

A Comparison of Ada and Pascal
in an Introductory Computer Science Course

Major Jeanne L. Murtagh, USAF Lt. Col. John A. Hamilton, Jr., US Army
Software Professional Development

Program
D/Electrical Engineering & Computer Science

Air Force Institute of Technology United States Military Academy
Wright-Patterson AFB, OH 45433-7765 West Point, NY 10996-1787

jmurtagh@afit.af.mil dj7560@exmail.usma.edu

1. ABSTRACT

Pascal’s long and successful run at West Point
illustrated Winston Churchill’s dictum that, “The
absence of alternatives clears the mind wonderfully.”
However, by the mid-90s, the United States Military
Academy was finding that Pascal, long the educational
workhorse, was no longer the clear choice for serious
computer science education. The decision was taken to
evaluate alternatives to Pascal. The criteria selected for
programming language evaluation were student
learning outcomes based on course goals and
objectives. The controlled educational environment of
a service academy provides an excellent opportunity to
conduct research using control groups and
experimental groups. We conducted a side by side
comparison of the use of Pascal, which was specifically
designed for instructional purposes, and Ada in an
introductory course. The experiment demonstrated
that students were much more successful in Ada than
in Pascal, and led to the revision of the Academy core
curriculum to use Ada 95 in our introductory computer
science class. This paper discusses the details of our
comparison, citing specific examples to illustrate a
rational basis for evaluating programming language
features against course objectives.

Introduction

Every cadet who attends West Point is required to
complete CS 105, Introduction to Computers and
Programming. CS 105 is a CS 0 course by ACM
standards. The course is one semester long, with thirty-
four lessons of fifty-five minutes and six two-hour labs. CS
105 consists of three parts: ten lessons on computer
concepts, twenty-three lessons on problem-solving through

programming, and seven lessons on the use of office
automation applications. This paper is based on the results
from the programming block of the course.

2. SETTING THE STUDY PARAMETERS

The primary issues in any curricular decision regarding CS
105 are the goals and objectives of the course:

CS105 Course Goals
• Become familiar with the fundamental concepts of

computer science
• Develop proficiency in an engineering problem solving

and design methodology
• Understand the importance of advanced information

technologies

CS105 Course Objectives
• Use computers and application software as tools to

solve problems
• Analyze, design, build and test operational solutions
• Apply the building blocks of Sequence, Selection, and

Iteration as the foundation of algorithmic processes
• Learn to exploit the educational and professional

resources available on the Internet and World Wide
Web

• Develop a framework for considering the ethical
implications of advanced information technology

While it is clear that a high order programming language is
needed to achieve several of these goals and objectives,
there are many languages that have the potential to be
successful. The Reid Report, compiled and updated by Dr.
R. J. Reid of Michigan State University[10], indicates that
the primary programming languages in academic use today
are, in no particular order, Ada, C/C++, Pascal, Modula
and Scheme. We considered a number of issues as we
decided which language(s) to evaluate as a replacement for
Pascal, and determined that many of those languages could
be eliminated from further consideration. The unsuitability
of C and C++ for educational purposes is well documented.
The confusing syntax is detailed in [9], and the lack of
standardization of C++ is discussed in [1]. Even with the
recent successful balloting of the C++ standard, popular

C++ compilers come with many proprietary features.
There was little perceived gain in moving from one flavor
of Pascal to one flavor of Modula. Scheme is not used
anywhere at West Point and there was little or no faculty
expertise in Scheme, whatever its merits. At the time of
the study, Java was not well-known and the procurement of
a large number of Java compilers was considered
imprudent. Ada seemed to be the best choice for further
consideration.

However, there were some concerns about the complexity of
the language and its development environments. Ada is
renowned as an excellent language for very large software
development projects. It is a powerful language with many
features which support advanced software engineering
concepts. And Ada is still without peer in the high
reliability domains [7]. Would the language, as some have
claimed, be too complicated for novices for whom
readability and simple syntax are more important
pedagogical requirements [11]? We were also concerned
about availability of a suitable development environment.
The compiler environment used in CS 105 must have
strong ease-of-use features and run efficiently on the desktop
computers. PC-targeted Ada compilation environments did
not meet these requirements a few years ago. However, the
development of low-cost, high-quality Ada compilers
combined with more powerful desktop PCs warranted
consideration of Ada for our CS 0 course. Hence, our
hypothesis was born: Ada would be a good replacement for
Pascal in our CS 105 class.

