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ABSTRACT 
 
This paper is a tutorial on the principles 
and applications of static verification of 
dynamic properties to development, 
verification and validation of embedded 
applications. The topics covered include 
what static verification of dynamic 
properties is, how it works, how it can help 
in verification and validation activities. It 
will also present an industrial tool for the 
automatic detection of run-time errors. 
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1. INTRODUCTION 
 
The principles of static verification of 
dynamic properties are based on a 
paradigm that is at the heart of other 
engineering activities. Activities such as 
designing a bridge, computing the 
trajectory of a satellite or optimizing the 
shape of a plane wing are all based on 
applied mathematics, whose use is 
facilitated by high-speed processors. If we 
want to formalize this statement, we would 
say that all these engineering activities are 
based on a central paradigm that consists 
of a three-step method: 
 
Ø Modeling a physical world system 

as a set of mathematical equations 
Ø Solving these equations using 

high-speed processors 
Ø Using the solutions to these 

equations to predict the behavior of 
the physical system 

 
However, there is one engineering activity 
that has not yet fully benefited from this 
paradigm when it comes to verification and 
validation: software engineering. Indeed, 
software validation is still often mostly 
based on test techniques which consist in 
enumeratively executing the application a 
high number of times. If you succeed in 
running a high enough number of 
executions without observing any error, 
then the software is considered validated. 
Unfortunately this does not imply that the 
software is free of run-time errors. Indeed, 
detecting a run-time error during tests 
requires: 
 

1. Executing the right statement 
during tests … 

2. … with the right combination of 
values (as mere execution of the 
statement may not be enough) … 

3. …and detect the error if it occurs 
(as triggering the error may not be 
enough) 

 
Even achieving 100% statement coverage 
during tests may not be enough to detect 
all errors. 
 
We thus propose to adopt a new approach 
to software validation: the use of methods 
based on applied mathematics such as 
static verification of dynamic properties.  
 
2. WHAT IS STATIC VERIFICATION OF 
DYNAMIC PROPERTIES? 
 
Static verification of dynamic properties is 
a software analysis technique that is 
based on data-flow analysis. Data-flow 
analysis is a branch of computer science 
which aims to statistically compute 
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program properties. It is basically done in 
two steps: translating programs into 
equations over lattices and then solving 
these equations by fixed-point iterations. It 
is now widely used in modern compilers 
for code optimization purposes. It was 
pioneered by Kildall in 1973 [1].   
 
Here are a few examples of program-point 
specific properties computable by data-
flow analysis used in optimizing compilers: 
Ø A first example is the computation 

of live variables. The basic idea is 
to determine a set of variables that 
will be possibly used in the future 
so as to be able to allocate the 
same register to variables that are 
not simultaneously live.  

Ø A second example is constant 
propagation. Here the aim is to 
replace reads of variables which 
always have the same value at a 
given point by a constant.  

Ø A third example is computing 
available expressions. It consists in 
determining a set of expressions 
that are always evaluated in the 
past and so to proceed to Common 
Subexpression Elimination (CSE). 
Similarly, determining very busy 
expressions – a set of expressions 
which will always be evaluated in 
the future allows loop invariant 
elimination and code motion.  

 
Those are all examples of what is currently 
done through the use of traditional data-
flow analysis. On the other hand, static 
verification of dynamic properties extends 
data-flow analysis by providing an 
additional theoretical framework that 
allows the mathematical justification of 
data-flow analyzers, the design of new 
data-flow analyses and the handling of 
particular infinite sets of properties ([2], [3] 
and [4]).  
 
To further describe how static verification 
of dynamic properties works, we now 
consider a simple flowchart language as 
an example. This consists in: 
Ø 32 bits integer variables and 

integers; 

Ø arithmetic operations; 
Ø assignments; 
Ø conditionals and loops. 
 

In this language, states are pairs 
consisting of: 
Ø An integer representing the current 

flowchart instruction to be executed 
Ø A vector of integers in a n-

dimensional state where n is the 
number of variables in program P 

 
We define what strongest global invariants 
SGI(k) are: SGI(k) is the set of all possible 
states that are at program point k and 
reachable in program P. For the flowchart 
language defined previously, it is a set of 
points in an n dimensional space. A run-
time error is then triggered when SGI(k) 
intersects a forbidden zone.  
 
