
Date : Nov. 27th 2003 © PolySpace Technologies 1/8

STATIC VERIFICATION OF DYNAMIC PROPERTIES

Dr. Alain Deutsch
Chief Technical Officer

 PolySpace Technologies

ABSTRACT

This paper is a tutorial on the principles
and applications of static verification of
dynamic properties to development,
verification and validation of embedded
applications. The topics covered include
what static verification of dynamic
properties is, how it works, how it can help
in verification and validation activities. It
will also present an industrial tool for the
automatic detection of run-time errors.

KEYWORDS

run-time errors, static verification, software
reliability

1. INTRODUCTION

The principles of static verification of
dynamic properties are based on a
paradigm that is at the heart of other
engineering activities. Activities such as
designing a bridge, computing the
trajectory of a satellite or optimizing the
shape of a plane wing are all based on
applied mathematics, whose use is
facilitated by high-speed processors. If we
want to formalize this statement, we would
say that all these engineering activities are
based on a central paradigm that consists
of a three-step method:

Ø Modeling a physical world system

as a set of mathematical equations
Ø Solving these equations using

high-speed processors
Ø Using the solutions to these

equations to predict the behavior of
the physical system

However, there is one engineering activity
that has not yet fully benefited from this
paradigm when it comes to verification and
validation: software engineering. Indeed,
software validation is still often mostly
based on test techniques which consist in
enumeratively executing the application a
high number of times. If you succeed in
running a high enough number of
executions without observing any error,
then the software is considered validated.
Unfortunately this does not imply that the
software is free of run-time errors. Indeed,
detecting a run-time error during tests
requires:

1. Executing the right statement
during tests …

2. … with the right combination of
values (as mere execution of the
statement may not be enough) …

3. …and detect the error if it occurs
(as triggering the error may not be
enough)

Even achieving 100% statement coverage
during tests may not be enough to detect
all errors.

We thus propose to adopt a new approach
to software validation: the use of methods
based on applied mathematics such as
static verification of dynamic properties.

2. WHAT IS STATIC VERIFICATION OF
DYNAMIC PROPERTIES?

Static verification of dynamic properties is
a software analysis technique that is
based on data-flow analysis. Data-flow
analysis is a branch of computer science
which aims to statistically compute

Date : Nov. 27th 2003 © PolySpace Technologies 2/8

program properties. It is basically done in
two steps: translating programs into
equations over lattices and then solving
these equations by fixed-point iterations. It
is now widely used in modern compilers
for code optimization purposes. It was
pioneered by Kildall in 1973 [1].

Here are a few examples of program-point
specific properties computable by data-
flow analysis used in optimizing compilers:
Ø A first example is the computation

of live variables. The basic idea is
to determine a set of variables that
will be possibly used in the future
so as to be able to allocate the
same register to variables that are
not simultaneously live.

Ø A second example is constant
propagation. Here the aim is to
replace reads of variables which
always have the same value at a
given point by a constant.

Ø A third example is computing
available expressions. It consists in
determining a set of expressions
that are always evaluated in the
past and so to proceed to Common
Subexpression Elimination (CSE).
Similarly, determining very busy
expressions – a set of expressions
which will always be evaluated in
the future allows loop invariant
elimination and code motion.

Those are all examples of what is currently
done through the use of traditional data-
flow analysis. On the other hand, static
verification of dynamic properties extends
data-flow analysis by providing an
additional theoretical framework that
allows the mathematical justification of
data-flow analyzers, the design of new
data-flow analyses and the handling of
particular infinite sets of properties ([2], [3]
and [4]).

To further describe how static verification
of dynamic properties works, we now
consider a simple flowchart language as
an example. This consists in:
Ø 32 bits integer variables and

integers;

Ø arithmetic operations;
Ø assignments;
Ø conditionals and loops.

In this language, states are pairs
consisting of:
Ø An integer representing the current

flowchart instruction to be executed
Ø A vector of integers in a n-

dimensional state where n is the
number of variables in program P

We define what strongest global invariants
SGI(k) are: SGI(k) is the set of all possible
states that are at program point k and
reachable in program P. For the flowchart
language defined previously, it is a set of
points in an n dimensional space. A run-
time error is then triggered when SGI(k)
intersects a forbidden zone.

