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Abstract: For years computer engineers have dealt with the problems associated with transfer 
of binary data between systems of different bit and byte order – Big-Endian (most significant 
first) vs. Little-Endian (least significant first). In this article, existing techniques are extended 
to develop a new, systematic method for coding Ada record component representations so that 
the same declaration may be used to define an input/output object of a communications link 
(or “flat” file) to achieve complete endian independence.  The uniqueness of this approach is 
that rather than dealing with byte swapping at the lowest level where the fields of the most 
nested record components are defined, a single, simple byte-swap is done at the outermost 
level of the multi-field object. This technique works for multi-layered, nested records as well as 
for records with fields that consume partial, contiguous bytes. It is especially well suited for 
implementation where endian independence has not been anticipated in the design. The only 
special case is that of array components which require a simple pre/post fix-up. Some potential 
pitfalls and compiler issues are discussed.  

 
 
Introduction 
 

Hardware and software designers and developers alike have long struggled with bit and byte order issues. 
Well before the key terms were coined by Danny Cohen in his humorous and informative paper2, the difference 
in the order of transmission and internal memory layout of multi-bit and multi-byte objects has been the source 
of frustration and annoyances, if not difficult problems. These issues come into the clearest focus when binary 
data transfer is required between different systems. Big-Endian (BE) systems are those which send first or store 
at the lowest address (“0”, usually) the byte and bit of most significance (MSB first). Others, known as Little-
Endian (LE), send first and give the lowest address to the element of least significance (LSB first). There are 
many good discussions of this issue3 in addition to Mr. Cohen’s article already cited. For those not familiar with 
the Big-, Little-Endian issue or for those wishing to brush up on the details I recommend Microprocessors: A 
Programmer's View (Computing That Works) (Hardcover) by Robert B. K. Dewar, Matthew Smosna, McGraw-
Hill . 

 
Network communication is the most common battleground for “endian wars”. However, file data written in 

a serial or streaming fashion (to a UNIX “flat” file) such as that done by the UNIX function “write”, may also 
                                                           
1 EADTB is a robust, multi-purpose, event-driven simulation and modeling tool kit with emphasis on user 
control and flexibility. It is designed for battle-space modeling of land, sea, space, and airborne assets.  It is a 
product of the United States DOD Office of Technical Integration & Interoperability (OTii), Huntsville, 
Alabama. For more information see www.eadtb.com. 
2 Cohen, Danny, "On Holy Wars and a Plea for Peace" [USC/ISI IEN 137, dated April 1, 1980]. Mr. Cohen 
associates the two ways of ordering of bits and bytes with the dispute in Jonathan Swift’s Gullivers Travels 
between the Big-Endians, who broke their eggs only at the big ends, and the Little-Endians, who broke theirs 
only at the little ends.  
3 He, Kevin Kaichuan,  “Byte and Bit Order Dissection”, is one which I recently read off the internet at 
http://www.linuxjournal.com/article.php?sid=6788 



present endian problems. For example, it may be desirable to read or write files on opposite endian systems so 
that they can inter-operate in some way. Endian independence can sometimes ease the task of re-hosting a 
process to a system of different endianness. Consider, for example, a multi-process software system that has 
network communication components. If the communicating components were written to be endian independent, 
these processes could be re-hosted in stages, one process at a time. Similarly, if the re-host subject used 
persistent data files, it could be used on either system as it was being ported. 
 

Just as endian problems have been around for some time, so have methods of dealing with them. In the case 
of network messages, one technique is to restrict multi-byte data at the point of communication to one of several 
simple types such as 1-, 2- or 4-byte integers and floats.  Then calls are made to one of a few simple functions to 
byte-swap these objects before sending (htons, htonl4) or receiving (ntohs, ntohl5). On systems whose internal 
order is the same as network order, these routines do not alter their input data6. But on systems with opposite 
order, they perform the required byte swap. The External Data Representation Standard  (XDR) is another much 
more flexible and extensive mechanism which provides for communication of complex data types including 
arrays as well as C-like structures and unions. In Ada 95 software systems, Ada.Streams and its child package, 
Stream_IO7, provide a mechanism to capture the input and output of object components at their lowest level.  
The T‘Write’ and T‘Read’ routines give opportunity to make whatever byte or bit conversions that may be 
necessary before or after output/input. 
 