SGI(k) is the result of formal proof 
methods, or it can be expressed as least 
fixed-points of a monotonic operator on 
the lattice of a set of states. SGI(k) may 
thus be seen as the solution of a system of 
equations whose unknowns are sets of 
states. 
We use the Floyd/Park/Clarke method [5], 
[6] and [7] as follows: 
 
Step 1: Translate program P to a system: 

X1 = F1(X1,…,Xm)  
X2 = F2(X1,…,Xm) 
… 
Xm = Fm(X1,…,Xm) 

 
Step 2: Compute the least solution 
(V1,…,Vm)  
We do this by using a Kleene ascending 
sequence: 

Xi,0 =∅ 
Xi,k+1=Fi(X1,k,…,Xm,k) 

 
We now define the result: SGI(p)=Vp 
 
Let us consider an example of such a 
computation with the following program: 
 

K=ioread_i32(); 
1. I=2; 
2. J=K+5; 
3. while (I<10)  { 
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4. I=I+1; 
5. J=J+3; 

6. } 
7. 
8. … / (I-J) 
 

Here the non-obvious risk is a divide-by-
zero. That is what we are going to check 
with the Floyd/Park/Clarke method. 
 
Step 1: Translate program P to a system  
 
We get the following set of equations: 
 

X0={(0,0,k) I k∈[-231,231-1]} 
X1={(2,j,k) I (i,j,k) ∈ X0} 
X2={(i,k+5,k) I (i,j,k) ∈ X1} 
X3= X2 ∪ X6 
X4={(I+1,j,k) I (i,j,k) ∈ X3, i<10} 
X5={(i,j+3,k) I (i,j,k) ∈ X4} 
X6= X5 
X7={(i,j,k) I (i,j,k) ∈ X3, i =10} 
X8={(i,j,k) I (i,j,k) ∈ X7, i-j≠0} 
Xerror={(i,j,k) I (i,j,k) ∈ X7, i-j =0} 

 
Step 2: Compute the least solution 
 
X0={(0,0,k) I k∈ [-231,231-1]} 
X1={(2,0,k) I k∈ [-231,231-1]} 
X2={(2,k+5,k) I k∈ [-231,231-1]} 
X3={(i,j,k) I k∈ [-231,231-1],i∈ [2,10],j=k+3i-
1} 
X4={(i,j,k) I k∈ [-231,231-1],i∈ [3,10],j=k+3i-
4} 
X5={(i,j,k) I k∈ [-231,231-1],i∈ [3,10],j=k+3i-
1} 
X6= X5 
X7={(10,j,k) I k∈ [-231,231-1], j=k+29} 
X8={(10,j,k) I k∈ [-231,231-1], j=k+29, j≠0} 
Xerror={(10,10,-19)} 
 
 Dividing by zero will occur at point 8 when  
K = -19. Observe that this constant does 
not appear in the source. 
 
It can be represented graphically as 
follows: 
 
 

 
 
However, for general purpose languages, 
SGI(k) is non-computable. Indeed, the 
halting problem (deciding if a program 
stops) is reducible to checking that 
SGI(k)=∅ but the halting problem has 
been proved undecidable [8]. Thus 
computing SGI(k)=∅ is undecidable, as 
shown in [9]. 
 
Static verification of dynamic properties 
aims at computing approximate solutions 
to SGI(k) ([3] and [4]). The seminal idea is 
to: 
 
1. Replace the system of exact equations 
by its image with a closure operator ρ that 
is : 
Ø monotonic: x⊆y ⇒ ρ(x)⊆ρ(y) 
Ø extensive : x⊆ρ(x) 
Ø idempotent : ρ(ρ(x)) = ρ(x) 

 
2. Solve this approximate system in the 
abstract lattice ρ(L), possibly aided with 
widening operators. 
 
Thus, the solution of the approximate 
system is necessarily a superset of the 
solution of the exact system. This 
approach is thus semantically safe. 
 
We now represent graphically how it 
works: 
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Let’s take an example. We want to check 
the following C language statement: 
 

A = x / (x-y); 
 
The correctness condition to check to 
make sure that no zero division runtime 
error can occur is (x-y)≠0 
 
We may encounter three different 
situations. 
 

1. The intersection between the 
failure state and the state space of 
the program is not empty : 

 

 
 
In this case, there is a potential error. 
 
 

2. The state space of the program is 
completely included in the failure 
state: 

 

 
 
In this case, there is a certain error. 
 

3. The failure state is outside the 
state space of the program : 

 

  
In this case, there is provably no zero-
divide error for this program statement that 
can occur in any future execution of the 
program. 
 
