
A Side-by-Side Comparison of Exception Handling in
Ada and Java

Alfred Strohmeier, in collaboration with Stanislav Chachkov

Swiss Federal Institute of Technology in Lausanne (EPFL)
Software Engineering Laboratory

CH-1015 Lausanne EPFL, Switzerland
alfred.strohmeier@epfl.ch

1 Introduction
The purpose of this paper is to compare the exception handling mechanisms of Ada and
Java. In order to be intelligible and useful to both communities, we have tried not to get
into specific technical intricacies of the languages, perhaps sometimes at the cost of pre-
cision. Nevertheless, we decided to use the language-specific terminology whenever we
write about a given language. We believe that the contrary would often lead to misunder-
standings: a) the same term sometimes covers two different concepts, e.g. object, or b)
when the concepts are basically the same, the features provided by the language can be
largely different, making any unification impossible, e.g. task in Ada and thread in Java.

Table 1 “Comparison of Terminology” shows the meanings and correspondences of the
most important terms related directly or indirectly to exception handling in the two lan-
guages.

We did not try to assess the merits of the two languages, not even with regard to excep-
tion handling. The issues are too many, and would by far exceed the scope of this paper:
How to assess trade-offs between expressive power and performance, if ever a definite
evaluation of performance is possible? How to assess language constructs whose
“good” intent cannot be enforced? E.g. in Java, the “lazy” programmer can declare
Throwable in a method’s throws clause, instead of referring to specific exception classes.
Where is the borderline between responsibility left to the programmer, and an admittedly
error-prone construct in the language?

Our goal was therefore to present facts, and facts only, as much as this is possible with-
out any interpretation.

2 Overview of the Contents
Whenever possible, we tried to keep the presentations of the two languages in parallel,
at least at the section level:

• Language Summary - Language Summary

• Exception Names and Exception Occurrences - Exception Classes and Instances

• Predefined Exceptions - Predefined Exception Classes

• Raising an Exception - Throwing an Exception

• Language-defined Checks - Language-defined Checks

• Handling Exceptions - Catching Exceptions

• Visibility of Exceptions - Checked and Unchecked Exceptions

• Carrying Information with an Exception - Carrying Information with an Exception

• Performance Issues - Performance Issues

• Concurrent Programming - Concurrent Programming

• Generics

3 Acknowledgement
We would like to thank Ben Brosgol and the anonymous reviewer for their very valuable
and detailed comments.

4 References
The main reference for the Ada language is the International ISO Standard; we will refer
to it by the acronym RM [1]. For the Java language, our work is based on [2], referred to
as JLS.

[1] S. Tucker Taft, Robert A. Duff (Eds.); Ada 95 Reference Manual: Language and Stan-
dard Libraries, International Standard ISO/IEC 8652:1995(E); Lecture Notes in Computer
Science, vol. 1246; Springer-Verlag, 1997; ISBN 3-540-63144-5.

[2] James Gosling, Bill Joy, Guy Steele, Gilad Bracha; The Java Language Specification
(Second Edition); Addison-Wesley, 2000; ISBN 0-201-31008-2

Ada Java

Term Meaning Term Meaning

type data type or class or task type class class

object variable or constant object class instance or array

operation subprogram method

exception
[name]

a name for an exception type exception
class

the class Throwable or one of
its subclasses

exception
occurrence

a dynamically created
exception instance

exception an instance of an exception
class

checked
exception

the compiler checks that the
program contains a handler

unchecked
exception

belong to the classes Error or
RuntimeException or their
subclasses

predefined
exceptions

Constraint_Error,
Storage_Error,
Program_Error,
Tasking_Error

exception
classes
defined in
java.lang

these exception classes can be
referred to by simple names

raise an
exception

throw an
exception

handle an
exception

catch an
exception

handled
sequence of
statements

try statement

exception
handler

catch clause or
handler

task thread

task activation starting a
thread

protected
object

all operations of a protected
object are performed in mutual
exclusion

object’s
monitor

a locking mechanism is
associated with any object for
monitoring concurrent access

protected
operation

an operation of a protected
object

synchronized
statement or
method

a block or method executed in
mutual exclusion

Table 1: Comparison of Terminology

Ada

1 Language Summary
1.1 . Ada is a block-structured language
with nesting blocks (like Pascal). In a block,
declarations precede the statements. Sub-
programs and block statements are typical
blocks.