It was important for us to have sound evidence that this
hypothesis was true. Although Ada has been used
successfully in many computer science programs, so have
many other programming languages. Many of the success
stories are anecdotal in nature [8]. The rigorously
structured USMA curriculum and the large number of
students (more than 30 sections of CS 105, with 18
students per section, each semester) required more than
anecdotal evidence or professorial whim before changing
languages, particularly since Pascal had been designed
specifically for teaching.

3. CONDUCT OF THE EXPERIMENT,
SPRING 1995

We conducted a “side by side” comparison of the impact of
Pascal and Ada on the success of our CS 105 students. An
instructor who was proficient in both Pascal and Ada was
selected. Then we selected one "average" CS 105 section
as the experimental group, which would use the Ada
programming language. The primary control group was
formed by the two Pascal sections taught by the
experimental group’s instructor. We also evaluated the
performance of this control group against the Pascal
sections taught by other instructors, to ensure that any
performance differences could be attributed to the languages
and not the instructor.

Every effort was made to minimize differences between the
experimental and control groups. The students and lesson
content were very similar in both groups. The section
identified as the experimental group was “average.”
Students were not specially selected for this section. These
students had “average” GPAs. A few students had some
previous programming experience, but most did not. The
same concepts and programming constructs were covered,
lesson by lesson, with each group. For example, the
second programming lesson focused on basic input and
output for the keyboard and monitor. The control group
learned about read, readln, write and writeln,
while the experimental group learned about get,
get_line, put and put_line.

4. RESULTS OF THE EXPERIMENT

The results of the experiment were instructive. We studied
the impacts that a programming language made on
achieving our course objectives. We determined that
programming language choice affected students’
understanding of software engineering constructs and their
ability to grasp how real-world objects are represented in a
computer. We also observed the impacts of syntax and
development environments on novice programmer
outcomes. We note that there were no significant
differences between the performance of the Pascal sections
taught by the experimental group instructor and the rest of
the Pascal sections taught that semester. Therefore, we are
confident that the results below can be attributed to
differences in the two programming languages.

4.1 Early Support for Software Engineering

Ada supports the early introduction of software engineering
concepts [6]. We found that use of library units
communicated the concepts of encapsulation, abstraction
and reuse very effectively to the experimental group. This
was apparent as students wrote their first program using a
simple output statement. Similar learning outcomes were
not achieved in the control group.

In Pascal, input and output appear to students to be
automatically provided by the compiler. The predefined
Pascal subprograms write and writeln were easy to
use. However, students in the control group did not
readily recognize that Pascal input and output capabilities
are actually predefined subprograms which were written by
other programmers and must be linked with the student’s
code.

In Ada, standard input and output are encapsulated in the
package Ada.Text_IO. The important learning outcome
occurs because the students realize that they are using a
predefined library unit and explicitly linking it into their
program. Examination of the contents of the Ada.Text_IO

package reveals additional examples of encapsulation.
Students see that the input-output routines for predefined
types are encapsulated in generic subpackages within the
Ada.Text_IO package.

Examination of this library unit is instructive in other
ways. Students are able to conceptualize that a generic is a
template for several analogous subprograms without having
to dive into the implementation details too early. Students
in the experimental group also learned that they could
utilize Ada.Text_IO routines simply by studying the
package specification without worrying about the
implementation details in the package body -- abstraction at
the most basic level.

Employment of the Ada library units also demonstrated an
elementary example of reuse. It can be successfully argued
that reuse at the library unit level is where most software
reuse actually occurs.

Consider the two programs below:

WITH text_io;
PROCEDURE hello IS
BEGIN

text_io.put_line(“hello world”);
END hello;

program hello;
begin

writeln(“hello world”);
end.

The two programs are of approximately the same level of
coding difficulty. Reading a package specification and
elementary use of a library unit were not difficult for our
students. Yet the Ada version provides more learning
power as it forces the student to address abstraction,
encapsulation and reuse at an appropriate introductory level.

4.2 How Computers Work

The first course goal of CS 105 is to become familiar with
the fundamental concepts of computer science. While it is
desirable to program at a high level of abstraction, it is also
important for the students to understand what is “going on
under the hood.” We observed that students in the Ada
section did markedly better on their final examinations
overall, but particularly in the area of computer science
fundamentals. The Ada students seemed to have a much
easier time understanding the differences among types,
variables of those types and the real world entities they
represent.

