

Object-Oriented and Concurrent Program
Design Issues in Ada 95

Stephen H. Kaisler Michael B. Feldman
Director, Systems Architecture Professor of Engineering and Applied Science
Office of the Sergeant at Arms Dept. of Electrical Engineering

and Computer Science
United States Senate George Washington University

Washington, DC 20510 Washington, DC 20052
202-224-2582 202-994-6083

Steve_Kaisler@saa.senate.gov mfeldman@seas.gwu.edu

1. ABSTRACT

Kaisler [4] identified several design issues that arose
from developing a process for transforming object-
oriented programs written in Ada 95 or other object-
oriented programming languages to process-oriented
programs written in Ada 95. These issues limit - in the
authors' opinion - the flexibility of Ada 95 in writing
concurrent programs. These problems arise from
specific decisions made by the Ada 95 designers. This
paper addresses three of these issues: circular
references are invalid in packages, lack of a
subclassing mechanism for protected types, and an
inability to internally invoke access statements from
within a task body. Our goal is to raise the Ada 95
community's awareness concerning these design issues
and provide some suggestions for correcting these
problems for a future revision of the Ada
programming language.

2. INTRODUCTION

Kaisler [4] described research leading to a methodology
for converting object-oriented programs to process-
oriented programs and, thereby, making the concurrency
implicit in object-oriented programs explicit. This
research was motivated by the fact that writing
concurrent programs is difficult to do - no general
methodology exists - and by our recognition of the
similarity between object-oriented and process-oriented
programs.

We believed that object-oriented programs, which exhibit
a potential for concurrency, could be converted to
process-oriented programs, thereby making the
concurrency explicit. Object-oriented programs exhibit
the property of encapsulation, i.e., that attributes and
methods of a class are defined in a single syntactic
structure. Similarly, process-oriented programs also
exhibit encapsulation within the process or task structure.
Message passing is a basic mechanism for
communication within object-oriented and process-
oriented programs. Analysis of these features suggested
that object-oriented programs could be converted to
process-oriented programs with no loss of functionality.
Rather than writing concurrent programs anew, our work
focused on reusing the source code and logic of an object-
oriented program to develop the process-oriented
program. We developed a methodology and
transformation algorithms for converting both the
structure and the procedural code of the object-oriented
program to the corresponding components of a process-
oriented program.

However, as we applied the methodology and the
algorithms to several programs written in Ada 95 and
other object-oriented programming languages (OOPLs),
we discovered several limitations of Ada 95 that arise
from specific decisions made during the language design
process. This paper describes three of these limitations
and proposes some possible modifications to the Ada
programming language for consideration in a future
revision.

3. CIRCULAR REFERENCES IN ADA 95
PACKAGES

Perhaps the most constraining feature of Ada 95 is its
inability to support circular package references among
two or more packages. In C++ [9], references may be
made both forward and backward to other class
definitions, which can result in circular references
between two files containing C++ class definitions. The
C++ compiler notes the occurrence of such circular
references and generates the appropriate code without
entering an infinite loop. Circular references between
objects seem to be a natural outcome of O-O analysis and
design methodologies. Circular references are allowed
between Eiffel types [5, 6], Sather classes [7], and
Common Lisp objects [8] among other modern object-
oriented programming languages.

An example of a circular reference from the Sather 1.0
chess program, a demonstration program from the Sather
distribution, is depicted in figures 1(a) and 1(b).

type $PIECE is
alive:BOOL;
alive(set:BOOL);
worth:INT;
iswhite:BOOL;
position:POS;
valid_move(to:POS,board:BOARD):BOOL;
update_position(position:POS);
update_position(position:STR);
move!(b:BOARD,to_piece:BOOL):POS;
fig:CHAR;
ispawn : BOOL;
isrook : BOOL;
isking : BOOL;
end; -- of type $PIECE

class PIECE < $PIECE is

 -- General constants that are used throughout
 -- the descendants of $PIECE

 const white : BOOL := true;
 const black : BOOL := ~white;
 const ordinary : BOOL := false;
 -- alters behavior of move!

 const for_check_test : BOOL := true;

 -- Attributes that are specific to a PIECE

 attr alive : BOOL;
 attr iswhite : BOOL;
 attr position : POS;