This paper presents yet another method of dealing with endian order in an Ada program. It is especially 
suited to those cases where the requirement for endian independent I/O was not anticipated in the original 
software design or when compatibility of data files or communications is needed when re-hosting software to an 
opposite endian system. This method also has the advantage of being suitable for Ada 83 software with a small 
inconvenience of having to hardcode the few constants differently depending on the “endianness” of the system. 
 
Existing Methods Extended 
 

In a 1994 Ada Letters article8, Norman Cohen presented a helpful method of representing Ada 83 record 
components in a way that confines the endian dependence to a few constants. One constant is 
Rightward_One_Bit, which is given a value of +1, or –1, indicating the change in bit number as one 
proceeds from left to right through a storage unit. In addition to this value, there is one additional constant for the 
size of each component data type being represented. It is set to the number of the most significant bit for that 
component size. If bytes (8-bits), 16-bit halfwords, 32-bit words, and 64-bit doublewords are to be represented, 
the following are required: 
 

for Big-Endian systems: 
Byte_MSB_Number       : constant :=  0; 
Halfword_MSB_Number   : constant :=  0; 
Word_MSB_Number       : constant :=  0; 
DoubleWord_MSB_Number : constant :=  0; 
Rightward_One_Bit     : constant := +1; 

 
and for Little-Endian systems: 

Byte_MSB_Number       : constant :=  7; 
Halfword_MSB_Number   : constant := 15; 
Word_MSB_Number       : constant := 31; 
DoubleWord_MSB_Number : constant := 63; 
Rightward_One_Bit     : constant := -1; 

 

                                                           
4 Host TO Network Short or Long, hton[sl]. 
5 Network TO Host Short or Long, ntoh[sl]. 
6 Network order is almost always Big-Endian. 
7 Ada.Streams, Ada Language Reference Manual, paragraph 13.13.1. 
8 Cohen, Norman, Ada Letters, Vol. XIV, No. 1, Jan/Feb 1994. 



On a Big-Endian machine the usual representation clause for the bits within a 32-bit word component, C, 
 

C at <byte-offset> range L .. R; 
 
may be written as: 
 

C at <byte-offset> range  
Word_MSB_Number + Rightward_One_Bit*(L+R) + L – R) / 2 .. 
Word_MSB_Number + Rightward_One_Bit*(L+R) – L – R) / 2; 

 
For Ada 83, this technique requires different coding for the definitions for the constants depending on the system 
bit order. However, with the advent of Ada 95 and the definitions in package System: 
 

type Bit_Order is (High_Order_First, Low_Order_First); 
Default_Bit_Order : constant Bit_Order9;  

  
these constants my be written in an endian-independent way such as: 
    

Byte_MSB_Number       : constant :=  
 Boolean'Pos(Default_Bit_Order = Low_Order_First) * 7; 
Halfword_MSB_Number   : constant :=  
 Boolean'Pos(Default_Bit_Order = Low_Order_First) * 15; 
Word_MSB_Number       : constant :=  
 Boolean'Pos(Default_Bit_Order = Low_Order_First) * 31; 
DoubleWord_MSB_Number : constant :=  
 Boolean'Pos(Default_Bit_Order = Low_Order_First) * 63; 
Rightward_One_Bit     : constant :=  
 1 - (2 * Boolean'Pos(Default_Bit_Order = Low_Order_First)); 

 
This makes the representation for, C, above to be completely endian independent.  
 