For novice programmers, implicit type conversions (as
provided in Pascal) hide the fact that different data types are
represented differently inside the computer. In contrast, the
explicit type conversions required in Ada reinforce this
concept at the cost of only a few keystrokes.

It is also important for beginning students to know
something about the internals of the machines they are
working on, and programming in Ada helps students
appreciate this. Consider the difference between the
mathematical concept of an infinite set of integers and the
constraints imposed on the finite set of integers which can
be represented by a machine architecture.

In Ada, a constraint error is raised when a programmer
attempts to assign a value greater than 32,767 to a 16-bit
integer. This makes it easy for novice programmers to
recognize that an error has occurred, and to understand, at
least at a conceptual level, what caused the error.

When this same error is committed in a Pascal program,
the results can be very confusing to a novice programmer.
For example, in Turbo Pascal for Windows Version 1.5,
adding 5,000 to 30,000 results in a negative number (due
to the arithmetic overflow resulting from exceeding the
upper limit on a 16-bit integer stored using a 2's
complement representation -- concepts which are not
immediately obvious to a student who is just embarking
on computer science studies). No error message is
provided; the program simply produces the wrong result. If
this is the final result, a student may notice this "strange"
behavior. In that case, the student's initial reaction is
usually disbelief that the computer is incapable of simple
addition! If this addition is embedded in intermediate
calculations, it might not even occur to a novice
programmer to evaluate the addition as a source of the error.
"How could it be possible that the computer cannot simply
add two integers together? I don't even need to check
that!" thinks the student who has not yet learned to
differentiate between mathematical concepts and the
implementation of these concepts on the computer.

4.3 Error Detection and Correction

Ada can make it easier for novice programmers to detect
and correct errors. These features were evident at both
compile time and run-time. Strong typing and
concomitant type checking produce a compilation error if
the problem can be detected at compile time. Otherwise,
an exception is raised at run-time. The numeric overflow
discussed above raises the exception, constraint_error.

Strong typing in Ada forces students to pay more attention
to the significance of data types. As previously noted, this
supports student understanding of data representation
issues. This also makes it easier for students to detect
problems early. We consider the arguments (excuses) for
weak data typing to be largely without merit even for more

advanced programming students, and believe that such
“features” clearly have no place in introductory instruction.

The power of the Ada exception mechanism manifests itself
even in an introductory course. Our novices were able to
reference their unhandled exceptions in the Ada Language
Reference Manual and determine why their programs were
failing.

4.4 Syntax Issues

Small -- but significant -- differences exist between the
syntax of Pascal and Ada:

• Semicolon usage
• Inclusion of a block of statements in

structured programming constructs
• Treatment of formal parameters

These differences had a critical effect on students’ success.

Semicolons terminate statements in Pascal; they separate
statements in Ada. Therefore, in Ada, semicolons are
always placed at the end of every statement. In Pascal, a
semicolon is placed at the end of a statement unless that
statement is embedded in a special position in another
statement which you do not want to terminate
immediately. For example, the Pascal statement “x := y *
5.0; “ would normally include a semicolon. However, if
that same statement is located as shown below, then it
must not be followed by a semicolon:

if (x < y) then
 x := y * 5.0
 {note: semicolon forbidden; still inside if statement}

 else
 x := y * 2.0;
 {note: semicolon required; terminates if &
 assignment
statements}

This seemed inconsistent to the students in the control
group, who often inadvertently terminated an if
statement before its else clause with one misplaced
semicolon. This problem was exacerbated by the
insufficiently specific error message (“Error 113: Error in
Statement”) provided by the Turbo Pascal compiler under
these circumstances.

Students in the experimental group also benefited from
Ada’s clear syntax for identification of a block of statements
to be included inside a structured programming construct
(e.g., IF, CASE, WHILE, FOR). In Ada, reserved words
delimit the different parts of a structured programming
construct. For example, here is the Ada syntax for a while
loop:

-- reserved words shown in upper case

WHILE boolean_condition LOOP

statement; -- repeat as
 -- neccesary

END LOOP;

Students may include as many statements as needed
between “loop” and “end loop.” The compiler provides a
useful (i.e., suitably specific) error message if a student
omits one of the required reserved words which serve as
delimiters for the while loop.