 -- Constants that are specific to a PIECE

 const worth : INT := 0;
 const fig : CHAR := ' ';

 const ispawn : BOOL := false;
 const isking : BOOL := false;
 const isrook : BOOL := false;

••• <other code omitted here!>

valid_move(to:POS,board:BOARD):BOOL is
 ret : BOOL := false;
 loop

valid_to::=move!(board,ordinary);
if to=valid_to

then ret:=true;
break!;

end;
 end;
 return ret;
 end;

Figure 1a. PIECE Class Declaration

class BOARD is

 private attr whitepieces : ARRAY{$PIECE};
 private attr blackpieces : ARRAY{$PIECE};

 -- The board stores information about which color
 -- is to play next.

••• <other code omitted here!>

 private move_valid_so_far(move:MOVE):BOOL
 pre ~move.isquit
 is
 ret : BOOL := false;

-- A valid move must start at a position where
-- one of my pieces is....

 if has_my_piece(move.from)
 then

 p::=piece(move.from);

-- ... and it must be a valid move with respect
-- to the mobility of the piece at the current
-- state of the board.

 if p.valid_move(move.to, self)

then
 ret := true;

--
-- since the move seems to be valid,
-- the moving piece is stored
-- in the move object. That eases future
-- access to the moving piece
-- and allows for un-doing of moves.

 move.piece := p;

 end;
 end;
 return ret;
 end;

Figure 1b. BOARD Class Declaration

The corresponding references in the two classes depicted
in the figure above are highlighted in bold. The
individual chess pieces (pawn, knight, rook and so forth)
each inherit attributes and methods from the class
PIECE. Because PIECE references the BOARD class
through typing of arguments to its methods, each of the
objects for the chess pieces must also do so. The BOARD
class references the PIECE class directly in the array
declarations and objects for each chess piece class
through dynamic dispatching from the statement:

if p.valid_move(move.to, self) then
•••

where P is an instance of a chess piece class which has
inherited valid_move from the PIECE class. P takes as its
value a handle of one of the instances of the chess pieces.
So, at run-time, the appropriate implementation of
valid_move is determined by the class to which P
belongs.

Figures 2(a) and 2(b) depict the headers for C++ files for
Panorama and Scrollpane that demonstrate a circular
reference used in a user interface application. As before,
the circular references are highlighted in bold.

class CPanorama : public CPane
{ // Class Declaration

public:

// Data Members

// Bounds defining Pane coordinates
LongRectbounds;
// Pixels per horizontal unit
short hScale;
// Pixels per vertical unit

short vScale;
// Location of frame in Panorama
LongPt position;

 // Save for later restoration
LongPt savePosition;

// Here is the circular reference!!

 // Scroll pane for this Panorama
CScrollPane *itsScrollPane;

// Member Functions
// Construction/Destruction

CPanorama();
CPanorama(CView *anEnclosure,

CBureaucrat *aSupervisor,
short aWidth = 0, short aHeight = 0,
short aHEncl = 0, short aVEncl = 0,
SizingOption aHSizing = sizELASTIC,
SizingOption aVSizing = sizELASTIC);

<Other declarations of methods - not relevant here>

};

Figure 2(a). C++ Header for Panorama Class

class CScrollPane : public CPane
{

 // class DECLARATION
public:

 // Data Members

// Here is the circular reference !!

CPanorama *itsPanorama; // View which scrolls
CScrollBar *itsHorizSBar; // Horizontal scroll bar
CScrollBar *itsVertSBar; // Vertical scroll bar
CSizeBox *itsSizeBox; // Grow box
long hExtent;
long vExtent;
short hUnit;
short vUnit;
short hSpan;
short vSpan;
short hStep;
short vStep;
short hOverlap;
short vOverlap;

// Member Functions
// Construction/Destruction

CScrollPane();
CScrollPane(CView *anEnclosure,

CBureaucrat *aSupervisor,
short aWidth, short aHeight,
short aHEncl, short aVEncl,
SizingOption aHSizing,

SizingOption aVSizing,
Boolean hasHoriz,
Boolean hasVert,
Boolean hasSizeBox);

<Other declarations of methods - not relevant here >

};

Figure 2(b). C++ Header for Scrollpane Class

Ada 95 does not allow circular references between
packages because all packages are elaborated prior to the
beginning of execution. Circular references would occur
when one package WITHs another package and the
second package attempts to WITH the first package. In
Ada 95, circular references are detected at compile time
with an error message; compilation is terminated. Using
the methodology and transformation algorithms in [4],
we converted the above code to Ada 95. Upon
compilation, which terminated, the circular reference was
detected.

