standard buffer 
with one task calling the buffer to extract an item and another task calling it to place items in the 
buffer.  Usually both of these calls must be made via entries in a protected object as the extract call 
must block if the buffer is empty, and the place call must block if the buffer is full.  To comply 
with the Ravenscar restriction of only one entry in any protected object, a protected object is used 
for mutual exclusion only and two suspension objects are introduced for the necessary conditional 
synchronization.
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Example 12, A Bounded Buffer Example In Ravenscar
package Buffer is

procedure Place_Item(Item : Some_Type); 
procedure Extract_Item(Item : out Some_Type); 

end Buffer;

package body Buffer is
protected Buff is

procedure Place(Item    : in Some_Type;
                      Success : out Boolean); 

procedure Extract(Item    : out Some_Type;
                      Success : out Boolean); 

private
      Buffer_Full : Boolean := False;
      Buffer_Empty : Boolean := True;

-- other declarations
end Buff; 

   Non_Full, Non_Empty : Ada.Synchronous_Task_Control.Suspension_Object;

procedure Place_Item(Item : Some_Type) is
      OK : Boolean;

begin
      Buff.Place(Item, OK);

 if not OK then
         Ada.Synchronous_Task_Control.Suspend_Until_True(Non_Full);

-- note this is a task activation event
         Buff.Place(Item, OK); -- OK must be true

end if;
      Ada.Synchronous_Task_Control.Set_True(Non_Empty);

end Place_Item;

procedure Extract_Item(Item : out Some_Type) is
      OK : Boolean;

begin
      Buff.Extract(Item, OK);

 if not OK then
         Ada.Synchronous_Task_Control.Suspend_Until_True(Non_Empty);

-- note this is a task activation event
         Buff.Extract(Item, OK); -- OK must be true

end if;
      Ada.Synchronous_Task_Control.Set_True(Non_Full);

end Extract_Item;

        protected body Buff is
procedure Place(Item    : in Some_Type;

 Success : out Boolean) is
begin

         Success := not Buffer_Full;
 if not Buffer_Full then

-- put Item into Buffer
            Buffer_Empty := False;

-- set Buffer_Full if appropriate
end if;

end Place;
procedure Extract(Item   : out Some_Type;

                        Success: out Boolean) ) is
begin

         Success := not Buffer_Empty;
 if not Buffer_Empty then

-- extract Item from Buffer
            Buffer_Full := False;

-- set Buffer_Empty if appropriate
end if;

end Extract;
end Buff; 

end Buffer;
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5.11 Programming Timeouts

There may be situations where a call to a protected object's entry should be retracted after a period 
of time if the event that should release it has not occurred.  In full Ada this would be:

select
   PO.Call;
   Timeout := False;
or

delay until Some_Time;
   Timeout := True;
end select;

Identical functionality can be achieved in Ravenscar by the use of an extra task that is event-
triggered and a protected object that is used to pass the timeout value to this task.  This is 
illustrated below; note the expansion in code needed to accommodate this effect.  The full 
language clearly has significant superior expressive power in this, and other, areas.

Example 13, Programming Timeouts in Ravenscar
protected PO is

entry Call(Timeout : out Boolean);
procedure Used_To_Release_Call;
procedure Too_Late; 

private
   Timed_Out : Boolean := False;
   Release : Boolean := False;
end PO;

protected body PO is
procedure Too_Late is
begin

 if Call’Count = 1 then
         Timed_Out := True;
         Release := True;

end if;
end Too_Late; 
procedure Used_To_Release_Call is
begin

      Timed_Out := False;
      Release := True;

end Used_To_Release_Call;
entry Call(Timeout : out Boolean) when Release is
begin

      Timeout := Timed_Out;
      Release := False;

-- further non-suspending code if necessary
end Call;

end PO;

cont…
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Example 13, Programming Timeouts in Ravenscar continued
protected Timer_Control is

entry Wait(Wait_Time : out Ada.Real_Time.Time);
procedure Set_Time(Wait_Time : Ada.Real_Time.Time);

private
   Timeout : Ada.Real_Time.Time;
   Released : Boolean := False;
end Timer_Control;

protected body Timer_Control is
entry Wait(Wait_Time : out Ada.Real_Time.Time) when Released is
begin

      Wait_Time := Timeout;
      Released := False;

end Wait;
procedure Set_Time(Wait_Time : Ada.Real_Time.Time) is
begin

      Timeout := Wait_Time;
   Released := True;
end Set_Time;

end Timer_Control;

task Timer; -- note this task has more than one activation event

task body Timer is
   T : Ada.Real_Time.Time;
begin

loop
      Timer_Control.Wait(T);

delay until T;
      PO.Too_Late;

end loop;
end Timer;

-- application calls the following
Timer_Control.Set_Time(Some_Time);
PO.Call(Timeout);

5.12 Further Expansions to the Expressive Power of Ravenscar

If static timing analysis is not of interest to the application program and a more general model of 
tasks and interrupts is required, this can still be achieved with reasonable expressive power within 
the subset definition.  However, as noted earlier, Ravenscar is not a substitute for the full language 
when that level of expressive power is needed.

• Dynamic creation and termination of tasks can be simulated by declaring a pool of event-
triggered tasks at program start-up, each containing an infinite loop which has a suspending 
operation as its first statement, such that its execution can be invoked dynamically by one of 
the task synchronization primitives.  Thus, by changing the settings of suspension objects 
and entry barriers, it is possible for certain tasks to have their execution disabled whilst 
others have execution enabled.

• Dynamic exchange of interrupt handlers, often required for applications performing mode 
change, can be simulated by embodying all the different handling code for a particular 
interrupt in one interrupt handler protected procedure, with each of the different actions 
being coded as case alternatives in a case statement, dependent on a mode selector.  By 
changing the value of the mode selector, the same handler procedure can perform different 
response actions at various times during program execution.

• Dynamic task priority change is also generally associated with mode change.  This can be 
simulated by use of a separate event response task for each mode of operation (and 
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assigning a different priority to each task as required), such that the execution of each task 
that belongs to a dormant mode is suspended until signalled when its mode becomes active.

• A similar effect to requeue can be achieved by completing the protected entry body and 
returning a status result to the caller, which can then emit a subsequent protected entry call 
to the intended destination of the requeue statement.  If each protected entry is called only 
by a single task, then this alternative technique does not introduce any race conditions.

Similarly if static timing analysis is not of interest, the classic non-timed rendezvous operations 
can still be achieved within the subset definition by use of suspension objects for synchronization 
and protected object entries for communication.

Note that no conditional form of suspension is supported by the subset.  This can be simulated if a 
suspension object is used by polling the state of the suspension object (via the Current_State 
function in package Ada.Synchronous_Task_Control), or if a protected entry is used by polling the 
value of the protected data which controls the synchronization (i.e. the barrier Boolean).
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6 Verification of Ravenscar Programs

In chapter 1 the motivation for the Profile was described in terms of the need to verify the temporal  
behaviour of concurrent real-time programs.  In this chapter we give an introduction to the forms 
of verification that can be used with Ravenscar to deliver dependable systems.

The approach to verification in the presence of Ada tasking is similar in many ways to that 
traditionally used for cyclic executives.  Each thread of control is independently verified for 
conformance with its precise/formal specification, for example by performing requirements-based 
testing or by use of static analysis tools on its sequential behaviour.  Then, the program as a whole 
is verified against all its timing constraints.  This latter stage differs from the cyclic executive 
approach in the presence of priority-based preemptive task scheduling in that it can be automated 
by the use of, for example, a Response Time Analysis (RTA) tool to verify that a given task set 
meets its deadlines.  The tool-based approach greatly simplifies the process of verification of 
timing constraints during development, and of re-verification after the system has undergone 
modification during maintenance.

The effects of arbitrary dynamic preemption can be statically analysed by considering all accesses 
to the global state of the program as being volatile, e.g. two successive reads to the same global 
state variable may deliver different values (as for reads of values delivered by an external device).

The core set of Ravenscar Profile run-time system packages can be developed to the most stringent 
software development standards so that these packages are suitable for inclusion in an application 
that requires certification against an applicable standard such as RTCA DO-178B [DO].