In Pascal, the syntax for a while loop is as follows:

while (boolean_condition) do
 statement;

If a student needs to include more than one statement in the
while loop, he or she must construct a compound statement
by “bracketing” the statements to be accomplished inside
the loop with a begin and end. If the student omits the
begin and end, the code will still compile – but only the
first statement will actually be executed inside the loop.
All remaining statements will be executed exactly once,
after the loop has terminated. This tends to produce output
which is very different from what the programmer intended,
and it can be a very difficult error for novice programmers to
detect.

The use of compound statements in Pascal, compared with
delimitation using reserved words in Ada, is also an issue
with selection constructs (if, case). Omission of the
begin/end pair for selection constructs causes compile-time,
rather than run-time, errors. While these errors are easier to
detect and correct than the run-time errors which occur with
repetition constructs (while, for), they still prevented many
of our control group students from completing quizzes and
graded labs. This was due, in part, to the cryptic “Error
113: Error in Statement” message provided by the Turbo
Pascal compiler, and we admit that a better error message
might have helped the control group find this error more
quickly for selection constructs. We note, however, that
even a better compile-time error message would not resolve
the difficulties generated when the begin/end pair is omitted
in repetition constructs.

We observed significant differences between the abilities of
the experimental and control groups to pass data between
procedures using parameters, and we attribute these
differences to language syntax.

In Ada, the rules governing formal parameters, including
the specification of their parameter passing mode and their
use inside procedures, are very clear and are enforced by the
compiler. Consider the following Ada procedure
specification:

PROCEDURE DoSomething
 (par1:IN integer;
 par2:IN OUT character;
 par3: integer);

Par1 is explicitly identified as an “in” mode parameter,
meaning that it is intended to be read but not changed.
Par3 is also an “in” mode parameter, because its mode is
not explicitly specified and “in” is the default. Any
attempt to write to an “in” mode parameter will cause a
compile-time error. Therefore, if a student simply forgets
to specify par3’s parameter passing mode and subsequently
tries to change that parameter’s value inside the procedure,
the compiler will notify the student of this error. Students
in the experimental group readily understood this concept,
and were able to quickly correct any errors in their
parameter passing modes.

In Pascal, parameter modes are much more confusing to
novice programmers. A parameter’s value can always be
changed inside a procedure. However, that value is not
passed back out of the procedure unless the parameter was
declared as a “var” parameter – and the syntax required to
do this is easily misunderstood by novice programmers.
Failure to include the “var” (either because it was omitted
completely, or because a student did not understand that
the “var” must be repeated after each semicolon which
appears in the parameter list) can lead to erroneous program
behavior that is very hard to debug. Consider the following
Pascal procedure header:

procedure DoSomething
 (par1: integer;

 var par2:char;
 par3:integer);

The values of all three parameters may be changed inside
procedure DoSomething. However, only the new value for
par2 will be returned to the calling routine. The new
values of par1 and par3 will be discarded, without any
notification to the programmer. We found this difference
especially critical for a CS 0 course such as CS 105, in
which students lack the depth of understanding needed to
track down such subtle errors. This particular problem
caused many difficulties in our Pascal cadets’ second and
third graded labs.

4.5 Environment Comparison

A major concern at the outset of the experiment was that,
regardless of the merits of Ada, the available environments
might be too hard for novice programmers to use. If novice
students are unable to successfully work in the
environment, the merits of the language are immaterial.
Our students had no difficulty working in the then available
Ada environment. PC-based Ada environments now are

even better. One environment of particular interest is
AdaGIDE which was developed at the United States Air
Force Academy [3].

The control group used Turbo Pascal for Windows 1.5.
The experimental group used Meridian OpenAda 2.0 (an
Ada 83 environment.) The Turbo Pascal environment was
easier to use in many ways than the OpenAda environment.
However, the ease-of-use features of the Turbo Pascal
environment did not facilitate the desired learning
outcomes. The user-friendly Pascal environment hid the
details of the compile -> link -> run steps. This blurred
the distinction between source code, object code and
executable code. This obfuscates the true nature of a
computer. Many students in the control group were unable
to understand how the code they wrote was executed by the
machine.

The experimental group adapted quickly to the Meridian
OpenAda environment. Students were required to connect
their working directory to the Ada library units. Then they
were able to compile, then link and then execute their code.
Each step was simple but distinct. This process explicitly
demonstrated to the students how their source code was
transformed into an executable program.