Norman H. Cohen [3] suggested one workaround to
achieving circular references among packages where
tagged records are involved. The record fields to be
cross-referenced are removed from the tagged records
and moved to new tagged records from which the
original ones inherit. This approach is depicted in figures
3(a) through 3(d) from packages used in a user interface
application, which was derived from the C++ code
depicted above. So, ui_scrollpane_root is the parent
record of ui_scrollpane and ui_panorama_root is the
parent record of ui_panorama. Note that
ui_scrollpane_record cross-references an access variable
for ui_panorama. Similarly, ui_panorama_record cross-
references an access variable to ui_scrollpane_record.

By inspecting the code in the figures above, we see that a
panorama refers to a scrollpane and vice versa. Ada 95
does not allow cross-referencing between these two
packages and their tagged records to take place. But, by
extracting the information required in the other package
from each package and moving it to a root record, the
panorama record can reference the scrollpane_root and
vice versa. This is depicted graphically in figure 4.

package ui_scrollpane_root is

type UI_ScrollPane_Root_Record is
new UI_Pane_Record with

 record
 myHorizScrollBar: Any_ScrollBar;
 myVertScrollBar: Any_ScrollBar;

 •••
 end record;

type UI_Scrollpane_Root is
access all UI_Scrollpane_Root_Record'Class;

subtype Any_Scrollpane_Root is UI_Scrollpane_Root;

end ui_scrollpane_root;

Figure 3(a). Scrollpane Root Class

package ui_scrollpane is

 type UI_Scrollpane_Record is
new UI_Scrollpane_Root_Record with

 record
 myPanorama: Any_Panorama;
 end record;

 type UI_ScrollPane is
access all UI_ScrollPane_Record'Class;

 subtype Any_Scrollpane is UI_Scrollpane;

 procedure AdjustScrollMaximum(
 aScrollPane: access UI_ScrollPane_Record'Class);

end ui_scrollpane;

Figure 3(b). Scrollpane Class

package ui_panorama_root is

type UI_Panorama_Root_Record is
 new UI_Pane_Record with
 record
 bounds: Rectangle;

•••
 end record;

type UI_Panorama_Root is
access all UI_Panorama_Root_Record'Class;

subtype Any_Panorama_Root is UI_Panorama_Root;

end ui_panorama_root;

Figure 3(c). Panorama Root Class

package ui_panorama is

type UI_Panorama_Record is
new UI_Panorama_Root_Record with

 record
myScrollpane: Any_Scrollpane_Root;

 end record;

type UI_Panorama is
access all UI_Panorama_Record'Class;

subtype Any_Panorama is UI_Panorama;

end ui_panorama;

Figure 3(d). Panorama Class

Panorama_Root Scrollpane_Root

Panorama Scrollpane

InheritInherit
Use

Figure 4. Graphical Depiction of Legal Cross-Referencing

An alternative approach is to duplicate methods from one
class as internal procedures in the calling class. This
eliminates the circular reference problem because the
calling package now calls the routine internally.
However, this approach is not always feasible because of
interdependencies between the procedures and the data
structures. In converting the Sather Chess program to
Ada 95 using the methodology described in [4], this
approach was used to resolve one case of circular
referencing.

A number of remedies are possible for this problem. We
suggest that at a minimum, an elaboration pragma could
be provided by compiler writers to ignore checking
circularities among packages. Programmers would code
the pragma in their source code, but would need to be
fully aware of the implications of doing so. At run time,
it is possible that an infinite loop could result from an
erroneous circular reference. Programmers would be fully
responsible for checking for and avoiding of the
occurrence of infinite loops; the run-time environment
might be unable to provide any help.

A stronger recommendation would be to allow referential
circularity in data structure declarations, but not among
procedures contained in two different packages. At
compile time, the compiler can recognize elaboration
circularities and develop the appropriate information to

pass to the binder and the linker for storage allocation.
The run-time environment could detect infinite loops
among data structure references and generate a constraint
error.