SGI(k) is the result of formal proof
methods, or it can be expressed as least
fixed-points of a monotonic operator on
the lattice of a set of states. SGI(k) may
thus be seen as the solution of a system of
equations whose unknowns are sets of
states.
We use the Floyd/Park/Clarke method [5],
[6] and [7] as follows:

Step 1: Translate program P to a system:

X1 = F1(X1,…,Xm)
X2 = F2(X1,…,Xm)
…
Xm = Fm(X1,…,Xm)

Step 2: Compute the least solution
(V1,…,Vm)
We do this by using a Kleene ascending
sequence:

Xi,0 =∅
Xi,k+1=Fi(X1,k,…,Xm,k)

We now define the result: SGI(p)=Vp

Let us consider an example of such a
computation with the following program:

K=ioread_i32();
1. I=2;
2. J=K+5;
3. while (I<10) {

Date : Nov. 27th 2003 © PolySpace Technologies 3/8

4. I=I+1;
5. J=J+3;

6. }
7.
8. … / (I-J)

Here the non-obvious risk is a divide-by-
zero. That is what we are going to check
with the Floyd/Park/Clarke method.

Step 1: Translate program P to a system

We get the following set of equations:

X0={(0,0,k) I k∈[-231,231-1]}
X1={(2,j,k) I (i,j,k) ∈ X0}
X2={(i,k+5,k) I (i,j,k) ∈ X1}
X3= X2 ∪ X6
X4={(I+1,j,k) I (i,j,k) ∈ X3, i<10}
X5={(i,j+3,k) I (i,j,k) ∈ X4}
X6= X5
X7={(i,j,k) I (i,j,k) ∈ X3, i =10}
X8={(i,j,k) I (i,j,k) ∈ X7, i-j≠0}
Xerror={(i,j,k) I (i,j,k) ∈ X7, i-j =0}

Step 2: Compute the least solution

X0={(0,0,k) I k∈ [-231,231-1]}
X1={(2,0,k) I k∈ [-231,231-1]}
X2={(2,k+5,k) I k∈ [-231,231-1]}
X3={(i,j,k) I k∈ [-231,231-1],i∈ [2,10],j=k+3i-
1}
X4={(i,j,k) I k∈ [-231,231-1],i∈ [3,10],j=k+3i-
4}
X5={(i,j,k) I k∈ [-231,231-1],i∈ [3,10],j=k+3i-
1}
X6= X5
X7={(10,j,k) I k∈ [-231,231-1], j=k+29}
X8={(10,j,k) I k∈ [-231,231-1], j=k+29, j≠0}
Xerror={(10,10,-19)}

 Dividing by zero will occur at point 8 when
K = -19. Observe that this constant does
not appear in the source.

It can be represented graphically as
follows:

However, for general purpose languages,
SGI(k) is non-computable. Indeed, the
halting problem (deciding if a program
stops) is reducible to checking that
SGI(k)=∅ but the halting problem has
been proved undecidable [8]. Thus
computing SGI(k)=∅ is undecidable, as
shown in [9].

Static verification of dynamic properties
aims at computing approximate solutions
to SGI(k) ([3] and [4]). The seminal idea is
to:

1. Replace the system of exact equations
by its image with a closure operator ρ that
is :
Ø monotonic: x⊆y ⇒ ρ(x)⊆ρ(y)
Ø extensive : x⊆ρ(x)
Ø idempotent : ρ(ρ(x)) = ρ(x)

2. Solve this approximate system in the
abstract lattice ρ(L), possibly aided with
widening operators.

Thus, the solution of the approximate
system is necessarily a superset of the
solution of the exact system. This
approach is thus semantically safe.

We now represent graphically how it
works:

Date : Nov. 27th 2003 © PolySpace Technologies 4/8

Let’s take an example. We want to check
the following C language statement:

A = x / (x-y);

The correctness condition to check to
make sure that no zero division runtime
error can occur is (x-y)≠0

We may encounter three different
situations.

1. The intersection between the
failure state and the state space of
the program is not empty :

In this case, there is a potential error.

2. The state space of the program is
completely included in the failure
state:

In this case, there is a certain error.

3. The failure state is outside the
state space of the program :

In this case, there is provably no zero-
divide error for this program statement that
can occur in any future execution of the
program.

However, to efficiently analyze real-world
programs, this framework is not enough.
Indeed, real-world programming
languages set other challenges, such as
the use of functions/subprograms,
pointers, data structures (arrays,
records…), dynamic allocation or multi-
tasking. Thus, other abstract lattices must
be defined. For example, it may be
necessary to define a lattice of unitary-
prefix monomial relations ([10] and [11]) to
represent complex pointer aliasing
patterns such as:

{(*(*(X+I) +4), *(Y+j)) I i = 2j+1}

In this case, the principle of the solution is
to reduce the problem of representing
relations over regular language L∈ Σ* to
that of finitely representing sets of points in
Zn. To do so, we use Eilenberg’s unitary-

Date : Nov. 27th 2003 © PolySpace Technologies 5/8

prefix (UP) decomposition that maps each
L to a finite number of UP monomials.
Each UP monomial is then mapped to a
set of points through Parikh’s mapping or
through free modular group
decompositions.