1.2 . The module construct is called a
package. A package can contain/define
types, subprograms and exceptions,
among others. Packages can be organized
in hierarchies. A hierarchy of packages
forms a name space.

1.3 . A package can declare names for
exceptions.

1.4 . A subprogram cannot declare in its
signature the exceptions it might raise/
propagate.

1.5 . An exception might be propagated to
a place where its name is not visible. It is
possible to handle such an “anonymous”
exception and then raise it again.

1.6 . Exceptions are a special construct in
the language, not related to other con-
structs. An exception cannot be a compo-
nent of a composite type or a parameter.
There is however an ad hoc construct as a
work around (see Identity attribute).

1.7 . The language provides extensive sup-
port for concurrent programming (tasks
and protected objects).

2 Exception Names and
Exception Occurrences
2.1 Terminology. An exception (occur-
rence) is said to be raised at the place
Java

1 Language Summary
1.1 . Java is a block-structured language,
except that methods cannot be (directly)
declared locally. Local variables, e.g. class
instances, can be declared within a state-
ment sequence. A method cannot be
nested inside another method.

1.2 . A package defines a name space. It
can contain/define class and interface dec-
larations. The interface and class con-
structs are the module constructs of the
language. Classes can be nested.

1.3 . Exception classes are declared and
instantiated in the same way as other
classes.

1.4 . A method must declare in the throws
clause of its signature all exceptions it
might throw or propagate (let go unhan-
dled), except exceptions of the classes
Error and RuntimeException.

1.5 . At least a superclass of the exception
class is visible at all places where the
exception can be propagated to.

1.6 . An exception is an ordinary object. It
can be referenced in the field of another
object or passed as a parameter.

1.7 . The language provides built-in sup-
port for dealing with concurrent execution
of a region of code (synchronized state-
ments and methods) and for thread coordi-
nation (wait/notify/notifyAll methods of the
class Object). Additional support for con-
current programming is mainly by means of
libraries, especially the class Thread.

2 Exception Classes and
Instances
2.1 Terminology. An exception is said to
be thrown from the point where it occurred

where it occurred and is said to be handled
at the point to which control is transferred.
When an exception is not handled and con-
trol is transferred, the exception is said to
be propagated.

2.2 Model. The Ada reference manual
does not relate the concept of an exception
to other language constructs. However, we
think the following model is mostly accu-
rate:

There is so to speak a single predefined
abstract limited datatype denoted by the
keyword exception. A predefined or user-
defined exception is a concrete direct sub-
type of this abstract datatype. An exception
occurrence is a dynamically created object
of this datatype.

However, this is only a mental model, and
the datatype is not recognized as such by
the language. Therefore, it is not possible
to declare and name an exception occur-
rence, and exceptions cannot be formal or
actual parameters of subprograms, or com-
ponents of composite types (like arrays or
records).

2.3 Exception Declaration. To stick to the
RM, “[...] an exception declaration declares
a name for an exception.”, for example:

Transmission_Error: exception;

An exception can be declared wherever a
declaration can occur, e.g. in the declara-
tive parts of a block statement, a subpro-
gram, a package, etc.
and is said to be caught at the point to
which control is transferred.

2.2 Model. Every exception is represented
by an instance of the class Throwable or
one of its subclasses. Throwable is directly
derived from Object, the “mother” of all
classes:

public class Throwable {
public Throwable() {...}
public Throwable(String message) {...}
public String toString() {...}
public String getMessage() {...}
...

}

Throwable has two subclasses, named
Error and Exception. For an application
programmer, the usual approach is to
define subclasses of Exception. Whenever
needed, s/he then throws an exception of
one of these subclasses. Typically, the
instance is freshly created in the context of
the exceptional situation (in order to
include accurate information, such as stack
trace data).

The class Throwable and its subclasses
are called exception classes.

Because Java exception classes are sub-
classes of Object, they can be method
parameters, components of composite
types etc.

2.3 Exception Declaration. The program-
mer declares an exception by declaring an
exception class, most of the time a sub-
class of Exception:

public class TransmissionError
extends Exception {...}

An exception class can be declared wher-
ever a class can be declared.