5. CONCLUSIONS

We were pleased to see the very positive effect of the Ada
programming language on the success of novice
programmers. As a direct result of this study, which
demonstrated that our students could go farther, faster in
Ada than they could in Pascal, the Academic Board of the
U.S. Military Academy approved changing to Ada 95 as
the programming language for all students in our
introductory computer science class. We note that these
results have been independently achieved and verified at the
U.S. Air Force Academy [4]. Other programming language
analyses conducted in upper division courses have produced
similar results, showing the pedagogical advantages of Ada
95 [2].

This experiment gave us an excellent opportunity to isolate
the effect of a programming language on novice
programmers. Programming language decisions are often
complex because a programming language is just one factor
associated with any software effort [5]. We submit that the
programming language study conducted at West Point is a
model approach for determining the comparative
pedagogical advantages of programming languages and
offers a sound basis for an unbiased decision.

6. ACKNOWLEDGEMENTS

Thanks to Major Thomas Crabtree, U.S. Army, who
played a critical role in the conduct and support of this
experiment.

7. REFERENCES

[1] Ben-Ari, M. and Henney, K., “A Critique of the
Advanced Placement C++ Subset,” Special Interest
Group on Computer Science Education Bulletin, Vol.
29, No. 2, September 1991, pp. 7-10.

[2] Blair, J.R.S., Ressler, E.K., Wagner, T.D., “The

Undergraduate Capstone Software Design Experience,”
Tri-Ada ‘97 Proceedings, Nov 9 -13, 1997, St. Louis,
Mo., pp .41 - 47.

[3] Carlisle, M. C., and Chamillard, A.T., AdaGide: A

Friendly Introductory Programming Environment for
a Freshman Computer Science Course, 11th Ada
Software Engineering Education Team Symposium,
Monmouth Univ., Monmouth, N.J., 12-13 Jun 97.

[4] Chamillard, A.T., and Hobart, Jr., W.C.,
“Transitioning to Ada in an Introductory Course for
Non-Majors,” Tri-Ada ‘97 Proceedings, Nov 9 -13,
1997, St. Louis, Mo., pp. 41 - 47.

[5] Computer Science and Telecommunications Board,

National Research Council, Ada and Beyond, Software
Policies for the Department of Defense, National
Academy Press, Washington, D.C., 1997.

[6] Feldman, M. and Koffman, E., Ada 95: Problem

Solving and Program Design, Addison-Wesley,
Reading, Mass. 1996.

[7] Hamilton, J.A., Jr., “Why Programming Languages

Matter,” Crosstalk, vol. 10, no. 12, December 1997,
pp. 4 - 6.

[8] Hamilton, J.A., Jr., Cook, D.A., “Ada Training and

Education in the US Army and US Air Force,” Tri-
Ada 96 Proceedings,. Dec 3 - 7 1996, Philadelphia,
Pa., pp. 151 - 155.

[9] Mody, R.P., “C in Education and Software

Engineering,” Special Interest Group on Computer
Science Education Bulletin, Vol. 23, No. 3, September
1991, pp. 45-56.

[10] Reid, Richard J., “First-Course Language for

Computer Science Majors,” Internet Survey,
ftp.cps.msu.edu:pub/arch/ CS1_Language_List.Z.

[11] Suchan, W.K., Smith, T.L., “Using Ada 95 as Tool

to Teach Problem Solving to Non-CS Majors” Tri-
Ada ‘97 Proceedings, Nov 9 -13, 1997, St. Louis,
Mo., pp. 31 - 36

Lieutenant Colonel J. A. (Drew) Hamilton, Jr., Ph.D.,
(dj7560@eecs1.eecs.usma.edu) is Research Director and
Assistant Professor in the Department of Electrical
Engineering and Computer Science at the United States
Military Academy, West Point, NY. Previously, Colonel
Hamilton was Chief of the Ada Joint Program Office.
http://www.eecs.usma.edu/usma/academic/eecs/instruct/hamilt
on

Major Jeanne L. Murtagh, (jmurtagh@afit.af.mil) is
Director, Software Professional Development Program
(SPDP), at the Air Force Institute of Technology, Wright-
Patterson, AFB, OH. Major Murtagh previously served as
an Assistant Professor at West Point where she directed and
implemented the results of the USMA language study.

		cr1: Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full

		cr2: citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. SIGAda '98 Washington, D.C., USA © ACM 1-58113-033-3/98/0011...$5.00