In this chapter we look at four levels of verification:

• Static analysis of sequential code

• Static analysis of concurrent code

• Scheduling analysis

• Formal analysis

6.1 Static Analysis of Sequential Code

As discussed in the introduction, Ravenscar is silent about those features of the sequential 
language that should be used with the Profile (apart from requiring no implicit use of the heap).  
Similarly, it is not appropriate here to discuss the forms of static analysis that should be used to 
verify the functional behaviour of each task.  The reader is referred to the ISO Technical Report 
Guide for the use of Ada in high integrity applications [GA].

6.2 Static Analysis of Concurrent Code

The two main goals of applying static analysis techniques to Ravenscar programs are:

• to obtain the same level of proof and data / information flow analysis for concurrent 
programs as is currently achievable for a sequential program;

• to obtain proof of absence of the concurrency-related run-time errors, to supplement the 
proof of absence of run-time errors that is currently achievable for sequential code.
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The concurrency-related run-time errors that apply to Ravenscar programs are described in 
sections 4.2.4 and 4.2.5.

In addition, it is highly desirable if the implementation-defined effect of task termination in the 
presence of the No_Task_Termination restriction can be eliminated.

The remainder of this section addresses various techniques for producing static analysis evidence 
to meet the above goals.  These verification processes are made possible by the following 
assertions about the behaviour of a valid Ravenscar program:

• Each task and interrupt handler execution is deferred until after program elaboration is 
complete.

• Tasks do not terminate.

• All task communication is via protected shared variables (predominantly using protected 
objects).

• All protected shared variables are initialized during library-level elaboration code.

6.2.1 Program-wide Information Flow Analysis

Current technology supports data flow analysis, information flow analysis, and proof based on pre-
and post-conditions and invariants, for sequential code only.  The goal is to extend this to 
Ravenscar programs that include tasks, protected objects and interrupt handlers.

The data dependency information that is currently used to analyse sequential programs can be 
applied to each task and each interrupt handler in the concurrent program as an independent entity.  
Thus the existing tools and techniques can verify each thread of control in isolation, including its 
use of privately accessed global data.  This then leaves only the issue of the verification of the 
interactions between the threads of control as represented by the set of protected shared variables.

The protected shared variables are required to be initialized by the library-level elaboration code in 
order to ensure that uninitialized shared data is not used.  If initialization were instead performed 
during the operation phase, a race condition could be introduced.  For a suspension object, 
initialization is defined by the Ada standard to occur at the point of declaration.  For a protected 
object or an atomic object, all fields should be initialized either as part of object elaboration, or 
using library-level package elaboration code.  In conjunction with the use of pragma
Partition_Elaboration_Policy(Sequential) this ensures that no thread of control can access any 
shared state that has not been fully initialized.

After the initialization phase is complete, the protected shared variables can be modelled for data 
and information flow analysis purposes if we assume that their data is volatile.  Since the data can 
be updated at any time due to the effects of preemption and interrupt occurrence, any specific 
task's view of a protected shared variable must assume that the value may change at any time.  For 
example, two successive reads by a task of a protected shared variable may deliver different results 
and similarly, the value read by a task following a write by the same task cannot be assumed to be 
the written value.  This volatility is the same abstraction as that used to model access to external 
program data, such as that which has an address clause or is an imported variable (via pragma
Import).  Thus, assuming that the static analysis technique supports access to volatile external data, 
concurrent access to protected data can be modelled in the same way.  As a result, each thread of 
control can now be described both in terms of its sequential data and information flow, and in 
terms of its interactions with volatile protected shared variables.
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Having obtained the analysis of each thread of control that includes its interactions with the 
protected state, it is then possible to combine the analyses to form the overall data and information 
flow for the program as a whole, across the task and interrupt handler boundaries.  This allows the 
designer to make assertions about how the entire program should behave in terms of the effect that 
it has on its external inputs (including interrupts) to produce its external outputs. These assertions 
can then be verified by the analysis to the same degree of confidence as is currently achievable in a 
sequential program.

This form of static analysis does not address the timing or ordering properties of the program.  
Later sections in this chapter address these topics by describing the use of RTA and other forms of 
formal analysis, such as model checking, which can prove statically the timing properties of the 
program. 

6.2.2 Absence of Run-time Errors

Existing static analysis techniques can be used to prove absence of run-time errors due to 
language-defined exceptions within sequential code.  The corresponding guidance on the 
sequential code constructs that may be used to achieve this goal is contained in the Technical 
Report [GA].  These techniques can be independently applied to each individual thread of control 
(task, main program or interrupt handler) of a Ravenscar program.

In order to extend these existing techniques to a full Ravenscar program, it is necessary to address 
the various forms of run-time check failure that relate directly to the concurrency features.  These 
can be broken down into the following groups:

• Errors during program elaboration, such as access-before-elaboration or use of uninitialized 
data.

• Errors after program elaboration is complete, during the normal operation phase of the 
application, in particular the exceptions that are cited in sections 4.2.4 and 4.2.5.

• Erroneous behaviour during normal operation, in particular concurrent access to 
unprotected shared variables (see section 4.2.7).

• Implementation-defined behaviour as a result of violation of the No_Task_Termination 
restriction.

The following sub-sections discuss various techniques that can be applied to verify statically that 
these forms of error cannot occur.

Elaboration Errors

Within a sequential program, detection of access before elaboration errors is generally 
straightforward during program development due to the repeatable nature of the elaboration order, 
and the raising of Program_Error exception at the point of failure, causing the program to 
terminate.  Having obtained a correct elaboration order during development, this ordering is 
usually predictable except when a switch to a different compiler vendor, or an upgrade to a new 
product version from the same vendor that uses a different algorithm for any units that have
implementation-defined ordering, is performed.  This implicit order variation can be prevented by 
explicit use of elaboration order pragmas, once a correct order has been established.

Within a concurrent program however, access to global data that is not yet initialized by the 
elaboration code may occur as a result of race conditions that vary between development mode and 
deployment mode, due to factors such as the use of hardware of differing performance or memory 
access times, inclusion or exclusion of checking code, differences in interpretation of priority, 
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scheduling variations etc.  These race conditions are more likely to be present because of the Ada 
rule that a library-level task shall be activated by its master package prior to the execution of that 
master's body elaboration code, and also prior to the execution of the elaboration code of later 
library units in the overall program elaboration order.  Another contributing factor to the race 
condition is that having completed its activation, the Ada task proceeds into its normal execution 
code, and so must be programmed to immediately suspend to prevent this code from executing 
whilst program elaboration is still incomplete.  Similar concerns apply to the execution of interrupt 
handlers after attachment - an interrupt may trigger execution of a handler prior to completion of 
program elaboration, and in this case, the handler cannot be programmed to suspend, of course.  
Such an error may actually occur silently - the task or interrupt handler may read an uninitialized 
value of a shared variable and not cause any exception to be raised, even in the presence of 
pragma Normalize_Scalars.

There are several solutions that can mitigate this hazard statically.  The most obvious one is to 
ensure that all shared variables of a Ravenscar program are initialized at the point of declaration.  
However this is inappropriate in the case when elaboration code in the body is needed to set a 
correct initial value.  Logically, it is highly desirable if we can assert that the dynamic semantics of 
the program are unaffected whether global shared data is initialized at the point of declaration, or 
by library package body elaboration code, assuming a correct elaboration order for the sequential 
elaboration code has been enforced using elaboration control pragmas.

In order to achieve the static guarantee that all library units have been elaborated prior to the 
activation of any task and prior to the invocation of any interrupt handler, the 
Partition_Elaboration_Policy pragma has been approved for the next revision of the Ada standard.  
If this pragma is used with argument Sequential, then all task activation and interrupt handler 
attachment is deferred until after all program elaboration code is complete, i.e. just prior to the call 
of the main subprogram (see also section 4.2.7).

Execution Errors Causing Exceptions

Sections 4.2.4 and 4.2.5 identify the concurrency-related run-time checks that are required of a 
conformant implementation of the Profile.  In the following sub-sections, we examine techniques 
for static elimination of these error conditions.

Max_Entry_Queue_Length and Suspension Object Check

The static detection of absence of entry queue length violation may be achieved by applying 
further constraints on the application code, namely that at most one task object can call each 
protected entry.  This also implies that the task objects, protected objects and protected entries are 
statically identified.  Static identification of an object excludes its name being determined 
dynamically such as via a function result, a dynamic array index, the dereferencing of an access 
value etc.  A less restrictive scheme that shows that there is no program state in which more than 
one task may be calling the same protected object would require more extensive analysis, such as 
the use of model checking (see section 6.4).  The same approach can be applied to the static 
detection of absence of more than one task waiting on each suspension object at any time.