As expected, it is possible to overload con-
structors and override inherited methods,
e.g.

class BlewIt extends Exception {
BlewIt() {}

3 Predefined Exceptions
There are four pre-defined exceptions:

Constraint_Error,

Program_Error,

Storage_Error,

Tasking_Error.

4 Raising an Exception
4.1 Principle. As stated by the RM: “An
exception is raised initially either by a raise
statement or by the failure of a language-
defined check.” Such a failure is detected
by the execution support during run-time.

4.2 Raise Statement. A raise statement
can occur at any place where a statement
can occur, and has a very simple syntax:

raise exception_name;

Example of raising an exception:

raise Transmission_Error;

4.3 Language-Defined Check. The fail-
ure of a language-defined check raises one
of the four predefined exceptions.
BlewIt(String s) {super(s);}
}

3 Predefined Exception
Classes
There is a large number of exception
classes predefined in the package
java.lang. The top-levels of the inheritance
tree are shown in figure 1:

Figure 1: Hierarchy of Predefined Classes

4 Throwing an Exception
4.1 Principle. As stated by the JLS: “When
a Java program violates the semantic con-
straints of the Java language, a Java Vir-
tual Machine signals this error to the
program as an exception. [...] Java pro-
grams can also throw exceptions explicitly,
using throw statements.”

4.2 Throw Statement. A throw statement
can occur at any place where a statement
can occur, and has a very simple syntax:

throw Expression;

where the type of Expression must be a
Throwable or a subclass thereof.

Example of throwing an exception:

throw new TransmissionError();

or, but unusual:

TransmissionError myException
= new TransmissionError();

throw myException;

Object

Throwable

Error Exception

RuntimeException
......

5 Language-defined Checks
5.1 Constraint_Error. By far the most
often raised predefined exception is
Constraint_Error. It is raised upon an
attempt to violate a constraint imposed on
a value, e.g. a range constraint, an index
constraint, a discriminant constraint, or
upon an attempt to use a record compo-
nent that does not exist, to use an indexed
component that does not exist, to access
an object by a pointer that is null, or upon
an attempt to divide by zero, etc.

5.2 Storage_Error. Generally speaking,
the exception Storage_Error is raised when
there is no more dynamic memory avail-
able: the evaluation of an allocator requires
more space than is available (in “its” stor-
age pool), or the space available for a task
or a subprogram has been exceeded.

5.3 Program_Error. The exception
Program_Error is raised in cases when the
program is not “well-formed”, but the error
cannot be detected during compilation, e.g.
because the problem is undecidable. E.g.
Program_Error is raised upon an attempt
to call a subprogram whose body has not
yet been elaborated, i.e. has not yet been
“created”.

5.4 Tasking_Error . Generally speaking,
the exception Tasking_Error is raised
whenever there is a communication prob-
lem between tasks. E.g. it is raised if the
activation of a task fails, or if an attempt is
made to call an entry of a task that has
already completed its execution, or if an
attempt is made to retrieve the priority of a
completed task, etc.
4.3 Language-Defined Check. The fail-
ure of a language-defined check throws an
exception of one of the predefined sub-
classes of Error or RuntimeException.

5 Language-defined Checks
5.1 RuntimeException and Error. Most of
the time, a predefined exception belongs to
a subclass of RuntimeException, e.g. Arith-
meticException, ArrayStoreException,
ClassCastException, IllegalArgumentEx-
ception, IndexOutOfBoundsException,
NullPointerException, etc. It might be
noticed that there are no range checks in
Java, and an integer arithmetic overflow
simply causes “wrap around”.

Ordinary programs are usually not
expected to recover from exceptions in the
class Error and its subclasses. Error has
the subclasses LinkageError, VirtualMa-
chineError and ThreadDeath.

5.2 VirtualMachineError: Lack of Mem-
ory. The errors OutOfMemoryError and
StackOverflowError are thrown by the Java
Virtual Machine when there is a lack of
memory to continue execution. Other sub-
classes of VirtualMachineError are used to
signal an internal error.

5.3 LinkageError: Consistency of Pro-
gram. Because of the highly dynamic
nature of Java program composition, errors
and exceptions due to inconsistencies are
especially important. Errors detected when
a loading, linkage, preparation, verification
or initialization failure occurs are reported
by throwing an exception of the subclass
LinkageError, e.g. ClassFormatError,
ClassCircularityError, InstantiationError,
NoSuchFieldError, NoSuchMethodError,
VerifyError, ExceptionInInitializerError, etc.