Building on the technique presented by Mr. Cohen, some algebraic manipulation and the definition of 
two additional constants, F1 and F2, yields a refinement that makes it a little more attractive and easy to 
visualize, so that we may write: 
 

C at <byte-offset> range MSBn + L*F1 + R*F2 .. MSBn + R*F1 + L*F2; 
 
or if preferred, swapping F1 and F2 rather than L and R in the upper bound: 
 

C at <byte-offset> range MSBn + L*F1 + R*F2 .. MSBn + L*F2 + R*F1; 
 
where 
 

n is the number of bits in the component being represented and 
 

MSBn : constant :=  
 Boolean'Pos(Default_Bit_Order = Low_Order_First) * (n-1); 
 
Rightward_One_Bit : constant :=  
   1 – 2 * Boolean'Pos(Default_Bit_Order = Low_Order_First)); 
 
F1 : constant := (Rightward_One_Bit + 1)/2;   
F2 : constant := (Rightward_One_Bit - 1)/2;   

                                                           
9 Default_Bit_Order is given the appropriate value on each specific system. 



 
-- for BE, F1 = +1; for LE, F1 =  0 
-- for BE, MSBn = 0; for LE, MSBn = n-1 
-- for BE, Rightward_One_Bit = +1; for LE, Rightward_One_Bit = -1; 
-- for BE, F2 = 0; for LE, F2 = -1 

 
Using this technique, representations are easy to churn out from their normal Big-Endian form. For example, 

consider the following 2-byte record consisting of a 3-bit color field, an 11-bit speed field and a 2-bit heading 
field. 
 

type Color_T is  (Red, Orange, Yellow, Green, Blue, Indigo, Violet); 
 for Color_T use (Red  => 1, Orange => 2, Yellow => 3, Green => 4, 
                  Blue => 5, Indigo => 6, Violet => 7); 
 For Color_T’size use 3; 
 
type Speed_T is mod 2**11; 
 for Speed_T’size use 11; 
 
type Heading_T  is (North, South, East, West);  
 for Heading_T use (North => 0, South => 1, East => 2, West => 3);  
 for Heading_T’size use 2; 

 
type Sighting_Rec is 
   record 
      Color   : Color_T; 
      Speed   : Speed_T; 
      Heading : Heading_T; 
   end record; 
for Sighting_Rec’size use 16; 

 
The representation for Sighting_Rec would normally be written in Big-Endian as: 

for Sighting_Rec use 
   record 
      Color   at 0 range  0 ..  2;  
      Speed   at 0 range  3 .. 13; 
      Heading at 0 range 14 .. 15; 
   end record; 

 
Using our endian independent shorthand, we can write the same clause as:  
 

MSB16 : constant :=  
 Boolean'Pos(Default_Bit_Order = Low_Order_First) * 15; 

 
-- for BE, F1 = 1, F2 = 0, and MSB16 = 0 
for Sighting_Rec use 
   record 
      Color   at 0 range MSB16 +  0*F1 +  2*F2 ..  
                         MSB16 +  2*F1 +  0*F2;    --  0 ..  2  
      Speed   at 0 range MSB16 +  3*F1 + 13*F2 ..  
                         MSB16 + 13*F1 +  3*F2;    --  3 .. 13  
      Heading at 0 range MSB16 + 14*F1 + 15*F2 ..  
                         MSB16 + 15*F1 + 14*F2;    -- 14 .. 15 
   end record; 

 
which, for the Little-Endian case, where F1 = 0, F2 = -1, and MSB16 = 15, evaluates to: 



 
for Sighting_Rec use 
   record 
      Color   at 0 range 13 .. 15;  
      Speed   at 0 range  2 .. 12; 
      Heading at 0 range  0 ..  1; 
   end record; 

 
Note that for the Little-Endian case, the fields of the record are in reverse order with Color at the end of the 
record instead of at the beginning.  
                                                                                                                                                                                                                  

This method of endian independent representation (using MSBn, F1, F2, L, R) is considerably more 
verbose than the standard (L .. R) , but there is a certain regularity about it that makes it quite manageable. 
The fact that it enables us to specify the same bits on a Big- or Little- Endian system using identical source will 
be, in many cases, worth the trouble. 
 