Priority Ceiling Violation Check

The static detection of absence of priority ceiling violation can be achieved assuming the following 
further constraints:

• all task objects and protected objects have a static priority (this may be supplied via a static 
expression of a type discriminant for example);
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• the protected object call chain (including nested protected object calls) that is made by each 
task object and each interrupt handler is statically determinable, by requiring static 
identification of the target protected object in all cases.

Potentially Blocking Operations in a Protected Action

The static detection of absence of execution of a potentially blocking operation within a protected 
action is feasible given the additional constraint on the use of indirect subprogram calls, which 
then allows the call trees to be statically determined.  The presence of any of the following 
constructs in any protected or subprogram body in the call tree that is rooted in a protected 
operation body would then be statically disallowed:

• a protected entry_call_statement;

• a delay_statement;

• a call to Ada.Synchronous_Task_Control.Suspend_Until_True;

• a call to any other language-defined subprogram that is defined to be potentially blocking 
[RM 9.5.1 (8-16)].

In addition, the determination of the call trees would enable static detection of an external 
subprogram call with the same target protected object as that of the protected action, assuming the 
restriction that the target protected object is always statically identified.

A slightly less restrictive scheme may be possible that uses formal verification methods such as 
model checking (see section 6.4) to determine if a program state exists such that a protected action 
would cause execution of a potentially blocking operation (which may be within conditionally-
executed code, although this style is not recommended).

It may also be possible to support detection of potentially blocking operations in the presence of 
indirect procedure calls if a pre-condition that specifies a non-blocking property is asserted prior to 
each indirect call, and that property is shown to be satisfied statically by all possible procedures 
that can be invoked by that call.  Similarly, the check for circularity in the protected object call 
chain may be possible even in the case of non-statically identified protected objects, by imposing a 
pre-condition that none of the potentially called protected objects invoke operations of any 
protected objects that are higher in the call chain.

Task Termination

The Ravenscar Profile defines a static task set and prohibits dynamic task creation.  The intent is 
that all tasks are created during program start-up, but in any mode of operation, some of them may 
be dormant, waiting on a synchronization event.  A task that is no longer required to be executed 
would wait on its event indefinitely.  In this model, task termination is considered to be an error 
case and hence the restriction No_Task_Termination is required by the Profile.  The effect of 
violation of the No_Task_Termination restriction is implementation-defined.

Task termination within the restrictions of the Profile can occur only as a result of normal exit 
from the task body, or as a result of an unhandled exception.

• The case of avoidance of normal exit can be statically analysed if a coding restriction is 
placed on the task body code - the final statement must either be an infinite loop or else be a 
compound statement (such as a conditional or case statement) that can only cause an infinite 
loop to be executed.
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• The case of showing absence of exceptions by static analysis has already been covered in 
section 4.2.6 and in the sub-sections above.

The combination of these two techniques can be used to ensure statically that task termination 
cannot occur, and hence also that no implementation-defined behaviour that results from task 
termination can be invoked.

Use of Unprotected Shared Variables

The intent of the Profile is that tasks and interrupt handlers should not make concurrent use of an 
unprotected shared variable - all interactions involving tasks or interrupt handlers are 
recommended to be via protected and atomic objects, where an atomic object is either a suspension 
object or one that has pragma Atomic applied to it or its type.  The avoidance of unprotected 
shared variables is generally a requirement of high integrity systems, although detection of this 
erroneous case is not mandated by the Ravenscar Profile definition.

The static detection of absence of unprotected shared variables can be achieved assuming the 
restriction that the use of all global variables of unprotected type by each task object and by each 
interrupt handler is statically identifiable.  All global objects that are either of a protected type or 
an atomic type may be safely shared, and so no static identification is required for these.  Static 
verification can then ensure that no unprotected global variable is accessed by more than one 
thread of control.

Note that if a task object or interrupt handler shares global data only with program elaboration 
code, i.e. the elaboration code initializes global data that is subsequently privately used by a single 
task or interrupt handler, then this data does not need to be protected if the 
Partition_Elaboration_Policy pragma is used with the argument Sequential, since this pragma 
ensures that the elaboration is complete prior to any task execution or interrupt attachment (and 
hence there can be no sharing violation).

6.3 Scheduling Analysis

The use of scheduling theory was noted in Chapter 1, here we provide more details on the 
procedure to be followed.  The aim is to introduce the form this analysis takes as it is not 
appropriate within this report to give a full tutorial on this material; such material can be found in 
text books (for example [9] and [10]).  Ravenscar facilitates the use of these techniques as it 
supports priority-based dispatching and ceiling locking on protected objects.  But, to apply these 
techniques, further constraints on application code must be made.  All tasks must have a single 
invocation event and allow other parameters to be analysed or measured – see below.

In this section priority assignment is considered first, then two forms of analysis are introduced: 
Rate Monotonic Analysis and Response Time Analysis.

6.3.1 Priority Assignment

The use of priority-based preemptive dispatching defines a mechanism for scheduling.  The 
scheduling policy is defined by the mapping of tasks to priority values.  Many different schemes 
exist depending on the temporal characteristics of the task and other factors such as criticality.  For 
hard deadline tasks it is usually assumed that the following three parameters are known:

T – Period;  time interval between consecutive arrivals of the task
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D – Deadline; required latest completion time for the task (relative to its arrival)

C – Computation time; worst case execution time needed for the task to complete one 
activation.

For periodic tasks, T is the time interval between releases.  For sporadic tasks, T is the minimum 
inter-arrival time for the event that releases the task.  The three parameters (T,D,C) are always 
given in the same time units.  So (30ms, 20ms, 2.73ms) defines a task that (at maximum) is 
released every 30ms; must complete within 20ms; and that has a maximum computation time of 
2.73ms.  These latter values are obtained either by measurement or by some form of static timing 
analysis (or a combination of the two).

If all tasks are hard and criticality itself is not taken into account (because we require all tasks to 
always meet their deadline) then there is an optimal algorithm for assigning priority if D <= T for 
all tasks.  By optimal we mean that the algorithm is as good as any other fixed priority scheme.  
The optimal algorithm is called Deadline Monotonic and simply assigns priority based on deadline 
– the shorter the deadline the higher the priority.  In the special case when D = T for all tasks this 
scheme is known as Rate Monotonic.

An important property of fixed priority dispatching is that the lower priority tasks are the most 
vulnerable to missing a deadline if there is a run-time problem such as a task executing for more 
than its assumed maximum C.  Because of this property the systems designer may wish to place 
the highly critical tasks at higher priorities than the Deadline Monotonic scheme would advise.  
This may reduce schedulability but is perfectly valid and is amenable to Response Time Analysis 
(see below).

Another reason to raise a task priority is to reduce jitter on input and/or output actions.  Higher 
priority tasks have a more regular execution pattern and hence important events such as reading a 
sensor or writing to an actuator will occur with less variation from one period to the next.  
Scheduling analysis will only ensure that a task completes somewhere between its release and its 
deadline.  One way of reducing jitter is thus to reduce the deadline of the tasks that perform jitter-
sensitive I/O.  If this is done then the Deadline Monotonic priority assignment scheme will 
automatically allocate a higher priority.

Most scheduling schemes assume that each task is assigned a unique priority.  Any Ada runtime 
for Ravenscar will support at least 32 priorities (and may indeed support many more).  Although 
maximum schedulability does require distinct priorities for the tasks, it is unusual for an 
application to be so close to being unschedulable that it requires these unique priorities.  Response 
Time Analysis can again deal with shared priority values.  It should also be noted that that some 
real-time kernels can exploit the knowledge that tasks share priority to reduce the memory 
requirement.  This is achieved by noting that two (or more) tasks that share a priority level never 
execute at the same time and hence can ‘share’ a task stack.

Once a priority map has been agreed for the set of tasks within the application the priorities for the 
protected objects can be assigned systematically.