5.4 Thread-Related Exceptions. The Ille-
galMonitorStateException is thrown when a
thread tries to perform an operation (wait or

6 Handling Exceptions
6.1 Handled Sequence of Statements.

The basic idea in Ada is to associate an
exception handling part with a sequence of
statements. The exception handling part
deals with exceptions that arise from the
execution of the sequence.

The following constructs, each comprising
a sequence of statements, can contain an
exception handling part:

- a block statement,

- a subprogram body,

- a package body,

- a task body,

- an accept statement,

- an entry body.

In Ada, a block statement consists in a
leading declarative part, a sequence of
statements, followed by an exception han-
dling part. In block statements and subpro-
gram bodies, the exception handling part
deals with failures and exceptions raised
during the execution of the block or the
subprogram. The exception handling part
of a package body is there to handle prob-
lems that arise during its “creation”, i.e.
elaboration of the package. Exception han-
dling parts in accept statements and entry
bodies are used to deal with communica-
notify) on an object whose lock it did not
previously acquire.

The IllegalThreadStateException is thrown
to indicate that a thread is not in an appro-
priate state for the requested operation.

If a thread t is interrupted (via a call of
t.interrupt()) then an InterruptedException
is thrown in t either immediately (if t is
blocked on a call of wait(), join(), or sleep())
or when it next blocks on one of these
calls.

6 Catching Exceptions
6.1 Try Statement. The only place to catch
an exception is in a try statement. A try
statement executes a block. In Java, a
block consists in a sequence of statements
and variable declarations. The catch
clauses at the end following the block can
handle exceptions thrown during the exe-
cution of the block.

6.2 Syntax.
TryStatement:

try Block Catches
try Block Catchesopt Finally

Catches:
CatchClause
Catches CatchClause

CatchClause:
catch (FormalParameter) Block

Finally:
finally Block

6.3 Example.
try {

int a[] = new int[2];
a[4];

} catch (ArrayIndexOutOfBoundsException e) {
System.out.println(“exception: “

+ e.getMessage());
e.printStackTrace();

}

6.4 Dynamic Semantics. If an exception
is thrown during the execution of the block
and there is a catch clause that can catch
it, then control will be transferred to the first

tion problems between tasks.

6.2 Syntax. The form of an exception han-
dling part is similar to a case statement,
each case containing one exception han-
dler dealing with one or several exceptions.
A last “others” case can handle all the
exceptions not named in previous cases:

handled_sequence_of_statements ::=
sequence_of_statements
[exception_handling_part]

exception_handling_part ::=
exception

exception_handler
{exception_handler}

exception_handler ::=
when [choice_parameter_specification:]

exception_choice {| exception_choice} =>
sequence_of_statements

choice_parameter_specification ::=
defining_identifier

exception_choice ::= exception_name | others

6.3 Example.
begin

... -- call operations in File_System
exception

when End_Of_File =>
Close (Some_File);

when File_Not_Found =>
Put_Line (“Some specific message”));

when others =>
Put_Line (“Unknown Error”);

end;

6.4 Dynamic Semantics. When an excep-
tion arises, control is transferred to the
user-provided exception handler at the end
of the sequence of statements where the
exception arises, if there is an exception
handling part, and if it contains a handler
for the raised exception, or it is propagated
to the dynamically enclosing execution
context. In both cases, the sequence of
statements where the exception arose is
abandoned, and it is impossible to return to
the offending statement. These semantics
correspond to the so-called “Termination
Model”. Propagating the exception means
that it is reraised at the place where the
current sequence of statements was
such catch clause.

A catch clause can catch an exception if
the run-time type of the exception can be
assigned to the FormalParameter of the
catch clause, i.e. the FormalParameter
belongs to the same class or to a super-
class of the thrown exception. Several
catch clauses can fulfil this requirement,
and there is therefore a rule that the first
one is chosen. As a result, the programmer
must write the catch clauses by starting
with the most specific ones.

We will first deal with the case where there
is a catch clause, but no finally block.

