
Ben Brosgol
Ada Core Technologies

brosgol@gnat.com www.gnat.com
SIGAda 2003 Conference

TM

1

Introduction
Purpose of presentation
• Assess Java as a technology for real-time applications

Focus on thread model
• Summarize Real-Time Specification for Java (“RTSJ”)
• Compare Ada and RTSJ

Development process
Technology

Audience background
• Reasonable familiarity with Ada
• Some knowledge of Java
• Some knowledge of real-time issues
• No knowledge of the real-time Java proposals

Presenter credentials
• “Ada graybeard”
• Real-Time Java participant

2

Why Consider Java for Real-Time?
General benefits
• Language security and (in general) well-defined semantics
• Portability at multiple levels (“Write Once, Run Anywhere”)
• Extensive API

Technical features / expressiveness / flexibility
• Support for software engineering (encapsulation, OOP, exceptions…)
• Built-in feature for concurrency (threads)
• Dynamic loading attractive in some segments such as telecom

Advantages over other languages
• Safer than C, simpler than C++, more popular than Ada

Pragmatics / politics
• Organization adopting Java as an “enterprise” language may be

tempted to use Java for real-time

3

Summary of Java Thread Model (1)
Basic approach
• Extend Thread or implement Runnable and override run()
• Construct a Thread object t and invoke t.start()
• sleep(millis) suspends the calling thread
• t.join() suspends until the target thread t completes

Mutual exclusion
• volatile fields
• synchronized blocks/methods

Thread coordination/communication
• Pulsed signal: obj.wait() / obj.notify()
• Broadcast signal: obj.wait() / obj.notifyAll()

4

Summary of Java Thread Model (2)
Scheduling/priorities
• Priority is in range 1..10
• Thread can change or interrogate its own or another thread’s priority
• yield() gives up the processor

Asynchrony
• interrupt() sets a bit that can be polled
• suspend() and resume() (deprecated)
• Asynchronous termination

stop() throws an asynchronous exception (deprecated)
destroy() kills a thread (unimplemented, on “endangered species” list)

Thread group
• Allows user to define method that is invoked when a thread dies from

an unhandled exception

5

Critique of Java Thread Model (1)
Error-prone
• Requires cooperation by the accessing threads

Even if all methods are synchronized, an errant thread can access non-
private fields without synchronization

• Subtle bug: constructor or synchronized instance method making non-
synchronized access to static field

• “Nested monitor” problem

Subtleties in practice
• Not always clear when a method needs to be declared as synchronized
• Complex interactions with other features (e.g. when are locks released)
• Locking is hard to get right (exacerbated by absence of nested objects)

Effect not always clear from source syntax
• A non-synchronized method may be safe to invoke from multiple threads
• A synchronized method might not be safe to invoke from multiple

threads

6

Critique of Java Thread Model (2)
Thread communication/synchronization issues
• wait() and notify()/notifyAll() are low-level

constructs that must be used very carefully
“while (!condition) {obj.wait()}” needed

• Limited mechanisms for direct inter-thread communication
• Synchronized code that changes object’s state must explicitly invoke
notify() or notifyAll()

• No syntactic distinction between signatures of synchronized method
that may suspend a caller and one that does not

• Only one wait set per object (versus per associated “condition”)

Public thread interface issues
• The need to explicitly initiate a thread by invoking its start() method

allows several kinds of programming errors
• Although run() is part of a thread class’s public interface, invoking it

explicitly is generally an error

7

Problems with Java for Real-Time (1)
Lack of some features useful for software engineering
• Operator overloading, strongly typed primitive types, …

Thread model deficiencies
• Priority range (1..10) too narrow
• Priority semantics are implementation dependent and fail to prevent

unbounded priority inversion
• Relative sleep() not sufficient for periodicity

Memory management unpredictability
• Predictable, efficient garbage collection appropriate for real-time

applications is not (yet) in the mainstream
• Java lacks stack-based objects (arrays and class instances)
• Heap used for exceptions thrown implicitly as an effect of other

operations

Lack of features for accessing the underlying hardware

8

Regular Java Semantics for Scheduling
Section 17.12 of the Java Language Specification
• “Every thread has a priority. When there is competition for processing

resources, threads with higher priority are generally executed in
preference to threads with lower priority. Such preference is not,
however, a guarantee that the highest priority thread will always be
running, and thread priorities cannot be used to reliably implement
mutual exclusion.”

Problems for real-time applications
• Impossible to guarantee that deadlines will be met for periodic threads

May get priority inversion
• No guarantee that priority is used for selecting a thread to unblock

when a lock is released
• No guarantee that priority is used for selecting which thread is

awakened by a notify(), or which thread awakened by
notifyAll() is selected to run

9

Problems with Java for Real-Time (2)
Asynchrony deficiencies
• Event handling requires dedicated thread
• interrupt() not sufficient
• stop() and destroy() deprecated or dangerous

Run-time issues
• Dynamic class loading is expensive, not easy to see when it will occur
• Array initializers run-time code

OOP has not been embraced by the real-time community
• Dynamic binding complicates analyzability
• Garbage Collection defeats predictability

Performance questions
“Standard” API would need to be rewritten for predictability
Some JVM opcodes require non-constant amount of time