6.3.2 Rate Monotonic Utilization-based Analysis

For a constrained set of temporal characteristics there exists a very simple schedulability test that 
quickly verifies if all deadlines will always be met.  The constraints are that D=T for all tasks, and 
that priorities are assigned using the Rate Monotonic scheme.  In practice this means that all tasks 
are hard and periodic.  Each task must finish before its next release and there is no additional 
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requirement to control jitter.  If we assume, initially, that the program does not contain protected 
objects (i.e. all tasks execute independently) then the schedulability test is simply a matter of 
checking the utilization of the task set.  For each task the fraction of a complete processor it needs 
is given by C/T.  If this is summed across all tasks this gives the total utilization of the application.  
Clearly this value must not be more than 1.0 or the system is never going to be schedulable.  The 
actual upper bound (which is less than 1.0) is given by the following formula which is a function 
of n, the number of tasks in the system.
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As n gets arbitrarily large, this expression converges on a single value.  This is the famous ‘Rate 
Monotonic’ result, which says that a utilization of less than 0.69 will always furnish a schedulable 
system.

Once protected objects (POs) are introduced, blocking can occur.  Here a task when released can 
be prevented from executing by the currently executing ‘low’ priority task running with a ‘high’ 
ceiling value while in a PO.  For each task, the maximum blocking time, B, can be calculated.  
This is the maximum time a lower priority task can be executing with a priority equal or higher 
than the task currently under consideration.  As noted in Chapter 1, the use of Immediate Priority 
Ceiling Protocol (IPCP) on POs does reduce blocking to its minimum value.  The utilization test is 
now augmented with the result that each task must be examined in turn; so for task j:
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Note the blocking term for the lowest priority task is 0 as it cannot suffer blocking.

The simplicity of the utilization-based test makes it a very attractive one to use.  But remember, it 
is for the constrained set of task characteristics.  Moreover, it is a necessary but not sufficient test.  
If the application passes the test all timing constraints will be met.  But if it fails the test it may still 
be schedulable.  A better test is needed in these circumstances.  The following is one such
example.

6.3.3 Response Time Analysis

Response time analysis is a general technique.  It will deal with any priority assignment scheme 
and any relationship between D and T, (although its simple form requires D<=T).  Moreover, it is a 
necessary and sufficient scheme for most situations.  Like the utilization-based method it is easily 
incorporated into tools – many of which already exist.

The form of the analysis is quite straightforward.  Firstly, the worst-case (longest) completion time 
for each task is calculated.  This is known as the task response time, R.  Secondly, these R values 
are compared, trivially, with the deadlines to make sure that R is less than D for all tasks.  The 
response time equation is as follows (the hp function delivers the set of task with priority higher 
than task i):
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As ceiling functions are used, the unit for time is chosen so that all parameters are represented as 
integers. 

The equation is solved by forming a recurrence relation:
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The initial value of the iteration variable is the task’s computation time.  Iteration continues until 
either the same value is obtained on two successive iterations (in which case the response time has 
been calculated) or the value rises higher than the task’s deadline (in which case the task is not 
schedulable).

The above description represents the ‘textbook’ version of the analysis.  The engineering version 
requires extra terms to capture the overhead of actual implementation.  Firstly, overheads such as 
context switches can be assigned to the task that caused them (by incorporating them into the C 
parameter).  Next, the kernel overheads associated with manipulating the delay queue, handling 
clock interrupts and the releasing of tasks must be factored in.  The specific form this takes will 
depend on the structure of the kernel – but the kernel must provide the data needed to model this 
overhead.  This is a documentation requirement specified in the Real-Time Annex which is 
discussed further in the following section.  For an example on how to include this term in the 
analysis see the textbooks [9] and [10].  Finally, the overheads incurred by the application’s 
interrupts must be accounted for.  We must know a bound on the arrival of such interrupts, and the 
execution time of each attached handler must be known.  Putting these values together allows a set 
of interrupt overhead terms to be included in the Response Time Analysis.

The appropriate use of the Ravenscar Profile and the scheduling results outlined in the previous 
three sections provide a sound engineering basis for constructing high integrity real-time systems.  
The theory is mature and tool support is available.

6.3.4 Documentation Requirement on Run-time Overhead Parameters

There are a number of places in the Reference Manual where documentation requirements and 
metrics are required of an implementation.  Those of most relevance to Ravenscar are:

• C.1 (12 - 20) concerning the interrupt model

• C.3.1 (15,16) concerning overheads of interrupts

• D.2.2 (14 - 16) concerning maximum duration of priority inversion

• D.8 (33 - 45) concerning clock accuracy

• D.9 (8, 11, 13) concerning precision of delay until

• D12 (6) concerning interrupt blocking

• D.12 (7) concerning overhead involved with the use of protected objects

Unfortunately, this is not a comprehensive list of the data needed to fully model the overheads 
caused by the run-time system.  Typically also needed are:

• Cost of context switches between tasks

• Cost of handling delay queue operations
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Both of these factors may, depending on the implementation of queues with the run-time system, 
depend on the number of tasks in the application's program.  Nevertheless, if timing analysis is to 
be used on a Ravenscar program it is necessary to have one of the following:

• Evidence of all necessary parameters

• A means by which the programmer can measure these parameters

• Formulae by which these parameters can be calculated.

6.4 Formal Analysis of Ravenscar Programs

The Ravenscar profile supports only a simple concurrency model with the error conditions being 
relatively easy to avoid.  For example, the use of shared resources (via projected objects with 
ceiling priorities) cannot lead to deadlock.  Nevertheless, to gain a very high level of assurance it
may be necessary to formally analyse a Ravenscar program.  As outlined in Section 2.4, such 
analysis takes the form of either mechanized proof (via a theorem prover) or model checking.

There is already experience of using model checking to validate Ravenscar programs.  It is 
possible to add worst-case and best-case execution times for state transitions and to then check that 
deadlines are never missed.  Alternatively, model checking can be used to validate the top-level 
description of the timing constraints – leaving scheduling analysis to check deadline satisfaction 
once execution times from the implementation are known.  Typical of the verification that can be 
achieved with this approach is to check some end-to-end deadline through a number of tasks 
assuming each task itself meets its timing requirements.  Each task is represented by an automaton 
and each protected object by a shared variable (there are no problems with mutual exclusion in 
these formal models). 

As with Ada itself, there can never be a formal map between a Ravenscar program and its model.  
However, the use of standard paradigms and libraries of associated (reusable) models allows a high 
integrity process to be defined.

This demonstrates that formal approach can be applied effectively to Ravenscar programs, but this 
does not imply that all high integrity Ravenscar programs need this level of verification.  For many 
systems, static analysis of each task will be sufficient to generate the appropriate level of 
confidence.
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7 Extended Example

The example presented in this chapter is designed to illustrate the expressive power of the 
Ravenscar Profile and the associated coding paradigms that aim to facilitate off-line scheduling 
analysis.

The example uses all of the concurrency components permitted by the Profile.  The structure of the 
example system models, on a reduced and simplified scale, the operation of real-world embedded 
real-time systems.  The presentation of the example also outlines the information required for, and 
obtained from, the execution of deadline monotonic priority assignment and off-line scheduling 
analysis.

7.1 A Ravenscar Application Example

The system in question includes a periodic process that handles orders for a variable amount of 
workload.  Whenever the request level exceeds a certain threshold, the periodic process farms the 
excess load out to a supporting sporadic process.  While such orders are executed, the system may 
receive interrupt requests from an external source.  Each interrupt treatment records an entry in an 
activation log.  When specific conditions hold, the periodic process releases a further sporadic 
process to perform a check on the interrupt activation entries recorded in the intervening period.  
The policy of work delegation adopted by the system allows the periodic process to constantly 
ensure the discharge of a guaranteed level of workload.  The correct implementation of this policy 
also requires that the periodic process is given a higher priority than those assigned to the sporadic 
processes, so that guaranteed work can be performed in preference to subsidiary activities.

Figure 1, overleaf, shows an HRT-HOOD [11] like representation of the system, while the legend, 
in figure 1b, recalls the meaning of the symbols and notations used in the diagram.

In HRT-HOOD terms, the system comprises:

• 4 active (i.e. threaded) objects respectively called: Regular_Producer, On_Call_Producer, 
Activation_Log_Reader, External_Event_Server;

• 1 passive (i.e. unthreaded) object called Production_Workload;

• 3 protected objects respectively called: Request_Buffer, Event_Queue, Activation_Log
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Figure 1: Schematic architecture of the example Ravenscar application.

Figure 1b: Legend for the symbols and notations in figure 1.