In this case, upon transfer of control to a
catch clause, the value of the exception is
assigned to the FormalParameter, and the
block of the catch clause is executed. If
that block completes normally, then the try
statement completes normally. If that block
completes abruptly for any reason, then
the try statement completes abruptly for the
same reason.

If none of the catch clauses can handle the
exception, then the try statement com-
pletes abruptly because of the throw of the
exception that was not handled.

If the try statement has a finally block, its
block of code is executed, no matter
whether the try block completes normally
or abruptly, and no matter whether a catch
clause is first given control. If the finally
block terminates abruptly for reason S,
then the try statement completes abruptly
for the same reason. Note that a non han-
dled exception in the try block or in a catch
block is discarded in that case. If the finally
block completes normally, then the try
statement completes normally if there is no
pending exception. It completes abruptly
for reason V or R respectively if an excep-
tion V was thrown in the try block and not
handled, or if the handling catch clause
was abruptly terminated for reason R.

dynamically entered. E.g. when an excep-
tion is raised during the execution of a sub-
program and not locally handled, it is
reraised at the place of the subprogram
call, and therefore propagated to the calling
context.

7 Visibility of Exceptions
First of all, it must be noted that, to the con-
trary of Java, it is not required and not pos-
sible to declare in the signature of a
subprogram the exceptions it might raise.
The programmer who writes a call must
therefore rely on comments supplied with
the subprogram to know if it might raise an
exception.

Secondly, and there is clearly a relationship
with the first note, an exception can be
propagated to an execution context where
its name is not visible. Such an “anony-
mous” exception can still be handled by
providing an exception handler with an
“others” choice. It can even be reraised
inside the exception handler by a raise
statement mentioning no exception name.
In order to distinguish between such “anon-
ymous” exceptions, the programmer can
associate locally a name with the specific
exception occurrence, and then use the
features provided by the package
Ada.Exceptions (see 8.2) to handle it in
some specific appropriate way:
Table 2 summarizes all situations.

7 Checked and Unchecked
Exceptions
7.1 Throws Clause. In the declaration of a
method or constructor, all checked excep-
tions it might propagate (let go unhandled)
must be declared in a throws clause at the
end of the header. The syntax for this part
of the header is:

Throws:
throws ClassTypeList

ClassTypeList:
ClassType
ClassTypeList, ClassType

Example:
void blowUp() throws BlewIt {

throw new BlewIt();
}

7.2 Checked and Unchecked Excep-
tions. All subclasses of Error and of Runt-
imeException are unchecked exception
classes, and a method is not required to
declare them in its throws clause even if an
instance might be thrown during its execu-
tion but not caught. Exceptions of the class
Error should never occur and ordinary pro-
grams are not expected to recover from

try block:
terminates

catch
clause:
exists,

terminates

finally
block

outcome

normally normally normally

abruptly S abruptly S

abruptly V yes,
normally

normally normally

abruptly S abruptly S

yes,
abruptly R

normally abruptly R

no normally abruptly V

abruptly S abruptly S

Table 2: Outcome of Try Statement with
a “finally” Block

exception
when Error: others =>

...

... Ada.Exceptions.
Exception_Information (Error)...

end;

8 Carrying Information
with an Exception
8.1 Name of an exception and message.

It is possible to retrieve the name of an
exception at run-time (see RM 11.4.1 (12)),
providing therefore a form of reflection for
programming exception handling.

Also, implementation-defined information
and a message, each a character string,
are associated dynamically with every
exception occurrence. The contents of the
message can be supplied by the program-
mer when raising the exception. Both can
be accessed by the programmer when
handling the exception.

The mechanism used for these features is
not really well integrated with the language,
due to the special nature of exceptions, but
is quite clean.

8.2 Package Ada.Exceptions. There is a
unique identity associated with each
exception, and each dynamic occurrence
of an exception defines an exception
occurrence. Both the identity of an excep-
them. Exceptions from the class Runtime-
Exception and its subclasses are so fre-
quent, that the language designers decided
that it would be cumbersome for the pro-
grammer to declare them all in the method
header.

All other Throwable subclasses are
checked, i.e. the compiler checks the fol-
lowing rule. If an exception of a checked
subclass can be thrown during the execu-
tion of a constructor or method without
being caught, then itself, or one of its
superclasses, must be declared in the
throws clause of the header. The permis-
sion to declare a superclass can be used to
realize a hierarchical exception handling
architecture, but it can also be misused by
the “lazy” programmer.

