Using Ada in Interactive Digital Television Systems

Thierry Lelégard
Canal+ Technologies
SIG Ada 2000 - November 15, 2000
Agenda

- Who are we?
- What is Digital Television?
- Why using Ada?
- How do we use Ada?
- Future Directions
Part I

Who Are We?

Some advertising...
(Don’t worry, it won’t be long)
Who Are We?

- Canal+ Group
- Canal+ Technologies
- Canal+ Technologies Customers
- Canal+ Technologies Partners
Canal+ Group
www.canalplus.fr

• **Largest Pay-TV Group in Europe**
 – 14,000,000 subscribers
 – 10 countries: France, Spain, Italy (Telepiu), Belgium, Netherlands, Northern Europe, Poland, etc.

• **Analog and Digital TV Operators**
 – Premium channels
 – Satellite operators
 – Cable operators

• **Film Industry**
 – Partially finance most French movies
 – Own Universal Studios (Hollywood, USA)
Canal+ Technologies
www.canalplus-technologies.com

- Subsidiary of the Canal+ Group
 - Based in Paris (France), 580 people (incl. 450 in R&D)
 - Cupertino (CA, USA), 50 people
 - New office in Beijing (China)

- Provide End-to-End Solutions for Digital Television Operators
 - Set-top box software
 - Broadcast center (a.k.a. « head-end ») systems
 - Integration services
Canal+ Technologies
Customers

• 20 Customers (Digital TV Operators)
 – Both inside and outside the Canal+ Group

• In 13 Countries
 – Europe, UK, USA, Japan, India, Malaysia, China, etc.

• 7,000,000 Digital Set-Top Boxes
Canal+ Technologies Partners

- **Multiple Set-Top Box Providers**
 - 26 different providers (Philips, Sony, Pioneer, Nokia, etc.)

- **Multiple Broadcast Media**
 - Satellite, Cable, Terrestrial

- **Multiple MPEG Equipment Providers**
 - Philips, Divicom/Harmonic, Tandberg, Thomson, etc.

- **Multiple Computer Systems Providers**
 - Compaq (OpenVMS), Sun Microsystems (Solaris)
Part II

What is Digital Television?

Some technical background...
What is Digital Television?

- Analog Television
- Digital Television
- Digital Television System Overview
- Digital Television Standards
- Interactive Services
- Conditional Access System
- Set-Top Box Overview
Analog Television

- **One Frequency = One TV Channel**
 - Poor bandwidth usage

- **Noisy Signal**
 - Poor image quality
 - Especially NTSC!

- **No or Poor Data Service**
 - Teletext at best
Digital Television

- **Compressed Pictures and Sound**
- **One Frequency = Several TV Channels**
 - Depends on medium bandwidth (typ. 24 to 38 Mb/s)
 - Depends on compression (typ. 4 to 6 Mb/s per channel)
 - Typically 6 to 10 channels (a.k.a. « services ») per frequency

- **Digital Picture Encoding**
 - Better image quality

- **High-Level Data Services**
 - Downloadable applications
 - Interactive services
Digital TV System Overview

Broadcast Center ("Head-End")

- Audio / Video
- MPEG Encoder
- Data

Business systems
TV Service providers
Internet
Banks, bookmakers, etc...

MPEG MUX

Satellite
Terrestrial
Cable

Uplink
(Any of the above)

Home
Set Top Box

TCP/IP over PSTN
PSTN + X25

Back-Channel
(Any of the above)

TCP/IP over Cable

The "REAL" Difference in Interactive Television
SIG Ada 2000 - © Copyright Canal+ Technologies 2000
Digital Television Standards

• **MPEG 2 (Motion Pictures Experts Group)**
 – International standard
 – Defines the audio/video encoding and compression
 – Defines the structure of the bitstream

• **DVB (Digital Video Broadcasting)**
 – European standard
 – Defines the Service Information (DVB-SI)

• **Application-Level Standards**
 – MHEG 5, DVB-MHP, DVB-HTML, etc.
Interactive Services

• **Basic Services**
 – Program guide, weather forecast, job advertising, games

• **Advanced Interactive Services**
 – Tele-banking, home shopping, home betting, network games, interactive advertising

• **Internet Services**
 – Full Internet or specialized services (e-mail, selected web sites)

• **Forthcoming services**
 – Hard disk based recording and time shifting in set-top box
Conditional Access

• Head-End side:
 – TV content scrambling
 – Broadcast specific access rights to subscribers

• Set-Top Box Side:
 – Conditional descrambling

• Subscription and Pay-Per-View

• Secured Transactions

Guarantee Operator’s Revenue
Set-Top Box Overview

- Conditional Access
- Smartcard

Audio Video H/W

Java Applications

MVM (Java)

Vendor Firmware

- Flash Resident Downloadable
- Downloaded

Antenna or cable

MPEG stream

Phone or cable modem

TCP/IP (or X25)