The operation of the system proceeds as follows:

• Regular_Producer, which figure 1 tags as Cyclic, embeds a fixed-rate periodic task that 
carries out a given amount of workload.  The example represents the execution of this 
workload by the invocation of the well-known Small_Whetstone procedure exported by the 
shared Passive object Production_Workload.
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• When Regular_Producer determines that the required amount of workload exceeds its 
ceiling capacity, it delegates the excess workload out to On_Call_Producer.  
On_Call_Producer, which figure 1 tags as Sporadic, embeds a sporadic task whose 
activation is specifically invoked to take over the excess workload of Regular_Producer.

• The sporadic activation and the associated workload transfer occur by means of a typical 
Ravenscar data-oriented synchronization: Regular_Producer invokes the Start operation 
exported by On_Call_Producer with a parameter characterising the service request.  The 
Start operation enqueues the request in a private queue embedded within the Protected 
object Request_Buffer.  We need to protect the buffer because we allow new service 
requests to come in while the sporadic task is busy executing old ones.  This follows from 
the decision to assign Regular_Producer a higher base priority than that of 
On_Call_Producer, which we opted for to ensure the discharge of a guaranteed level of 
workload in preference to the execution of subsidiary activities.

• A successful enqueueing releases the On_Call_Producer sporadic task, which indefinitely 
waits on an empty queue.  The sporadic task fetches the request parameter from the top of 
the queue and performs the requested amount of workload in the same way as 
Regular_Producer.  An invocation of Start fails when the queue held within Request_Buffer 
is full; for example, as a result of a (transient) rate of requests faster than service execution.  
Static analysis of the relationship between the maximum frequency of activation requests 
and the longest service time incurred by the sporadic task of On_Call_Producer should be 
used to prevent failure events of this kind.

• While the system carries out the required level of workload (whether regular or excess), an 
external device may occasionally raise an interrupt to signal its call for attention.  In 
keeping with the Ravenscar programming model, the example application maps the arrival 
of the external interrupt to the invocation of a protected procedure.  Object Event_Queue 
exports the procedure in question, which we call Signal.

• The service associated with the raising of the interrupt is carried out by the sporadic task 
embedded in External_Event_Server, which is tagged Interrupt-activated sporadic.  To 
simplify the coding of the example, and in keeping with the programming model that 
minimizes the amount of activity performed at interrupt priority, we have limited the extent 
of this interrupt service to the storing of an activation record in a protected buffer.  The 
recording occurs by invocation of procedure Write exported by Protected object 
Activation_Log.  The use of a protected buffer to hold the activation record offers the 
natural mechanism to preserve data integrity in the face of independent read and write 
activities.

• In order for the system to monitor the arrival of service requests from the external device, 
when certain conditions hold, the periodic process embedded in Regular_Producer requests 
the task embedded in the Sporadic object Activation_Log_Reader to examine the latest 
activation record stored by the interrupt service carried out by External_Event_Server.  
Activation_Log_Reader does this by invoking the Read procedure of Activation_Log.  This 
style of work partitioning between Regular_Producer and Activation_Log_Reader uses the 
Ravenscar concurrency mechanisms to allocate activities with differing degrees of 
importance to distinct tasks.  This approach aids system modelling.  It also favours the 
specialization of Ravenscar tasks, which is a way of using the Profile definition to facilitate 
static analysis of the system.

• The activation request issued by Regular_Producer for this purpose uses the other form of 
synchronization permitted by the Ravenscar Profile: the data-less synchronization supported 
by suspension objects.  Procedure Signal exported by Activation_Log_Reader performs this 
synchronization on a suspension object internally held by the object.  As HRT-HOOD 
provides no specific object representation for suspension objects, we have used the 
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convention that procedures by the name Signal exported by Sporadic objects be understood 
as implemented by invocation of a private suspension object embedded within the object.  
Conversely, procedures by the name Start exported by Sporadic objects are implemented by 
invocation of the Deposit procedure exported by an associated Protected object.  (Note that 
Signal is also the name of the protected procedure attached to an interrupt, which dispatches 
the activation event to Interrupt-activated sporadic objects.)

7.2 Code

The Ravenscar Profile model does not inherently require the application to use any particular 
coding style for the execution of cyclic and sporadic tasks, protected objects, and interrupt 
handlers.  However, if the application is required to perform schedulability analysis, certain task 
templates (patterns or stereotypes) and corresponding coding styles are useful in defining the 
activities that are to be analysed.  These task templates were described in Chapter 5 and are used to 
code the example application outlined above.

Note that, in order to emphasise the stereotype nature of the task templates in the example, we 
have relegated all the parametric components of the application code into support packages named 
with “_Parameters” trailer added to the name of the corresponding base package.  (The code of 
these support packages is provided in the closing section of this example.) 

The Ravenscar-compliant HRT-HOOD coding convention has individual terminal objects in the 
system implemented as distinct library-level packages that carry the name of the corresponding 
object.  An HRT-HOOD terminal object is one that cannot be further decomposed and therefore 
contains at most one type of primitive Ravenscar concurrency component.  As each package, 
associated with a terminal object, by definition contains a single task or protected object, the 
corresponding entity carries the name of the enclosing package (and thus of the corresponding 
object).
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Cyclic Task

The example uses one cyclic task, named Regular_Producer, the code of which is shown below.  
The non-suspending operation of Regular_Producer and its supporting definitions are defined in 
the Regular_Producer_Parameters package shown at the end of this section.

Regular_Producer
with Regular_Producer_Parameters;
package Regular_Producer is

task Regular_Producer is
-- assigned by deadline monotonic analysis
pragma Priority(Regular_Producer_Parameters.Regular_Producer_Priority); 

end Regular_Producer;
end Regular_Producer;

with Regular_Producer_Parameters;
with Ada.Real_Time;
with Activation_Manager;
package body Regular_Producer is
   Period : constant Ada.Real_Time.Time_Span := 
        Ada.Real Time.Milliseconds
        (Regular_Producer_Parameters.Regular_Producer_Period);

task body Regular_Producer is
 use Ada.Real_Time;
-- for periodic suspension

      Next_Time : Ada.Real_Time.Time;
begin

-- for tasks to achieve simultaneous activation
      Activation_Manager.Synchronize_Activation_Cyclic(Next Time);

loop
         Next_Time := Next_Time + Period;

-- non-suspending operation code
         Regular_Producer_Parameters.Regular_Producer_Operation;

-- time-based activation event
delay until Next_Time; -- delay statement at end of loop

end loop;
exception

when others =>
-- last rites: we leave it to "null" for the sake of simplicity
null;

end Regular_Producer;
end Regular_Producer;

Event-response (Sporadic) Tasks 

The example application includes three sporadic tasks, one per type of sporadic activation 
permitted by the profile: the activation of On_Call_Producer uses a protected object with a 
suspending entry; the activation of Activation_Log_Reader uses a suspension object; and the 
activation of External_Event_Server uses a protected object with a suspending entry attached to an 
interrupt.  We first look at the code of the respective sporadic tasks and then turn our attention to 
the corresponding synchronization objects.

The non-suspending operation of On_Call_Producer and its supporting definitions are defined in 
the On_Call_Producer_Parameters package shown at the end of this section.
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On_Call_Producer
with On_Call_Producer_Parameters;
package On_Call_Producer is

-- non-suspending operation with queuing of data
function Start(Activation_Parameter : Positive) return Boolean;
task On_Call_Producer is

-- assigned by deadline monotonic analysis
pragma Priority(On_Call_Producer_Parameters.On_Call_Producer Priority);

end On_Call_Producer;
end On_Call_Producer;

with Request_Buffer;
with Activation_Manager;
package body On_Call_Producer is

-- to hide the implementation of the event buffer
function Start(Activation_Parameter : Positive) return Boolean is
begin

return Request_Buffer.Deposit(Activation_Parameter);
end Start;
task body On_Call_Producer is

      Current_Workload : Positive;
begin

-- for tasks to achieve simultaneous activation
      Activation_Manager.Activation_Sporadic;

loop
-- suspending request for activation event with data exchange

         Current_Workload := Request_Buffer.Extract;
-- non-suspending operation code 
 On_Call_Producer_Parameters.On_Call_Producer_Operation 

                                                          (Current_Workload);
end loop;

exception
when others =>

-- last rites
null;

end On_Call_Producer;
end On_Call_Producer;

The non-suspending operation of Activation_Log_Reader and its supporting definitions are 
defined in the Activation_Log_Reader_Parameters package shown at the end of this section.
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Activation_Log_Reader
with Activation_Log_Reader_Parameters;
package Activation_Log_Reader is