8 Carrying Information with
an Exception
8.1 Message. As shown by its declaration,
class Throwable and its subclasses have
two constructors, one that takes no argu-
ments and one that takes a String argu-
ment that can be used to produce an error
message.

8.2 StackTrace. In fact, each Throwable
contains also a stack trace, i.e. the trace of
method calls up to the point where it was
thrown.

8.3 Example.
try {

int a[] = new int[2];
a[4];

} catch (ArrayIndexOutOfBoundsException e) {
System.out.println

(“exception:” + e.getMessage());
e.printStackTrace();

}

8.4 Additional Information. In addition,
as exceptions are normal objects, the pro-
grammer can attach to them any needed

tion and the exception occurrence are “reg-
ular” datatypes, which can be used as
subprogram parameters. The package
Ada.Exceptions defines these datatypes
and the applicable subprograms.

To associate a user-defined message with
an exception when raising it, it must be
raised by calling the procedure
Raise_Exception of package Ada.Excep-
tions, instead of using the raise statement:

Example:

Raise_Exception
(Transmission_Error’Identity,
“Time-out occurred.”);

8.3 Naming an Exception Occurrence in
a Handler. For accessing the name of an
exception or the message it carries, the
mechanism used is to declare locally a
name for the exception occurrence when
handling the exception. For instance, when
handling the exception raised in the exam-
ple of 8.2, the following handler will print
the full name of the exception ending with
its simple name, i.e. “Transmission_Error”,
followed by “Time-out occurred.”.

Example:

exception
when Stalled: Transmission_Error =>

Print (Exception_Name (Stalled) &
 Exception_Message (Stalled));

9 Performance Issues
9.1 Suppressing Checks. By using the
pragma Suppress, i.e. a directive to the
compiler, permission can be given to an
implementation to omit certain language-
defined checks.

9.2 Exceptions and Optimization. In
order not to impact negatively on the per-
formance of some kinds of computing sys-
tems, e.g. superscalar processors,
permission is given to an implementation
not to raise an exception due to a lan-
information when defining an exception
class.

9 Performance Issues
9.1 Suppressing Checks. Language-
defined checks are always performed, and
cannot be suppressed.

9.2 Exceptions are precise. The JLS
states in 11.3.1: “Exceptions are precise:
when the transfer of control takes place, all
effects of the statements executed and
expressions evaluated before the point
from which the exception is thrown must
appear to have taken place. No expres-
sions, statements, or parts thereof that

guage-defined check at the exact place
where it occurred in a sequence of state-
ments.

10 Concurrent Programming
10.1 Concurrent Constructs. The concur-
rent constructs in Ada are tasks and pro-
tected objects. A task is a lightweight
process and corresponds to a thread in
other languages. A protected object is like
a monitor, with possible barrier conditions.
It provides access in mutual exclusion to
some internal data structure. Since a pro-
tected object is a passive entity, handling of
exceptions does not lead to any specific
problems. With regard to exception han-
dling, protected operations are not different
from normal operations.

As we will see, the predefined exception
Tasking_Error is related to general commu-
nication failures between tasks.

10.2 Activation of a Task. The execution
of a task begins with an activation phase.
During this activation phase, entities local
to the task are created; technically speak-
ing, the declarations of the task body are
elaborated. If an exception is raised during
that activation phase, then the activation
fails and the task becomes completed
(completes its execution), and the pre-
defined exception Tasking_Error is raised
in the task that created the new task and
initiated its activation.

10.3 Synchronization between Tasks.

Direct synchronization between tasks is
performed through a rendezvous. One
task, the client task, calls an entry of
another task, the server task. The server
occur after the point from which the excep-
tion is thrown may appear to have been
evaluated. If optimized code has specula-
tively executed some of the expressions or
statements which follow the point at which
the exception occurs, such code must be
prepared to hide this speculative execution
from the user-visible state of the program.”