 
However, to efficiently analyze real-world 
programs, this framework is not enough. 
Indeed, real-world programming 
languages set other challenges, such as 
the use of functions/subprograms, 
pointers, data structures (arrays, 
records…), dynamic allocation or multi-
tasking. Thus, other abstract lattices must 
be defined. For example, it may be 
necessary to define a lattice of unitary-
prefix monomial relations ([10] and [11]) to 
represent complex pointer aliasing 
patterns such as:  

{(*(*(X+I) +4), *(Y+j)) I i = 2j+1} 
 

In this case, the principle of the solution is 
to reduce the problem of representing 
relations over regular language L∈ Σ* to 
that of finitely representing sets of points in 
Zn. To do so, we use Eilenberg’s unitary-
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prefix (UP) decomposition that maps each 
L to a finite number of UP monomials. 
Each UP monomial is then mapped to a 
set of points through Parikh’s mapping or 
through free modular group 
decompositions. 
 
To summarize, the key properties of this 
approach are the following: 
 
Ø A real error will never be signaled 

as no error due to the fact that we 
take into account a superset of all 
possible states 

Ø An instruction which is always 
correct will never be signaled as 
certain error 

Ø Exhaustive analysis of run-time 
errors is done by examining only 
operations signaled as potential or 
certain errors. The others can be 
seen as proven to be error-free.  

Ø There is no need to provide test 
cases as inputs: the analysis is 
totally automatic 

Ø Diagnostics are valid for any future 
execution: only one analysis is 
needed 

 
3. APPLYING STATIC VERIFICATION 
OF DYNAMIC PROPERTIES: 
POLYSPACE VERIFIER 
 
Because the concepts of static verification 
of dynamic properties were developed in 
the seventies, one may wonder why it has 
not been industrialized earlier. The answer 
to this question is a lack of available 
computing power – it is now possible to 
use static verification of dynamic 
properties on a high-end PC – and the fact 
that precise and scalable analyses were 
simply not available. Indeed, many 
published methods were either too 
imprecise or too costly (not scaling to 
more than a few hundred lines of code) to 
be actually usable in an industrial context. 
 
Before exploring how static verification of 
dynamic properties has been 
industrialized, let us define what it cannot 
do. Indeed, it is essential to understand 
that it addresses the dynamic behavior of 

the program by essence. Static verification 
of dynamic properties doesn’t check any 
syntactic properties (such as readability, 
testability, maintainability or portability), 
but instead focuses on semantics. Syntax 
is the domain of rule-checking tools, and 
static verification of dynamic properties is 
not applied in such tools. Semantics is the 
realm of static verification of dynamic 
properties. 
 
Static verification of dynamic properties 
has been successfully applied to detect 
run-time errors. Run-time errors are a well-
defined set of errors that may lead to non-
determinism, incorrect results or processor 
stop. A study conducted by Sullivan and 
Chillarege at IBM Watson and Berkeley 
found that 26% of all observed software 
faults and more than 57% of the highest 
severity faults (causing system outage or 
major disruption) were due to run-time 
errors.  
 
Detecting run-time errors statically and at 
compilation time, thanks to static 
verification of dynamic properties, allows 
shortening and/or replacing the following 
activities : 
 
Ø Debugging, by finding run-time 

errors automatically 
Ø Robustness testing, by pinpointing 

exhaustively sources of run-time 
errors 

Ø Functional testing, by allowing 
these tests to not be interrupted by 
the late detection of robustness 
issues (requiring further work to 
localize the bug, fix it and then run 
non-regression tests) 

Ø Code reviews and documentation, 
by extracting control and data flow 
information 

Ø Code acceptance review, by 
providing an objective, third-party, 
way of measuring the quality of a 
given code 

 
The first industrial tool for detecting 
runtime errors using static verification of 
dynamic properties is PolySpace Verifier. 
This tool has been commercially available 



Date : Nov. 27th 2003 © PolySpace Technologies 6/8 
 

since 1999 for the analysis of Ada 
programs and since 2000 for the analysis 
of ANSI C programs. This tool addresses 
two essential needs of embedded software 
development: 
 

Ø Static verification : it statically 
predicts specific classes of run-
time errors and sources of non-
determinism 

Ø Semantic browsing: it statically 
computes data and control flow to 
improve program understanding, 
ease verification and demonstrate 
the compliance of the program 
with industry standards (SIL, 
DO178-B, MISRA, …) 