-- non-suspending parameterless operation 
--+ with no queuing of activation requests
procedure Signal;
task Activation_Log_Reader is

-- assigned by deadline monotonic analysis
pragma Priority
      (Activation_Log_Reader_Parameters.Activation_Log_Reader_Priority);
end Activation_Log_Reader;

end Activation_Log_Reader;

with Ada.Synchronous_Task_Control;
with Activation_Manager;
package body Activation_Log_Reader is
   Local_Suspension_Object : Ada.Synchronous_Task_Control.Suspension_Object;

procedure Signal is
begin

      Ada.Synchronous_Task_Control.Set_True(Local_Suspension_Object);
end Signal;
procedure Wait is
begin

      Ada.Synchronous_Task_Control.Suspend_Until_True
                                              (Local_Suspension_Object);

end Wait;
task body Activation_Log_Reader is
begin

-- for tasks to achieve simultaneous activation
      Activation_Manager.Activation_Sporadic;

loop
-- suspending parameterless request of activation event

         Wait;
-- non-suspending operation code

         Activation_Log_Reader_Parameters.Activation_Log_Reader_Operation;
end loop;

exception
when others =>

-- last rites
null;

end Activation_Log_Reader;
end Activation_Log_Reader;

The non-suspending operation of External_Event_Server and its supporting definitions are defined 
in the External_Event_Server_Parameters package shown at the end of this section.
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External_Event_Server
with External_Event_Server_Parameters;
package External_Event_Server is

task External_Event_Server is
pragma Priority

           (External_Event_Server_Parameters.External_Event_Server_Priority);
end External_Event_Server;

end External_Event_Server;

with Event_Queue;
with System;
with Activation_Manager;
package body External_Event_Server is

procedure Wait renames Event_Queue.Handler.Wait;
task body External_Event_Server is
begin

-- for tasks to achieve simultaneous activation
      Activation_Manager.Activation_Sporadic;

loop
-- suspending request for external activation event

         Wait;
-- non-suspending operation code

         External_Event_Server_Parameters.Server_Operation;
end loop;

exception
when others =>

-- last rites
null;

end External_Event_Server;
end External_Event_Server;

Shared Resource Control Protected Object

The example application uses one protected object, named Activation_Log, to control access to a 
shared resource.  The auxiliary package Activation_Log_Parameters shown at the end of this 
section defines all the parameters that characterize the activity of Activation_Log.
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Activation_Log
with Activation_Log_Parameters;
with Ada.Real_Time;
package Activation_Log is

type Range_Counter is mod 100;
protected Activation_Log is

-- must be ceiling of users' priority 
pragma Priority(Activation_Log_Parameters.Activation_Log_Priority);
-- records interrupt service activation: non-suspending operation
procedure Write;
-- retrieves the last activation record: non-suspending operation
procedure Read

           (Last_Activation  : out Range_Counter;
            Last_Active_Time : out Ada.Real_Time.Time);

private
      Activation_Counter : Range_Counter := 0;
      Activation_Time : Ada.Real_Time.Time;

end Activation_Log;
procedure Write renames Activation_Log.Write;
procedure Read

        (Last_Activation  : out Range_Counter;
         Last_Active_Time : out Ada.Real_Time.Time)

renames Activation_Log.Read;
end Activation_Log;

package body Activation_Log is
protected body Activation_Log is

procedure Write is
begin

         Activation_Counter := Activation_Counter + 1;
         Activation_Time := Ada.Real_Time.Clock;

end Write;
procedure Read(Last_Activation  : out Range_Counter;

                     Last_Active_Time : out Ada.Real_Time.Time) is
begin

         Last_Activation := Activation_Counter;
     Last_Active_Time := Activation_Time;

end Read;
end Activation_Log;

end Activation_Log;

Task Synchronization Primitives

The suspension object is the optimized form for a simple suspend/resume operation.  The package 
Ada.Synchronous_Task_Control is used to declare a suspension object, and the primitives 
Suspend_Until_True and Set_True are used for the suspend and resume operations respectively.  
We have seen an example of use of the former in the code of Activation_Log_Reader shown 
above, whereby the Activation_Log_Reader package exports a Signal procedure that invokes 
Set_True on the local suspension object on which the Activation_Log_Reader sporadic task 
suspends by invoking Suspend_Until_True within the call to its internal Wait operation.

As mentioned earlier, the activation of On_Call_Producer is controlled by the use of a protected 
object named Request_Buffer, which provides a suspending entry named Extract and a releasing 
procedure named Deposit.

The auxiliary package Request_Buffer_Parameters shown at the end of this section defines all the 
parameters that characterize the activity of Request_Buffer.
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Request_Buffer
package Request_Buffer is

function Deposit(Activation_Parameter : in Positive) return Boolean;
function Extract return Positive;

end Request_Buffer;

with Request_Buffer_Parameters;
package body Request_Buffer is

type Request_Buffer_Index is
 mod Request_Buffer_Parameters.Request_Buffer_Range;

type Request_Buffer_T is array(Request_Buffer_Index) of Positive;
protected Request_Buffer is

-- must be ceiling of users' priority 
pragma Priority(Request_Buffer_Parameters.Request_Buffer_Priority);
procedure Deposit

           (Activation_Parameter : in Positive;
            Response             : out Boolean);

entry Extract(Activation_Parameter : out Positive);
private

      My_Request_Buffer : Request_Buffer_T;
      Insert_Index : Request_Buffer_Index := Request_Buffer_Index'First;
      Extract_Index : Request_Buffer_Index := Request_Buffer_Index'First;

-- the Request_Buffer is initially empty
      Current_Size : Natural := 0;

-- the guard is initially closed 
-- so that the first call to Extract will block

      Barrier : Boolean := False;
end Request_Buffer;
-- we encapsulate the call to protected procedure Deposit in a function
-- that returns a Boolean value designating the success or failure of 
-- the operation. This coding style allows for a more elegant coding
-- of the call
function Deposit(Activation_Parameter : in Positive) return Boolean is

      Response : Boolean;
begin

      Request_Buffer.Deposit(Activation_Parameter, Response);
return Response;

end Deposit;
-- we encapsulate the call to protected entry Extract in a function
-- that returns the Positive value designating the workload level passed
-- by Regular_Producer on to On_Call_Producer. This coding style allows 
-- for a more elegant coding of the call
function Extract return Positive is

      Activation_Parameter : Positive;
begin

      Request_Buffer.Extract(Activation_Parameter);
return Activation_Parameter;

end Extract;

cont…
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Request_Buffer Continued
protected body Request_Buffer is

entry Extract(Activation_Parameter : out Positive) 
when Barrier is

begin
         Activation_Parameter := My_Request_Buffer(Extract_Index);
         Extract_Index := Extract_Index + 1;
         Current_Size := Current_Size - 1;

-- we close the barrier when the buffer is empty
-- this also prevents the counter from becoming negative

         Barrier := (Current_Size /= 0);
end Extract;
procedure Deposit

           (Activation_Parameter : in Positive;
            Response             : out Boolean) is

begin
 if Current_Size < Natural(Request_Buffer_Index'Last) then

            My_Request_Buffer(Insert_Index) := Activation_Parameter;
            Insert_Index := Insert_Index + 1;
            Current_Size := Current_Size + 1;
            Barrier := True;
            Response := True;
         else

-- there is no room for insertion, hence the Deposit returns
-- with a failure (we might have used as well an over-writing
-- policy as long as the call returned)

    Response := False;
end if;

end Deposit;
end Request_Buffer;

end Request_Buffer;

Interrupt Handler

The example system handles one external interrupt, which is serviced by the interrupt sporadic task 
External_Event_Server.  Event_Queue is the protected object that provides the Signal procedure 
attached to the interrupt and the Wait suspending entry invoked by External_Event_Server.