10 Concurrent Programming
10.1 Concurrent Constructs. The concur-
rent constructs in Java are threads and
synchronized statements (including syn-
chronized methods). A thread is a light-
weight process and corresponds to a task
in Ada. Threads never interact directly.
Synchronized statements are used to
arrange mutually exclusive access to a
shared object across several threads: only
one thread at a time is allowed to execute
the block of statements of the synchronized
statement. A synchronized statement
therefore protects a region of code, and is
close to a critical section bracketed by
explicit acquire and release semaphore
operations. The behavior of synchronized
statements is described in the JLS in terms
of locks. There is a lock associated with
each object, i.e. with each instance of the
class Object, but the programmer does not
handle locks directly. The syntax of the
synchronized statement is the following:

synchronized (Expression) Block

The Expression must be a reference type.
Before starting execution of the Block, the
current thread locks the lock associated
with the referenced object. At completion of
the Block, be it normally or abruptly, the
lock is unlocked.

A single thread is permitted to lock a lock
more than once.

A synchronized method is a notational con-
venience for enclosing the method body in
a synchronized statement. For a class

task serves such an entry call by executing
an accept statement. If the server task is
ready for serving the call, then the rendez-
vous takes place immediately. Otherwise,
the calling task is queued, and will have to
wait for the rendezvous to take place. Dur-
ing the rendezvous, information can be
interchanged between the two tasks by
passing parameters.

If an exception is raised during a rendez-
vous, i.e. the service to be provided by the
called task ends by a not handled excep-
tion (i.e. the accept statement raises an
exception and does not handle it), then it is
propagated into both tasks as the same
exception. This mechanism can be used by
a server task to inform a caller task about
some event.

During a rendezvous, if the called task is
aborted, then the exception Tasking_Error
is raised in the calling task. On the other
side, if the calling task is aborted, the called
task is not affected, and the rendezvous
will be completed in a somewhat unusual
way.

Tasking_Error is also raised in all tasks
waiting on an entry when a task completes.
Calling an entry of a task that is already
completed also raises Tasking_Error in the
caller.

10.4 Non Handled Exception in a Task. If
an exception is not handled by a task at all,
then, like the main program, the task is
immediately completed and the exception
is lost; it is not propagated to the parent
unit. Tasks die therefore silently.

10.5 Syntax.
task_body ::=

task body defining_identifier is
declarative_part

begin
handled_sequence_of_statements

end [task_identifier];
accept_statement ::=
(static) method, the lock associated with
the Class object is used. For an instance
method, the lock associated with “this”, i.e.
the current instance, is used.

Usually, all methods of a class designed for
concurrent use will be synchronized. The
approach results in monitor-like object
instances, since all method calls to an
object instance are synchronized on this
same instance. Note that the approach
leaves ample room for programming
errors, since the approach does not force
all methods to be synchronized, even if
they need to be protected.

10.2 Starting a Thread. A thread is cre-
ated by creating an object of the built-in
class Thread. The thread begins to run
when its start method is called. If the start
method is called for a running thread, it
throws the exception IllegalThreadStateEx-
ception.

10.3 Communication between Threads.

Communication between threads is always
performed by means of shared objects.
The language rules guarantee that proper
use of synchronization constructs result in
reliable transmission of values or sets of
values from one thread to another through
shared objects.

10.4 Thread Coordination. The methods
wait, notify and notifyAll of class Object,
and the methods join, interrupt, yield and
sleep of the class Thread support coordi-
nation between threads (one could say
“synchronization”, but this might cause
confusion with synchronized statements).
Instead of spinning, by locking and unlock-
ing repeatedly an object, a thread can sus-
pend itself by using wait until another
thread awakens it using notify or notifyAll.

The behavior can be explained by so-
called wait sets.

Every object, in addition to having an asso-

accept entry_direct_name [(entry_index)]
 parameter_profile

[do handled_sequence_of_statements
end [entry_identifier]];

entry_index ::= expression

entry_body ::=
entry defining_identifier

entry_body_formal_part entry_barrier is
declarative_part

begin
handled_sequence_of_statements

end [entry_identifier];

11 Generics
Ada has a powerful concept of generic
units, i.e. generic subprograms and generic
packages. A generic unit is a template of
an ordinary unit, either a package or a sub-
program. The instantiation of a generic unit
will yield an ordinary unit, i.e. either a sub-
program or a package. Instantiation can be
thought of as a kind of macro-expansion.
The formal parameter of a generic unit can
be an object (a constant or variable), a
type, a subprogram, or a package. Note
ciated lock, has an associated wait set,
which is a set of threads. When an object is
first created, its wait set is empty. If a
thread wants to call the method wait on an
object, it must first acquire a lock on that
object. Otherwise, wait will throw an Illegal-
MonitorStateException. The effect of call-
ing the wait method on a synchronized
object will result in placing the current
thread in the object’s wait set after the
thread has released all locks on the object.
Another tread can then awaken such a dor-
mant thread by first acquiring a lock on the
object owner of the wait set and calling
then the notify or notifyAll method on it.