Canal+

STB Vendor

The "REAL" Difference in Interactive Television

SIG Ada 2000 - © Copyright Canal+ Technologies 2000
Part III

Ada in Digital Television

Ada, at last!
Ada in Digital Television

- Ada Matches Television Head-End Requirements
- Application Characteristics
- Where Ada is Used / not Used
- Current Issues and New Directions
- Ada 95 Benefits
- GNAT Compiler
- Future?
Head-End Requirements

• Reliability
 – Television is a 24 h/d x 365 d/y business
 – System failure may result in significant loss of revenue
 (especially with « pay per view »)

• Very Short Development Cycle
 – 1 year max between initial idea and deployment on each project

• Openness
 – Many external systems
Ada Matches These Requirements

• Short Development Cycle
 – Rigorous language: Short debug time
 – Ada tasking: Short development time for parallel applications

• Reliability
 – Language safety
 – Ada run-time checks (essential after short testing time !)
Initial Choice (Early 90’s)

• Ada 83 - DEC Ada Compiler
 – Highly reliable compiler
 – Excellent generated code performance
 – Excellent integration with the operating system

• OpenVMS Clusters
 – Highly reliable operating system
 – Unique (at that time) clustering features

• DEC Rdb Database
 – Excellent performance
Application Characteristics

• « Soft » Real-Time
 – Cycle time > 10 ms, often > 1s

• Non-Constant Activity
 – Low average with very high peaks
 – Highly parallel applications
 – Up to 50 different applications on each system / cluster

• Commercial Products
 – No two identical system configurations
 – Type and volume of activity depends on the customer
 – System pricing constraints
Ada is Used in:

- **Broadcasting**
 - Short cycle time, constant activity

- **Telecommunication Servers**
 - Erratic activity (low average with very high peaks)

- **Data Processing**
 - Conditional access
 - Generation of data for set-top box applications

- **Database and Transactional Processing**
Ada Usage

- No Restricting Rules
- Unrestricted Use of:
 - Tasking
 - Genericity
 - Dynamic memory allocation (and deallocation !)
- Tend to No Longer Use Exceptions
 - Were used at the beginning
 ⇒ Poor diagnosis reporting for operators
 - Now use status-based reporting with Ada 95
Ada is not Used in:

- User Interface and Monitoring
 - Windows NT based
- Internet Applications
 - Too many interactions with existing non-Ada applications and API’s
- Set-Top Box Software

- GUI & Internet Developers ≠ Ada Developers
Current Issues

- **Non Portable Applications**
 - Needed to be « time-to-market » in 1996
 - Needed to use many low-level system-dependent features
 - ⇒ OpenVMS-dependent code

- **Future of Ada is Uncertain**
 - Exponential market growth ⇒
 Need to constantly hire new developers
 - Evolving technologies ⇒
 Need to constantly develop new applications
Choice of a New Language

• Ada 83 is Dying
 – DEC Ada no longer supported in near future

• Java ?
 – Pros: market acceptance, (almost) safe language
 – Cons: interpreted

• C++ ?
 – Pros: market acceptance
 – Cons: unsafe language

• Ada 95 ?
 – Pros: safe language
 – Cons: market reluctance
New Directions

• **New Language: Currently Ada 95**
 – GNAT compiler

• **Multi-Platform Development**
 – Need to use many low-level system-specific features
 – Need to write portable applications
 – \(\Rightarrow\) Development of a specialized system layer

• **Re-Engineering of Existing Applications**
 – Full object oriented development (in Ada 95)
 – UML design
 – Distribution using CORBA (OrbAda)
Applications Architecture

- Subs. A App. A1
- Subs. A App. A2
- Subsystem A Common Modules
- Managed Reuseable Components
- SNMP Application Management Layer
- Ada Reuseable Components
- Multiple O/S Support
- Subs. B App. B1
- Subsystem B Common Modules
- etc...
- etc...

Ada with's
Ada 95 Benefits

• Experience : Real Improvement from Ada 83
• Most Useful Features :
 – Controlled types
 – Tagged types
 – Hierarchical name space
• Nice Features :
 – Protected objects
 – Interfaces packages (annex B)
 – Elaboration control
 – Modular types
 – Readable « out » parameters (and other small but nice features)
Ada 95 Unsuitable Features

• Features which look promising but with practical flaws for our applications

• Streams
 – Implementation-dependent representation
 – User-defined ‘Read and ‘Write not enforceable

• Distributed Systems (Annex E)
 – Not interoperable (no equivalent of CORBA’s IIOP)
 – Ada-only
 – GNAT-only
GNAT Compiler

• **Used on all Platforms**
 – Main: OpenVMS clusters, Sun Solaris clusters
 – Side: Linux, Windows NT

• **Pros**
 – Exists on many (not to say all) platforms
 – Fast and efficient support from ACT

• **Cons**
 – Generated code performance
 – Difficult to use in large projects
Continue with Ada?

- Competitive Issues
 - Television is a very competitive market
 - Ada remains an expensive language
- Continuity of Ada Vendors
- Developer’s Culture
- Market Acceptance
 - Customers (TV operators) do not like Ada

We are willing to continue with Ada but we cannot afford to be the « Last of the Adaists »
Any Question?

or later: thierry.lelegard@canal-plus.fr