The auxiliary package Event_Queue_Parameters shown at the end of the section holds all the 
definitions required by Event_Queue.
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Event_Queue
with External_Event_Server_Parameters;
package Event_Queue is

protected Handler is
-- must be in the range of System.Interrupt_Priority
pragma Interrupt_Priority

         (External_Event_Server_Parameters.Event_Queue_Priority);
procedure Signal;
entry Wait;
pragma Attach_Handler

         (Signal,External_Event_Server_Parameters.The_Interrupt);
private

-- entry barrier must be simple (i.e. boolean expression)
      Barrier : Boolean := False;

end Handler;
end Event_Queue;

package body Event_Queue is
protected body Handler is

procedure Signal is
begin

         Barrier := True;
end Signal;
entry Wait when Barrier is
begin

         Barrier := False; 
end Wait; 

end Handler; 
end Event_Queue;
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7.3 Scheduling Analysis

In order to use the deadline monotonic algorithm to assign priorities to all tasks and protected 
objects in the above application example we need to determine the respective real-time attributes.  
This is done in table 1.

Task name Task type Period / 
Minimum 

interarrival 
time

Deadline Execution 
time

Response 
time

Priority

Regular_Producer Cyclic 1000 500 7

On_Call_Producer Sporadic ³ 1,000 800 5

Activation_Log_Reader Sporadic ³ 1,000 1,000 3

External_Event_Server Interrupt sporadic 5,000 100 11

Protected object name User tasks Ceiling priority

Request_Buffer
Regular_Producer (Deposit),
On_Call_Producer (Extract)

9

Event_Queue
External interrupt (Signal),
External_Event_Server (Wait)

System.Interrupt_
Priority'Last

Activation_Log
External_Event_Server (Write), 
Activation_Log_Reader (Read)

13

Table 1: Real-time attributes of tasks and protected objects in example application.  All time values are 
in milliseconds.

As soon as we know the worst-case execution time of the non-suspending internal operations 
performed by the tasks of our example, we can use response time analysis to confirm the feasibility 
of the real-time attributes of the task set in table 1.

As we mentioned above and as figure 1 illustrates, the example application uses the 
Small_Whetstone algorithm to control the computational workload of Regular_Producer, 
On_Call_Producer and Activation_Log_Reader.  The way this occurs is shown in the respective 
auxiliary packages.

Knowing the processing power of the designated target processor and the runtime overheads 
associated to the execution of the Ravenscar tasking model (e.g. select and context switch time; 
insert and remove from delay queue; insert and remove from single-position entry queue) we may 
achieve precise estimates of the required execution time for all tasks and thus allow the use of 
response time analysis.

By way of example, for one particular assignment of computational workload to the tasks in the 
system and for the priority assignment shown in table 1, we obtain the schedule of execution 
shown in figure 2 for the region near the time of system activation (which assumes the arrival of 
the 1st external interrupt at notional time 0) and in figure 3 for one complete activation of all tasks 
in the task set.
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Figure 2: Schedule of task execution near the time of system activation.

Figure 3: Schedule of execution for one complete activation of all tasks in the example application.
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7.4 Auxiliary Code

The auxiliary code includes the various operation parameter packages referred to in the earlier 
descriptions as well as the Activation_Manager.

Regular Producer operation parameters
with Auxiliary;
with System;
package Regular_Producer_Parameters is
   Regular_Producer_Priority : constant System.Priority := 7;
   Regular_Producer_Period : constant Natural := 1_000; -- in milliseconds

procedure Regular_Producer_Operation;
end Regular_Producer_Parameters;

with On_Call_Producer;
with Production_Workload;
with Activation_Log_Reader;
with Ada.Text_IO;
package body Regular_Producer_Parameters is

-- approximately 5,001,000 processor cycles of Whetstone load 
-- on an ERC32 (a radiation-hardened SPARC for space use) at 10 Hz

   Regular_Producer_Workload : constant Positive := 756;
-- approximately 2,500,500 processor cycles

   On_Call_Producer_Workload : constant Positive := 278;
-- the parameter used to query the condition
-- for the activation of On_Call_Producer
Activation_Condition : constant Auxiliary.Range_Counter := 2;
procedure Regular_Producer_Operation is
begin

-- we execute the guaranteed level of workload
      Production_Workload.Small_Whetstone(Regular_Producer_Workload);

-- then we check whether we need to farm excess load out to
-- On_Call_Producer
 if Auxiliary.Due_Activation(Activation_Condition) then

-- if yes, then we issue the activation request with a parameter
-- that determines the workload request
 if not On_Call_Producer.Start(On_Call_Producer_Workload) then

-- we capture and report failed activation
            Ada.Text IO.Put Line("Failed sporadic activation.");

end if;
end if;
-- we check whether we need to release Activation_Log
if Auxiliary.Check_Due then

         Activation_Log_Reader.Signal;
end if;
-- finally we report nominal completion of the current activation

      Ada.Text_IO.Put_Line("End of cyclic activation.");
end Regular_Producer_Operation;

end Regular_Producer_Parameters;
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On_Call_Producer operation parameters
with System;
package On_Call_Producer_Parameters is
   On_Call_Producer_Priority : constant System.Priority := 5;

procedure On_Call_Producer_Operation(Load : Positive);
end On_Call_Producer_Parameters;

with Production_Workload;
with Ada.Text_IO;
package body On_Call_Producer_Parameters is

procedure On_Call_Producer_Operation(Load : Positive) is
begin

-- we execute the required amount of excess workload
      Production_Workload.Small_Whetstone(Load);

-- then we report nominal completion of current activation
      Ada.Text_IO.Put_Line("End of sporadic activation.");

end On_Call_Producer_Operation;
end On_Call_Producer_Parameters;

Activation_Log_Reader operation parameters
with System;
package Activation_Log_Reader_Parameters is
   Activation_Log_Reader_Priority : constant System.Priority := 3;

procedure Activation_Log_Reader_Operation;
end Activation_Log_Reader_Parameters;

with Production_Workload;
with Activation_Log;
with Ada.Real_Time;
with Ada.Text_IO;
package body Activation_Log_Reader_Parameters is

-- approximately 1,250,250 processor cycles of Whetstone load 
-- on an ERC32 (a radiation-hardened SPARC for space use) at 10 Hz

   Load : constant Positive := 139;
procedure Activation_Log_Reader_Operation is

      Interrupt_Arrival_Counter : Activation_Log.Range_Counter := 0;
      Interrupt_Arrival_Time : Ada.Real_Time.Time;

begin
-- we perform some work

      Production_Workload.Small_Whetstone(Load);
-- then we read into the Activation_Log buffer

      Activation_Log.Activation_Log.Read(Interrupt_Arrival_Counter, 
         Interrupt_Arrival_Time);

-- and finally we report nominal completion of current activation
      Ada.Text_IO.Put_Line("End of parameterless sporadic activation.");

end Activation_Log_Reader_Operation;
end Activation_Log_Reader_Parameters;
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External_Event_Server operation parameters
with Ada.Interrupts.Names;
with System;
package External_Event_Server_Parameters is

-- a target-specific interrupt
   The_Interrupt : constant Ada.Interrupts.Interrupt ID :=
        Ada.Interrupts.Names.External_Interrupt_2;

-- the interrupt priority should be at the appropriate level
-- (we set it to ‘Last because the example handles no other interrupts)

   Event_Queue_Priority : constant System.Interrupt_Priority := 
        System.Interrupt_Priority’Last;

-- the interrupt sporadic priority is determined by deadline
-- monotonic analysis

   External_Event_Server_Priority : constant System.Priority := 11;
procedure Server_Operation;

end External_Event_Server_Parameters;

with Activation_Log;
package body External_Event_Server_Parameters is

procedure Server_Operation is
begin

-- we record an entry in the Activation_Log buffer
      Activation_Log.Write;

end Server_Operation;
end External_Event_Server_Parameters;

Request_Buffer operation parameters
with System;
package Request_Buffer_Parameters is

-- the request buffer priority must ceiling of its users’ priorities
   Request_Buffer_Priority : constant System.Priority := 9;

-- proper analysis will determine the appropriate size of the request
-- buffer

   Request_Buffer_Range : constant Positive := 5;
end Request_Buffer_Parameters;
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The Activation_Manager provides two facilities.

• A common epoch for all tasks in the system (using the mechanism described in Example 4 
of Section 5.2).

• A mechanism for all tasks to suspend until a common time, in order to achieve a 
co-ordinated release after elaboration. This achieves the effect of 
pragma Partition_Elaboration_Policy(Sequential);.