If a waiting thread is interrupted by another
thread, then the wait method completes
abruptly by throwing InterruptedException.

10.5 Non Handled Exception in a
Thread. If an exception is thrown in a
thread, and no handler is found for that
exception, then the method uncaughtEx-
ception is invoked for the ThreadGroup
that is the parent of the current thread.
Every effort is therefore made to avoid let-
ting an exception go unnoticed.

As usual, a subclass of ThreadGroup can
override the uncaughtException method,
and the programmer can therefore take
care of dealing with exceptions not handled
in a thread, or more precisely, in any thread
of a given thread group.

11 Generics
There are no generic classes in the current
version of Java.

that it cannot be an exception.

For all entities declared within a generic
unit, each instantiation will get its “own cop-
ies”, and this also holds for exceptions. As
stated by the RM: “If a generic unit includes
an exception_declaration, the
exception_declarations implicitly generated
by different instantiations of the generic
unit refer to distinct exceptions (but all have
the same defining_identifier).”

	A Side-by-Side Comparison of Exception Handling in Ada and Java
	1 Introduction
	2 Overview of the Contents
	3 Acknowledgement
	4 References

	Ada
	1 Language Summary
	1.1
	1.2
	1.3
	1.4
	1.5
	1.6
	1.7

	2 Exception Names and Exception Occurrences
	2.1 Terminology
	2.2 Model
	2.3 Exception Declaration

	3 Predefined Exceptions
	4 Raising an Exception
	4.1 Principle
	4.2 Raise Statement
	4.3 Language-Defined Check

	5 Language-defined Checks
	5.1 Constraint_Error
	5.2 Storage_Error
	5.3 Program_Error
	5.4 Tasking_Error

	6 Handling Exceptions
	6.1 Handled Sequence of Statements
	6.2 Syntax
	6.3 Example
	6.4 Dynamic Semantics

	7 Visibility of Exceptions
	8 Carrying Information with an Exception
	8.1 Name of an exception and message
	8.2 Package Ada.Exceptions
	8.3 Naming an Exception Occurrence in a Handler

	9 Performance Issues
	9.1 Suppressing Checks
	9.2 Exceptions and Optimization

	10 Concurrent Programming
	10.1 Concurrent Constructs
	10.2 Activation of a Task
	10.3 Synchronization between Tasks
	10.4 Non Handled Exception in a Task
	10.5 Syntax

	11 Generics

	Java
	1 Language Summary
	1.1
	1.2
	1.3
	1.4
	1.5
	1.6
	1.7

	2 Exception Classes and Instances
	2.1 Terminology
	2.2 Model
	2.3 Exception Declaration

	3 Predefined Exception Classes
	4 Throwing an Exception
	4.1 Principle
	4.2 Throw Statement
	4.3 Language-Defined Check

	5 Language-defined Checks
	5.1 RuntimeException and Error
	5.2 VirtualMachineError: Lack of Memory.
	5.3 LinkageError: Consistency of Program
	5.4 Thread-Related Exceptions

	6 Catching Exceptions
	6.1 Try Statement
	6.2 Syntax
	6.3 Example
	6.4 Dynamic Semantics.

	7 Checked and Unchecked Exceptions
	7.1 Throws Clause
	7.2 Checked and Unchecked Exceptions

	8 Carrying Information with an Exception
	8.1 Message
	8.2 StackTrace
	8.3 Example
	8.4 Additional Information

	9 Performance Issues
	9.1 Suppressing Checks
	9.2 Exceptions are precise

	10 Concurrent Programming
	10.1 Concurrent Constructs
	10.2 Starting a Thread
	10.3 Communication between Threads
	10.4 Thread Coordination
	10.5 Non Handled Exception in a Thread

	11 Generics