A New Twist 
 

Finally, we come to the challenge of input and output of multi-component records in an endian-independent 
manner – using the same code on both sides of the interface. As mentioned earlier, converting from one 
endianness to the other is usually accomplished by swapping the bytes of each low-level component before 
writes and after reads. What is presented here is an alternative whereby the entire record is converted to or from 
Big- or Little-Endian, by a single byte reversal of the entire record on the Little-Endian system before it is 
written and after it is read. But in order for this to work, the component bit ranges must be specified in a certain 
way.  
 

Normally when it is necessary to represent multi-component records, the bit range designations are made 
from a convenient byte offset within the record. A 1-byte integer field, Int_8, for example, located at the end 
of a 7-byte (T‘size = 56) record would be designated as: 
 

Int_8 at 6 range 0..7; 
 
However, the quite acceptable and exact equivalent of this is  
 

Int_8 at 0 range 48..55; 
 

In order for the wholesale byte reversal technique to accomplish endian conversion, every component of the 
entire record (and sub-records, if any) must be represented at offset ‘0’, using bit numbers from ‘0’ to the 
number of bits in the record type minus one (T‘size - 1). As an example, let’s define a record containing an 
Integer (32-bits) and Sighting_Rec(16-bits) as defined above. 
 

type IO_Rec is 
   record 
      Int_32   : Integer; 
      Sighting : Sighting_Rec; 
   end record; 
for IO_Rec’size use 48; 

 
Normally the representation clause would be written with Int_32 at byte offset 0 and Sighting at byte offset 4 
like this: 
 

for IO_Rec use 
   record 
      Int_32   at 0 range 0 .. 31; 
      Sighting at 4 range 0 .. 15; 



   end record; 
 
However using the ‘at 0’ offset method, the equivalent is: 
 

for IO_Rec use 
   record 
      Int_32   at 0 range  0 .. 31; 
      Sighting at 0 range 32 .. 47; 
   end record; 

   
Now using our shorthand, endian-independent technique this becomes, for Big-Endian: 
 

MSB48 : constant :=  
   Boolean'Pos(Default_Bit_Order = Low_Order_First) * 47; 
for IO_Rec use 
   record 
      Int_32   at 0 range MSB48 +  0*F1 + 31*F2 .. 
                          MSB48 + 31*F1 +  0*F2;  --  0 .. 31 
      Sighting at 0 range MSB48 + 32*F1 + 47*F2 .. 
                          MSB48 + 47*F1 + 32*F2;  -- 32 .. 47                     
end record; 

        
which for Little-Endian (MSB48 = 47, F1 = 0, F2 = -1) evaluates to: 
 

for IO_Rec use 
   record 
      Int_32   at 0 range  8 .. 47; 
      Sighting at 0 range  0 .. 16; 
   end record; 
My_IO_Rec : IO_Rec; 

 
Now let’s suppose that an instance of IO_Rec is assigned the following: 

 
My_IO_Rec.Int_32           := 16#0c0a0f0e# 
My_IO_Rec.Sighting.Color   := Orange;   -- value 2, bits  0 ..  2 
My_IO_Rec.Sighting.Speed   := 16#122#   --          bits  3 .. 13 
My_IO_Rec.Sighting.Heading := South;    -- value 1, bits 14 .. 15; 

 
Let’s look at reversing the bytes of the Big-Endian version and see if we get the Little-Endian version. We have 
a total of 6 bytes that may be shown in their Big-Endian form as: 
 

  Byte:         0        1        2        3        4        5 
   Bit:  01234567 01234567 01234567 01234567 01234567 01234567 
Binary:  00000000 00001010 00001111 00001110 01000100 10001001 

   Hex/Field:     0   c    0   a    0   f    0   e cccsssss sssssshh 
 
To illustrate the byte inversion of the entire My_IO_Rec we can leave the data in place and show Little-Endian 
numbering of bits and bytes: 
 

  Byte:         5        4        3        2        1        0 
   Bit:  76543210 76543210 76543210 76543210 76543210 76543210 
Binary:  00001100 00001010 00001111 00001110 01000100 10001001 