To summarize, the key properties of this
approach are the following:

Ø A real error will never be signaled

as no error due to the fact that we
take into account a superset of all
possible states

Ø An instruction which is always
correct will never be signaled as
certain error

Ø Exhaustive analysis of run-time
errors is done by examining only
operations signaled as potential or
certain errors. The others can be
seen as proven to be error-free.

Ø There is no need to provide test
cases as inputs: the analysis is
totally automatic

Ø Diagnostics are valid for any future
execution: only one analysis is
needed

3. APPLYING STATIC VERIFICATION
OF DYNAMIC PROPERTIES:
POLYSPACE VERIFIER

Because the concepts of static verification
of dynamic properties were developed in
the seventies, one may wonder why it has
not been industrialized earlier. The answer
to this question is a lack of available
computing power – it is now possible to
use static verification of dynamic
properties on a high-end PC – and the fact
that precise and scalable analyses were
simply not available. Indeed, many
published methods were either too
imprecise or too costly (not scaling to
more than a few hundred lines of code) to
be actually usable in an industrial context.

Before exploring how static verification of
dynamic properties has been
industrialized, let us define what it cannot
do. Indeed, it is essential to understand
that it addresses the dynamic behavior of

the program by essence. Static verification
of dynamic properties doesn’t check any
syntactic properties (such as readability,
testability, maintainability or portability),
but instead focuses on semantics. Syntax
is the domain of rule-checking tools, and
static verification of dynamic properties is
not applied in such tools. Semantics is the
realm of static verification of dynamic
properties.

Static verification of dynamic properties
has been successfully applied to detect
run-time errors. Run-time errors are a well-
defined set of errors that may lead to non-
determinism, incorrect results or processor
stop. A study conducted by Sullivan and
Chillarege at IBM Watson and Berkeley
found that 26% of all observed software
faults and more than 57% of the highest
severity faults (causing system outage or
major disruption) were due to run-time
errors.

Detecting run-time errors statically and at
compilation time, thanks to static
verification of dynamic properties, allows
shortening and/or replacing the following
activities :

Ø Debugging, by finding run-time

errors automatically
Ø Robustness testing, by pinpointing

exhaustively sources of run-time
errors

Ø Functional testing, by allowing
these tests to not be interrupted by
the late detection of robustness
issues (requiring further work to
localize the bug, fix it and then run
non-regression tests)

Ø Code reviews and documentation,
by extracting control and data flow
information

Ø Code acceptance review, by
providing an objective, third-party,
way of measuring the quality of a
given code

The first industrial tool for detecting
runtime errors using static verification of
dynamic properties is PolySpace Verifier.
This tool has been commercially available

Date : Nov. 27th 2003 © PolySpace Technologies 6/8

since 1999 for the analysis of Ada
programs and since 2000 for the analysis
of ANSI C programs. This tool addresses
two essential needs of embedded software
development:

Ø Static verification : it statically
predicts specific classes of run-
time errors and sources of non-
determinism

Ø Semantic browsing: it statically
computes data and control flow to
improve program understanding,
ease verification and demonstrate
the compliance of the program
with industry standards (SIL,
DO178-B, MISRA, …)

Run-time errors detected by PolySpace
Verifier include:

Ø Dereferencing through null
Ø Out-of-bounds pointers
Ø Out-of-bounds array accesses
Ø Read access to non-initialized data
Ø Access conflicts on shared data

(multithreaded applications and/or
interrupt routines)

Ø Invalid arithmetic operations:
division by zero, square root of a
negative number …

Ø Overflow and underflow on integers
and floating-point numbers

Ø Unreachable (dead) code

The use of the tool is very simple. It takes
as an input the code source of an
application and produces as a result a
color-coded source where each operation
is classified according to the risk of run-
time errors if it were executed. There are
four categories:

Ø Green: the operation will never

trigger a run-time error for all
possible executions of the program

Ø Red: the operation will always (i.e.
at each execution of the program)
generate a run-time error.

Ø Grey: the operation cannot be
executed – it is a piece of dead
code

Ø Orange: this is a warning – there
may be an error, depending on the
specific calling context of the
function that contains the operation

The following is an example of a color-
coded source code provided by PolySpace
Verifier:

As to control and data flow documentation
and understanding, PolySpace Verifier
builds the global data dictionary and a
concurrent access graph for each shared
variable of the program. The following
figure is an example of concurrent access
graph provided by PolySpace:

4. INDUSTRIAL USE OF STATIC
VERIFICATION OF DYNAMIC
PROPERTIES

Among static verification of dynamic
properties first industrial uses is the static
analysis of the embedded ADA flight
software and inertial central of the Ariane
5 launcher and the ARD (Atmospheric Re-

Date : Nov. 27th 2003 © PolySpace Technologies 7/8

entry Demonstrator). The analyzer
designed by the author was used on the
Ariane 502 flight program [12]. Since then,
it has been successfully used by CNES
and Aerospatiale on Ariane flight
programs. As described in [12], these
software programs consist of about 70,000
lines of code with five interacting parallel
tasks.