 
Run-time errors detected by PolySpace 
Verifier include: 
 
Ø Dereferencing through null 
Ø Out-of-bounds pointers 
Ø Out-of-bounds array accesses 
Ø Read access to non-initialized data 
Ø Access conflicts on shared data 

(multithreaded applications and/or 
interrupt routines) 

Ø Invalid arithmetic operations: 
division by zero, square root of a 
negative number … 

Ø Overflow and underflow on integers 
and floating-point numbers 

Ø Unreachable (dead) code 
 
The use of the tool is very simple. It takes 
as an input the code source of an 
application and produces as a result a 
color-coded source where each operation 
is classified according to the risk of run-
time errors if it were executed. There are 
four categories: 
 
Ø Green: the operation will never 

trigger a run-time error for all 
possible executions of the program 

Ø Red: the operation will always (i.e. 
at each execution of the program) 
generate a run-time error. 

Ø Grey: the operation cannot be 
executed – it is a piece of dead 
code 

Ø Orange: this is a warning – there 
may be an error, depending on the 
specific calling context of the 
function that contains the operation 

 
The following is an example of a color-
coded source code provided by PolySpace 
Verifier: 
 

 
 
As to control and data flow documentation 
and understanding, PolySpace Verifier 
builds the global data dictionary and a 
concurrent access graph for each shared 
variable of the program. The following 
figure is an example of concurrent access 
graph provided by PolySpace: 
 

   
 
 
4. INDUSTRIAL USE OF STATIC 
VERIFICATION OF DYNAMIC 
PROPERTIES  
 
Among static verification of dynamic 
properties first industrial uses is the static 
analysis of the embedded ADA flight 
software and inertial central of the Ariane 
5 launcher and the ARD (Atmospheric Re-
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entry Demonstrator). The analyzer 
designed by the author was used on the 
Ariane 502 flight program [12]. Since then, 
it has been successfully used by CNES 
and Aerospatiale on Ariane flight 
programs. As described in [12], these 
software programs consist of about 70,000 
lines of code with five interacting parallel 
tasks.  
 
After this first successful industrial use, 
static verification of dynamic properties 
has been industrialized by our team and 
turned into commercially available tools. 
New users from several industry sectors 
have experienced the efficiency of these 
tools: 
 

Ø An end-user in the avionics 
industry analyzed a Flight 
Management System (FMS) of 
about 500,000 lines. The 
conclusion of this end-user was 
that “the cost savings allowed by 
the tool in the final phase of the 
project was between $150,000 
and $250,000” as a consequence 
of several serious errors 
uncovered by the tool – including 
data races. 

Ø CSEE, a railway signaling systems 
company, also reported successful 
use of static verification of 
dynamic properties in its 
development teams for the 
analysis of several embedded 
software programs in Ada and 
ANSI C with sizes between 20,000 
and 80,000 lines of code. 

Ø Triconex, a chemical industry 
company analyzed a fault-tolerant 
controller software for safety-
critical units in petrochemical and 
chemical plants. Two applications 
of 70,000 lines of C code and 
140,000 lines of Ada code were 
analyzed, yielding a savings of 
10,000 man-hours of testing and a 
time-to-market shortened by 6 to 
12 months according to the user. 

Ø A major international automotive 
supplier used static verification of 
dynamic properties to conduct a 

module-by-module analysis of 
200,000 lines of diesel engine 
control software code. Several 
serious errors were found on a 
sample of 32 modules of a 
validated application despite 100% 
unit-test coverage with automated 
test tools.  

 
These examples are only a very partial list 
of industry sectors that benefit from static 
verification of dynamic properties. Indeed, 
more than 50 development teams all over 
the world have already adopted our tools 
and every embedded software developer 
which aims at reducing the cost of its 
testing effort and increasing the quality of 
its applications is a potential user of this 
kind of tool.  
 
 
5. CONCLUSION 
 
Static analysis to demonstrate the 
absence of run-time errors, once the 
domain of theoretical researchers, has 
come of age. Researchers gave it solid 
foundations. Yet using static verification of 
dynamic properties does not require any 
theoretical background. It is a radical 
breakthrough in software engineering that 
makes it possible to shorten the 
verification and validation cycle thanks to 
an earlier detection of run-time errors. It is 
a repeatable technique that may be used 
at any time, without any prior knowledge of 
the code to be analyzed. It also provides a 
strong improvement in reliability, as it is 
exhaustive by design.  
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