The strongest recommendation would be to enhance both
the compiler and the run-time envionment to recognize
and manage circular references. At compile time, the
compiler would recognize circular references and pass
the information to the binder and the linker. It could also
generate warnings to ensure the programmer is aware of
the consequences. At package elaboration prior to
beginning execution, the run-time environment would be
informed through information passed from the linker
which packages have circular references. The run-time
environment would detect infinite loops in either data
structure references or procedure calls and generate the
appropriate errors.

4. PROTECTED TYPE SUBCLASSING

Ada 95 provides some object-oriented features, but does
not provide subclassing of all abstract data types. In
particular, subclassing is not extended to protected types
[1, section 9.4]. An implementation of subclassing could
be based on a combination of protected types and tagged

types. Why do this? Some object classes need to have
subclasses that further specialize their descriptions. For
example, one type hierarchy might include (view,
window, editing window). It would be useful to specify a
protected type VIEW, which is a tagged type, and then
specify a protected type WINDOW, also a tagged type,
which inherits both the attributes and the operations of
VIEW. The Ada 95 declaration might look like figure 5.

--- This construct is not allowed in Ada 95!
--- The “tagged” syntax is not allowed

protected type View is tagged

record

end record;
<operations on View>;

end View;

protected body View is

--- declarations for the body of the protected type

end View;

--- This construct is not allowed by Ada 95!

protected type Window is new View with

record

end record;

<declaration of operations on Window>;

end Window;

protected body Window is

--- specifications for the body of the protected type

end Window;

Figure 5. Sample Tagged Protected Type

--- THIS IS NOT LEGAL ADA 95!

generic

-- import S which is the general object
type S is tagged private;

protected type View is

<procedure and function declarations>

private

--- protected types not allowed to have record
--- type declarations

type T is new S with
record
--- <declarations for the record>
end record;

<operations on T>

end View;

protected body VIEW is

type T is tagged private;
--- <procedure and function definitions>

end View;

--
-- make a Window be a View plus some
-- additional functionality
--
protected type Window is

--- <procedure and function declarations>

private

--- protected types not allowed to have record
--- type declarations

type X is new T
with record

--- <declarations for the record>
end record;

<operations on X>
end Window;

Figure 6. Emulation of a Tagged Protected Type

--
-- THIS IS NOT LEGAL ADA 95!!
--
protected type View is

< data declarations >
< entry declarations >

private

<other entry declarations >

end View;

protected type Window is new View

< additional entry declarations >

private

< additional entry declarations >

end Window;

Figure 7. Suggested Modification to Protected Type
Declarations

The AARM does not allow the definition of a protected
type which is also a tagged type. But, we might emulate
this construct as shown in figure 6, which extends VIEW
and specializes it in WINDOW. The visibility rules for
this subclass feature could correspond to those applying
to Child Units. However, according to the AARM, the
protected type definition takes only a
<defining_identifier> in its specification. The data
structures for the protected type are defined in a private
clause. And, packages cannot be used in the private
section of the protected type.

At a minimum, we suggest that protected types should be
able to at least support extensions through the addition of
new entries that operate upon the data structures
contained within the protected type. This might be
declared as shown in figure 7.

Using this format, the protected type can be enhanced
with additional entries for subprograms, but cannot be
extended through the addition of new variables.

5. INTERNAL ACCESS TO ACCEPT
STATEMENTS

Many OOPLs seem to allow one method in an object
class to invoke another method within the same class
because methods are usually implemented as procedure
calls. Indeed, some OOPLs allow a method in an class to
recursively call itself. Our methodology calls for a direct
translation of class methods and their bodies to Ada 95
task types and their Enter/Accept bodies. However, this
self-invocation of methods cannot be translated to Ada 95
accept statements.

Ada 95 does not allow an accept statement within a task
to invoke another accept statement in the same task
instance. Figure 8 depicts this problem.