   Hex/Field:     0   c    0   a    0   f    0   e cccsssss sssssshh 
                                                         
Or we can swap bytes of data and renumber the bit positions: 
 



  Byte:         0        1        2        3        4        5 
   Bit:  76543210 76543210 76543210 76543210 76543210 76543210 
Binary:  10001001 01000100 00001110 00001111 00001010 00001100 

   Hex/Field:  sssssshh cccsssss    0   e    0   f    0   a    0   c  
 
Recalling the Little-Endian representation clauses for both the outer IO_Rec and the Sighting_Rec, we find 
the Little-Endian layout in place as expected for all fields: 
 

Sighting.Heading (‘hh’)          at bits  0 ..  1 
Sighting.Speed   (‘sssssssssss’  at bits  2 .. 12 
Sighting.Color   (‘ccc’)         at bits 13 .. 15 
Int_32           (0x0c0a0f0e)    at bits 17 .. 47  

 
Let’s take a closer look at the Sighting sub-record and in particular to the Speed field since it is 

comprised of bits from contiguous bytes. Expanding Big-Endian bytes 4 and 5 and introducing “x0 .. xn” 
nomenclature, we have 
 

                     4                         5  (byte number) 
0  1  2  3  4  5  6  7    0  1  2  3  4  5  6  7  (bit pos’n in byte) 
0  1  2  3  4  5  6  7    8  9  10 11 12 13 14 15 (bit pos’n from 0) 
c2 c1 c0 s10s9 s8 s7 s6   s5 s4 s3 s2 s1 s0 h1 h0 (data field bits) 
0  1  0  0  0  1  0  0    1  0  0  0  1  0  0  1  (bit values we set) 
 

where c0 .. c2, s0 .. s10, h0 .. h1 are the bit ranges for Color, Speed, and Heading 
respectively, and where x0 is the LSB and xn is the MSB for a field of n+1 bits. Inverting it within the 5 byte 
message stream and viewing Little-Endian bytes 0 and 1 
 

                     0                         1  (byte number) 
7  6  5  4  3  2  1  0    7  6  5  4  3  2  1  0  (bit pos’n in byte) 
7  6  5  4  3  2  1  0    15 14 13 12 11 10 9  8  (bit pos’n from 0) 
1  0  0  0  1  0  0  1    0  1  0  0  0  1  0  0  (bit values we set) 
s5 s4 s3 s2 s1 s0 h1 h0  c2 c1 c0 s10s9 s8 s7 s6  (data field bits) 

 
we can see the correspondence of the Speed field bits s0 .. s10 of the Big-Endian bits 3 .. 13 and the 
Little-Endian bits 2 .. 12. Similarly, we find the Color and Heading bits, c0..c2 and h0 .. h1 in 
place at 14 .. 15 and 0 .. 1, respectively. 
 
Implementation 
 

Wholesale byte reversal of the I/O record type may be accomplished with a single generic procedure or 
function such as: 
 

generic 
   type Record_type is private; 
procedure Order_Bytes (IO_Record : in out Record_Type); 

     or 
generic 
   type Record_type is private; 
function Order_Bytes (In_Val : Record_Type) return Record_Type; 

 
There are a few issues with this method that should be pointed out. Probably the most significant is the 

failure of this method to render array components directly usable. On the Little-Endian system after reading and 
byte swapping the record and before byte swapping in preparation for a write, any array components must be 
inverted, otherwise My_Array [My_Array’first] will address My_Array [My_Array’Last] and 
vice versa. This inversion is easily done for all array component types of byte size or larger with a single generic 
procedure with the following spec: 



 
generic 
   type Array_Type is private; 
   type Array_Component_Type is private; 
procedure Invert_Components (IO_Array : in out Array_Type); 

 
For those whose components are bit-packed such as a packed array of 1-bit boolean, a custom generic or a non-
generic solution is needed. Interestingly, there is an outstanding enhancement request10 at Ada Core 
Technologies (ACT) to implement 
 

pragma Invert_Array_Indexing (array-type, Bit_Order) 
 

which would be an extremely clean and efficient way to accomplish the required reversal in these cases. 
 