Activation_Manager internals
with Ada.Real_Time;
package Activation_Manager is
 use Ada.Real_Time;
function Clock return Ada.Real_Time.Time renames Ada.Real_Time.Clock;
-- global start time relative to which all periodic events
-- in system will be scheduled

   System_Start_Time : Ada.Real_Time.Time;
-- relative offset of task activation after elaboration (milliseconds)

   Relative_Offset : constant Natural := 100;
   Task_Start_Time : Ada.Real_Time.Time_Span;

-- absolute time for synchronization of task activation after elaboration
   Activation_Time : Ada.Real_Time.Time;

procedure Synchronize_Activation_Sporadic;
procedure Synchronize_Activation_Cyclic

        (Next_Time : out Ada.Real_Time.Time);
end Activation_Manager;

with System;
package body Activation_Manager is

procedure Synchronize_Activation_Sporadic is
begin

delay until Activation_Time;
end Synchronize_Activation_Sporadic;
procedure Synchronize_Activation_Cyclic

        (Next_Time : out Ada.Real_Time.Time) is
begin

      Next_Time := Activation_Time;
delay until Activation_Time;

end Synchronize_Activation_Cyclic;
procedure Initialize is

pragma Priority(System.Priority’Last);
begin

      System_Start_Time := Clock;
      Task_Start_Time := Ada.Real_Time.Milliseconds (Relative_Offset);
      Activation_Time := System_Start_Time + Task_Start_Time;

end Initialize;
begin
   Initialize;
end Activation_Manager;
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Auxiliary definitions and services
package Auxiliary is

type Range_Counter is mod 5;
function Due_Activation(Param : Range_Counter) return Boolean;
type Run_Counter is mod 1_000;

   Factor : constant Natural := 3;
function Check_Due return Boolean;

end Auxiliary;

package body Auxiliary is
   Request_Counter : Range_Counter := 0;
   Run_Count : Run_Counter := 0;

-- we establish an arbitrary criterion for the activation of
-- On_Call_Producer
function Due_Activation(Param : Range_Counter) return Boolean is
begin

      Request_Counter := Request_Counter + 1;
-- we make an activation due according to the caller’s input parameter
return (Request_Counter = Param);

end Due_Activation;
-- we establish an arbitrary criterion for the activation of
-- Activation_Log_Reader
function Check_Due return Boolean is

      Divisor : Natural;
begin

      Run_Count := Run_Count + 1;
      Divisor := Natural(Run_Count) / Factor;

-- we force a check due according to an arbitrary criterion
return ((Divisor*Factor) = Natural(Run_Count));

end Check_Due;
end Auxiliary;
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8 Definitions, Acronyms, and Abbreviations

Allocator
An Ada construct used to create an object dynamically [RM 4.8].

Atomic
An operation performed by a task which is guaranteed to produce the same effect as if it were 
executing in total isolation and without interruption.

Blocked
The state of a task when its execution is prevented, while waiting for mutually-exclusive access 
to a shared resource which is currently held by a lower priority task.

Bounded error
An implementation- or language-defined error in the application program whose effect is 
predictable and documented.

Ceiling priority
The priority of a shared resource.  The static default priority of all processes that use the 
resource must be less than or equal to the ceiling priority.

Context switch
The replacement of one task by another as the executing task on a processor.

Critical region
A sequence of statements that must appear to be executed indivisibly.

Critical task
A task whose deadline is significant and whose failure to meet its deadline could cause system 
failure.

CSP (Communicating Sequential Processes)
A notation for specifying and analyzing concurrent systems.

CSS (Calculus of Communicating Systems)
An algebra for specifying and reasoning about concurrent systems.

Cyclic executive
A scheduler that uses procedure calls to execute each periodic process in a predetermined 
sequence at a predetermined rate.

Cyclic task
A task whose execution is repeated based on a fixed period of time, also known as a periodic 
task.

Deadline
The maximum time allowed to a task to produce a response following its invocation.
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Deadlock
A situation where a group of tasks (possibly the whole system) block each other permanently.

Dynamic testing
An analysis method that determines properties of the software by observing its execution (cf 
static analysis).

Erroneous execution
A program state in which execution of the program becomes unpredictable as the result of an 
error. The errors that result in this state are defined in the language reference manual [RM 1.1.5 
(9-10)].

Environment Task
The implicit outermost task which executes the program elaboration code and then calls the 
main subprogram (if any) [RM 10.2 (8)].

Epilogue
The code executed by the Ada run-time system to service the entry queues as defined in RM 
9.5.3(13).

Event-Triggered Task
A task whose invocation is triggered either by an asynchronous action by another task, or by an 
external stimulus such as an interrupt.

Finalization
An Ada operation which occurs for controlled objects at the point of their destruction [RM 
7.6.1].

Firm deadline task
A task whose failure to meet a deadline does not necessarily cause a failure of the application 
program. There is no value in completing a firm task after its deadline.

Hard deadline task
A task whose failure to meet a deadline may cause a failure of the application program.

IPCP (Immediate Priority Ceiling Protocol, also known as Priority Ceiling Emulation)
A technique to minimize the blocking time for contention for shared resources, protected by a 
protected object.  This is provided by the locking policy Ceiling_Locking in Ada [RM D.3].

Jitter
The variation in time between the occurrence of a periodic event and a period of the same 
frequency.

Library level
The level at which an object which has global accessibility [RM 3.10.2 (22)].
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Livelock
A situation where several tasks (possibly comprising the whole system) remain ready to run, 
and execute, but fail to make progress.

Liveness
The property that a set of tasks will reach all desirable states.

Mode change
A change in operating characteristics of a system that requires a co-ordinated change in the 
operation of several different processes in the system.

Monitor
A module containing one or more critical regions; all variables that must be accessed under 
mutual exclusion are hidden and all procedure calls are guaranteed to execute with mutual 
exclusion.

Mutex
A locking mechanism used to ensure mutually exclusive access to a shared resource.

Non-critical task
A task with no strict timing requirements.

Overhead
The execution time within the Ada run-time system which must be included in the 
schedulability analysis.

PBPS (Priority-Based Preemptive Scheduling)
This ensures that, if a high priority task becomes ready to run when a lower priority task is 
executing on the processor, the high priority task will replace the lower priority task 
immediately as the executing task.

PCP (Priority Ceiling Protocol)
A set of techniques that bound the blocking time for contention for shared resources.  One such 
protocol, implemented in Ada, is IPCP.

Periodic task
A task whose execution is repeated based on a fixed period of time, also known as a cyclic task.

Preemptive fixed priority scheduling
A scheduling method in which each process has a static priority and the scheduler ensures that 
the currently selected process is the ready process with the highest priority.

Priority inversion
This occurs when a high-priority task is blocked waiting for a shared resource (including the 
CPU itself) currently in use by a low-priority task.
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Protected object
An Ada construct which is used to provide mutually-exclusive access to shared resources and as 
a task synchronization primitive.

Race condition
A timing condition that causes processes to operate in an unpredictable sequence so that 
operation of the system may be incorrect.

Ready
The state of a task when it is no longer suspended.  The task, however, will not execute whilst 
all the available processor resource can be used by higher priority ready tasks.

RMA (Rate Monotonic Analysis)
A mathematical method based on utilization which is used to prove that a set of tasks with static 
(and simple) characteristics will meet its deadlines in the presence of PBPS.

RTA (Response Time Analysis)
A mathematical method based on calculating latest completion time which is used to prove that 
a set of tasks with static characteristics will meet its deadlines in the presence of PBPS.

Safety
The property that a set of tasks cannot reach any undesirable state from any desirable state.

Soft deadline task
A task whose failure to meet a deadline does not necessarily cause a failure of the application 
program. There is value in completing a soft task even if it has missed its deadline.

Sporadic task
An event-triggered task with defined minimum inter-arrival time.

Static analysis
A group of analysis techniques that determine properties of the system from analysis of the 
program code (c.f. dynamic testing).

Suspended
The state of a task when its execution is stopped due to execution of a language-defined 
construct that waits for a given time (e.g. a delay statement) or an event.

Suspending operation
An operation which causes the current task to be suspended until released by another task, a 
timer event or an interrupt handler.

Suspension object
An Ada construct [RM D.10] which is used for basic task synchronization, i.e. suspend and 
resume, which do not involve data transfer.

Time triggered task
A task whose invocation is triggered by the expiry of a delay set by that task.
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WG9
The Ada Working Group, ISO/IEC JTC1/SC22/WG9. It is the group tasked with the 
interpretation and maintenance of the Ada Language Standard.

Worst-case execution time
A maximum bound on the time required to execute some sequential code.
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