--- partial Ada 95 declaration for a task

task body <x> is

<local variable declarations>

begin
loop

select
accept <1> do

<accept body statements>
end <1>;

or
<other accept statements>

or
accept<k> do

<accept body statements>
-- NOTE: THIS IS AN ILLEGAL ADA 95
-- INVOCATION!
<1>(args);
<accept body statements>

end <k>;
end select;

end loop;
end <x>;

Figure 8. Accept Invocation in a Task

--- Partial fragment of an Ada task

accept move(

p: in Piece_Handle;
mode: in Boolean;
new_positions: out Position_Array;
nummoves: out Integer) do

 --
 move_internal(p, mode,
 iswhite, position,
 new_positions, nummoves);
end move;

Figure 9(a). Accept Statement

--
-- Program fragment showing a procedure
--
procedure move_internal(
 p: in Piece_Handle;
 mode: in Boolean;
 isw: in Boolean;
 king_pos: in Pos_String;

 new_positions: out Position_Array;
 nummoves: out Integer) is

 ••• <remainder of procedure body>
end move_internal;

Figure 9(b). Move_internal Code

--
-- Program fragment showing a procedure
--
procedure pos_in_check_internal(
 p: in Pos_String;
 isw: in Boolean;
 king_pos: in Pos_String;
 ret: out Boolean) is

•••
loop
 -- other statements

case pieces(i).Figure is
•••

 --
 when 'K' | 'k' =>

 aKing := King_Conversion.To_Pointer(
pieces(i).Addr);

 move_internal(
pieces(i),
for_check_test,

 isw, king_pos,
 positions, nummoves);

 ••• other statements
end pos_in_check_internal;

Figure 9(c). Pos_in_check_internal Code

A simple solution is easily implemented. Each class
method invokes an internal procedure as its sole method
body. This internal procedure performs the computation
and returns a result, possibly, which is then returned as
the result of the method. When the method is translated
into an accept statement in Ada 95, other accept
statements invoke the internal procedure without
blocking.

Our methodology requires that a self-invocation that is
valid in an OOPL (other than Ada 95) be translated into
two parts: the externally invocable interface (e.g., the
accept statement) and an internal procedure which is
declared in the private part of the task type. The
translated body of the class method is embedded in the
internal procedure. In the accept statement, an invocation
to the internal procedure is embedded as shown in figure
9(a). Values returned from the internal procedure are
returned by the accept statement if it returns anything at
all. Figures 9(a) through 9(c) depict a sample taken from
KING.ADB of the Schess program [4].

In the original Sather source code, pos_in_check_internal
calls upon the move method of the King piece to
determine if an opponent's king is putting my king in
check. The pos_in_check_internal code was duplicated in
KING.ADB to eliminate a circular reference. But, this
introduced the problem of calling an entry point from
within the task (e.g., the call to move). Therefore, the
body of move had to be extracted from the accept
statement and embedded in an internal procedure in
order to allow this code to be used from within the task.
Note that the internal procedure should eb declare in the
private part of the package that includes the
move_internal code.

6. CONCLUSIONS AND FURTHER WORK

We believe that some of the problems we encountered in
translating object-oriented programs written in Ada 95 to
process-oriented programs written in Ada 95 offer some
insights into further enhancements and revisions to the
Ada 95 program language. These insights may apply to
other concurrent programming languages as well. This
paper has attempted to highlight three of these
difficulties and suggest work-arounds or possible
revisions to the Ada 95 programming language.

The problem that had the greatest impact was the
inability to perform circular elaboration of packages as
described in section 2. Other object-oriented
programming languages that we surveyed - including
C++, Sather, Eiffel, and Java - permit forward references
to classes contained in other compilation units. One
compilation unit is allowed to make backward references
to another compilation unit which makes a reference to
the first compilation unit. The solution to this problem
required the introduction of artificial classes - which we
believe would be difficult to automate - and the
substantial movement of blocks of code from the original
compilation units' source code.

Protected type subclassing seems to be a problem merely
of omission which, we believe, should be corrected by
modifying the syntax and semantics of Ada in a future
version of the language. At a minimum, we suggest that
protected type subclassing with the ability to declare
additional entry subprograms be allowed. This would
seem to require only minor modifications to the AARM
and current compilers.