After this first successful industrial use,
static verification of dynamic properties
has been industrialized by our team and
turned into commercially available tools.
New users from several industry sectors
have experienced the efficiency of these
tools:

Ø An end-user in the avionics
industry analyzed a Flight
Management System (FMS) of
about 500,000 lines. The
conclusion of this end-user was
that “the cost savings allowed by
the tool in the final phase of the
project was between $150,000
and $250,000” as a consequence
of several serious errors
uncovered by the tool – including
data races.

Ø CSEE, a railway signaling systems
company, also reported successful
use of static verification of
dynamic properties in its
development teams for the
analysis of several embedded
software programs in Ada and
ANSI C with sizes between 20,000
and 80,000 lines of code.

Ø Triconex, a chemical industry
company analyzed a fault-tolerant
controller software for safety-
critical units in petrochemical and
chemical plants. Two applications
of 70,000 lines of C code and
140,000 lines of Ada code were
analyzed, yielding a savings of
10,000 man-hours of testing and a
time-to-market shortened by 6 to
12 months according to the user.

Ø A major international automotive
supplier used static verification of
dynamic properties to conduct a

module-by-module analysis of
200,000 lines of diesel engine
control software code. Several
serious errors were found on a
sample of 32 modules of a
validated application despite 100%
unit-test coverage with automated
test tools.

These examples are only a very partial list
of industry sectors that benefit from static
verification of dynamic properties. Indeed,
more than 50 development teams all over
the world have already adopted our tools
and every embedded software developer
which aims at reducing the cost of its
testing effort and increasing the quality of
its applications is a potential user of this
kind of tool.

5. CONCLUSION

Static analysis to demonstrate the
absence of run-time errors, once the
domain of theoretical researchers, has
come of age. Researchers gave it solid
foundations. Yet using static verification of
dynamic properties does not require any
theoretical background. It is a radical
breakthrough in software engineering that
makes it possible to shorten the
verification and validation cycle thanks to
an earlier detection of run-time errors. It is
a repeatable technique that may be used
at any time, without any prior knowledge of
the code to be analyzed. It also provides a
strong improvement in reliability, as it is
exhaustive by design.

Acknowledgement. We thank Eric Pierrel
for his editorial help.

 6. REFERENCES

[1] G. Kildall. A unified approach to global
program optimization. Proceedings of the
ACM Symposium on principles of
programming languages, 194-206. 1973

[2] M. Sintzoff. Calculating properties of
programs by valuations on specific
models. Proceedings of the ACM

Date : Nov. 27th 2003 © PolySpace Technologies 8/8

Conference on proving assertions about
Programs, Sigplan Notices, 7(1), 203-207.
1972

[3] B. Wegbreit. Property extraction in well-
founded property sets. IEEE Transactions
on software engineering, 1(3), 270-285.
1975

[4] P. & R. Cousot. Systematic design of
program analysis frameworks.
Proceedings of the ACM Symposium on
principles of programming languages,
ACM Press. 1979

[5] R. Floyd. Assigning meaning to
programs. In Mathematical Aspects of
Computer Science, Proceedings of
Symposia on Applied Mathematics,
American Mathematical Society, 19-32,
Providence. 1967.

[6] D. Park. Fixpoint induction and proofs
of program properties. in Machine
Intelligence, Edinburgh Univ. Press, 5 : 59-
78. 1969.

[7] E. Clarke. Program invariants as
fixedpoints. Computing, 21 : 273-294.
1979.

[8] A. Turing. Computability and λ-
definability. J. Symbolic Logic, 2 :153-163.
1937.

[9] C. Hoare and D. Allison.
Incomputability. ACM Computing Surveys,
4(3).1972.

[10] A. Deutsch. Interprocedural May-Alias
Analysis for Pointers: Beyond k-limiting. In
Proceedings Programming Language
Design and Implementation, ACM Press,
Orlando. 1994.

[11] S. Eilenberg. Automate, Languages
and Machines. Academic Press, New
York. 1974.

[12] Ph. Lacan, J.N. Monfort & L.V.Q.
Ribal - Aerospatiale, France ; A. Deutsch
& G. Gonthier - INRIA, France. ARIANE 5
- The Software Reliability Verification
Process. Proceedings (ESA SP-422)
DASIA 98 - Data Systems In Aerospace.
May 1998.