A second issue has to do with the sub-optimal component alignment which could result from inverting a 
record whose components meet alignment requirements in the Big-Endian version, but which are not met in the 
inverted version. This can happen if the record T’size is not a multiple of the largest alignment requirement 
for the components in the record. This misalignment can be prevented by either of two alternatives. The first is 
by specifying an increased T’size11, rounding it up to the next multiple of the largest alignment needed, for 
example: 

 
type Pad_24_Bits_Array_T is array 1..24 of Boolean; 
 for Pad_24_Bits_Array_T’size use 24 

 
type IO_Rec is 
   record 
      Int_32        : Integer; 
      Sighting      : Sighting_Rec; 
      Alignment_Pad : Pad_24_Bits_Array_T; 
   end record; 

 
for IO_Rec use 
   record 
      Int_32        at 0 range MSBw +  0*F1 + 31*F2 .. 
                               MSBw + 31*F1 +  0*F2;  --  0 .. 31 
      Sighting      at 0 range MSBw + 32*F1 + 47*F2 .. 
                               MSBw + 47*F1 + 32*F2;  -- 32 .. 47                 
       

            Alignment_Pad at 0 range MSBw + 48*F1 + 63*F2 .. 
                               MSBw + 63*F1 + 48*F2;  -- 48 .. 63                 
end record; 
for IO_Rec’size use 64; 

 
In cases where you are not at liberty to change the size of the communicated record, go ahead and build the 

poorly aligned endian independent records to do the I/O.  Then create a well aligned working record and have 
the I/O processing (after/before doing the endian-independent swaps and inversions as required) include a copy 
to/from this working record if necessary (little-endian only), thus isolating the inefficiency associated with sub-
optimal alignment to a single load/store sequence. For example, after reading My_IO_Rec into a Little-Endian 
system: 
 

My_Aligned_Work_Rec.My_Long_Float := My_IO_Rec.My_Long_Float; 

                                                           
10 Tracking number TN9103-010. 
11 Adding a padding field at the end of the record may also be preferred so as to keep all bits in the record 
addressable. 



My_Aligned_Work_Rec.My_Tiny_Int   := My_IO_Rec.My_Tiny_Int; 
 

and before any other processing when writing My_IO_Rec from a Little-Endian system: 
 

My_IO_Rec.My_Long_Float := My_Aligned_Work_Rec.My_Long_Float; 
My_IO_Rec.My_Tiny_Int   := My_Aligned_Work_Rec.My_Tiny_Int; 

 
The use of derived types here could also offer a convenient solution. 
 

A third consideration is actually a caution against inadvertently cascading this technique with any other of 
the more traditional approaches. For example, if Ada.Streams is used, be sure that the T‘input and T’Output 
routines have not already been coded to include byte swapping. Likewise any other I/O software you are already 
using may take endianness into account. 
 
Summary 
 

By (1) defining a few constants, (2) coding record representation clauses using ‘0’ byte offsets for each 
component, and (3) performing wholesale byte reversal of the I/O record just before output and after input (on 
Opposite-Endian12 systems), complete endian independent communications or file I/O can be accomplished.  
Identical source code may be used in Ada 95 regardless of the endianness of the target. For Ada 83 a few 
constants, namely Rightward_One_Bit and all MSBn, will require adjustments either manually or via a 
preprocessor.  This technique is well suited for retrofitting software where endian issues were not a design 
consideration. It also may be helpful when re-hosting software from one type system (BE or LE) to the other. 
There are two important special considerations when using this technique. First, array components must have 
their elements reversed before the inversion of the record on writing and after inversion on reading. And second, 
records should be padded. if possible, so that their T’size is a multiple of the largest component alignment 
requirement. 

  

                                                           
12 Here we have assumed Big-Endian network and file byte order as well as Big-Endian baseline representation 
clauses. The technique, however, works equally well if the “opposite” assumptions are made. 