The problem of internal access to accept statements arose
as a result of applying our methodology to object-oriented
Ada 95 programs. A student learning Ada 95 would not
normally consider such usage because the (AA)RM does
not allow it. However, it is a powerful mechanism that is
used frequently in other OOPLs such as Sather and

Common Lisp's CLOS. Little modification to the syntax
of Ada 95 is required to correct this problem; but, some
modification to the semantics of how a task body is
entered and an accept statement is executed will be
required.

Ada 95 is a major improvement over Ada 83. While
remaining largely upward compatible, it introduces some
new language features that make it easier to write object-
oriented and concurrent programs. However, as discussed
in this paper, the inability to make circular references
among packages is a major limitation which can be
corrected through better compiler techniques. Solutions
to the other two problems, which do require changes to
the syntax and the semantics of Ada 95, are harder to
make, but would will make it easier to write concurrent
programs. We believe that making these modifications to
Ada will make it easier to develop some of the concurrent
programs that resulted from applying our methodology..

Identification of the three limitations reported here arose
from an innovative approach to developing concurrent
programs. As we continue our research into our
methodology and transformation algorithms for
converting object-oriented to process-oriented programs,
it is likely that we will find some other limitations of Ada
95 that should be investigated further. We will report on
these limitations as they are encountered and we develop
potential solutions or work-arounds.

7. ACKNOWLDGEMENTS

Steve Kaisler wishes to acknowledge the assistance of the
IIT Research Institute in providing tuition assistance
while completing his degree. He also wishes to
acknowledge the numerous comments of other members
of his dissertation committee: John Sibert, Arnold
Meltzer, Massoud Moussavi, and Alan Goldschen. And,
he wishes to acknowledge the guidance and numerous
contributions of his dissertation advisor, Mike Feldman,
without whom this research would not have reached a
successful conclusion.

8. REFERENCES

[1] Ada 95 Mapping/Revision Team. 1994. Programming
Language Ada: Language and Standard Libraries,
Annotated Draft, Version 5.95. November

[2] Ada 9X Mapping/Revision Team. 1994. Rationale for
the Programming Language Ada; Intermetrics,
Cambridge, MA

[3] Cohen, N.H. 1995. Private Communication via
electronic mail

[4] Kaisler, S.H. 1997. Making Concurrency Explicit:
Converting Object-Oriented to Process-Oriented
Programs. D.Sc. Dissertation, Department of Electrical
Engineering and Computer Science, George Washington
University, Washington, DC

[5] Meyer, B. 1988. Object-Oriented Software
Construction. Englewood Cliffs: Prentice-Hall

[6] Meyer, B. 1993. "Systematic Concurrent Object-
Oriented Programming". Communications of the ACM,
36(9): 56-80

[7] Omohundro, S.M. 1993. "The Sather Programming
Language" Dr. Dobb's Journal, 18(11):42-48

[8] Steele, G.L., Jr. 1990. Common Lisp: The Language,
Second Edition. Digital Press, Maynard, MA.

[9] Stroustrop, B. 1986. The C++ Programming
Language. Addison-Wesley, Reading, MA

9. BIOGRAPHY

Stephen H. Kaisler is currently the Director, System
Architecture in the Office of the Sergeant at Arms of the
U.S. Senate. He was previously a Science Advisor with
the IIT Research Institute in Lanham, MD where he
developed information system architecture frameworks
and processes for the U.S. Treasury. He completed his
doctoral research under the direction of Dr. Michael
Feldman at the George Washington University. Dr.
Kaisler is also a Adjunct Professor of Engineering in the
Department of Electrical Engineering and Computer
Science where he teaches undergraduate and graduate
computer science courses. He has previously been Chief
Scientist for Analytics and a Program Manager at the
Defense Advanced Research Projects Agency and the
Central intelligence Agency. Dr. Kaisler also holds a
B.S. in Physics and an M.S. in Computer Science from
the University of Maryland, College Park.

Michael B. Feldman is a Professor in the Department of
Electrical Engineering and Computer Science at The
George Washington University. He holds the M.S. and
Ph.D. in Computer and Information Sciences from the
University of Pennsylvania and the B.S. in Electrical
Engineering from Princeton University. Prof. Feldman
has published widely on concurrent programmng and on
undergraduate education, and is the author of several
well-received textbooks.

		cr1: Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full

		cr2: citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. SIGAda '98 Washington, D.C., USA © ACM 1-58113-033-3/98/0011...$5.00