10

History of Real-Time Java Efforts

NIST Workshops
Lisa Carnahan, NIST1998

Sun JCP: JSR-001
Real-Time for Java Expert Group

Greg Bollella (IBM/Sun)
www.rtj.org

J-Consortium
Real-Time Java WG

Kelvin Nilsen (NewMonics / Aonix)
www.j-consortium.org

Jan 1999

Real-Time Specification for JavaJun 2000
Real-Time Core Extensions

RTSJ V1.0: RI, TCK
Doug Locke, Peter Dibble

(Timesys)
Nov 2001

RTSJ V1.0.1Early 2004

July 2003 Merge into common spec?
The Open Group

JEFF Standard

Focus of this presentation will be on the Real-Time Specification for Java

al-Time for Java™ Expert Gro

James Gosling
Sun

Steve Furr
QSSL

Ben Brosgol
Aonix → AdaCore

Mark Turnbull
Nortel Networks

Paul Bowman
Cyberonics

Peter Dibble
Microware → Timesys

Greg Bollella
IBM → Sun

Dave Hardin
Rockwell-Collins →

aJile Systems

12

Summary of Main RTSJ Features
Concurrency
• Class RealtimeThread extends java.lang.Thread
• Flexible scheduling framework together with default scheduler
• Several mechanisms for priority inversion avoidance

Memory Areas
• Immortal, Scoped Memory augment Garbage-Collected Heap
• “NoHeap Realtime Thread” can preempt GC

Asynchrony
• Asynchronous Event Handling
• Asynchronous Transfer of Control

Time and Timers
Low-Level Features
• Specialized kinds of “physical” memory
• “Peek/poke” of primitive data in “raw” memory

13

Scheduling in the RTSJ
General concept of “schedulable object”
• Realtime thread or asynchronous event handler
• Arguments to constructor establish scheduling characteristics (e.g.

priority) and release characteristics (e.g. cost, periodicity)

Initial default scheduler
• Must support at least 28 distinct priority values, beyond Java’s 10
• Preemptive, fixed priority, FIFO within priority

Support for feasibility analysis (optional)
• Implementation can query release parameters to determine if a set of

schedulable objects can satisfy some constraint

Flexibility
• Implementation can install arbitrary scheduling algorithms
• Users can replace these dynamically, can have different schedulers for

different schedulable objects

14

Synchronization in the RTSJ
Monitor control policy allows user to select which policy governs
which objects
• Semantics defined for default scheduler
• Distinction between active and base priority

Priority Inheritance is default policy
• May be changed by user at system startup

Priority Ceiling Emulation is also defined (but is optional)
• Locking thread’s priority is boosted to ceiling when lock acquired, reset

when lock released
• Ceiling violation exception thrown if locking thread has higher priority

than the ceiling
• No requirement for non-blocking as in Ada

“Wait-free queues” allow communication between a NoHeap
Realtime Thread and a regular Java thread

15

Memory Areas in the RTSJ
Goals
• Augment heap with areas not subject to Garbage Collection
• Do not compromise Java safety (i.e., no explicit “free”)

Heap
• Subject to Garbage Collection

Immortal Memory
• Not subject to GC, never reclaimed
• May reference the heap and vice versa

Scoped Memory
• Transient stack-like area, not subject to GC
• May reference heap, immortal, outer scoped areas, but not vice versa
• Assignment rules prevent dangling references
• Reference count scheme establishes when scoped area is freed

16

Asynchrony in the RTSJ
Asynchronous Event Handler
• Use for hardware interrupts or software “happenings”
• An AEH is a schedulable object but need not have a dedicated thread
• Override a method to implement the relevant event handling
• Associate one or more Asynch Event Handlers with an Asynch Event

Firing an AE → schedule associated AEHs

Asynchronous Transfer of Control (“ATC”)
• Use for timing out on a computation, aborting a thread
• Methodologically questionable, and complicated to implement

Conflict between desire for ATC to be immediate, and the need for certain
code to execute completely

• Extends t.interrupt() to real-time threads, throwing an exception
not only when t is blocked but also when t is executing asynchronously
interruptible (“AI”) code

Synchronized code, and methods lacking a special throws clause, are not AI

17

Ada and RTSJ - The Process
Ada
• Sponsored “top down” effort ISO standard + Rationale
• Detailed audit trail (LSNs, AIs, etc.)
• Thorough review (ARG, WG9)
• Highly open process (public briefings, etc.)
• Product evolution based on ISO rules

RTSJ
• Focused “bottom up” volunteer effort de facto standard
• JCP requires not just the spec but also a RI and TCK
• Audit trail comprises principally the group’s e-mail messages
• Review was principally internal in RTJEG
• Semi-open process
• Product evolution based on Sun’s JCP rules

18

Ada and RTSJ: The Technology
Ada
☺ Performance (classical stack-based language, queueless lock

management)
☺ Conservatism (traditional static compile/bind/link)
☺ Well-defined semantics (queue placement)
☺ Cleaner / simpler approach to ATC
☺ Existence of good implementations now
☺ Allows but does not require OOP paradigm

Market perception
RTSJ
☺ Flexibility (multiple schedulers, dynamic loading...)
☺ Functionality (RationalTime class, feasibility)

Style may seem complicated to traditional Java programmers
Need to pay attention to memory management issues

Performance questions

19

How Can Ada Experience Help Real-Time Java?
Specific technical ideas may be borrowed/adapted
• Absolute delay (sleepUntil method)
• Scheduling policies
• Concept of “abort-deferred” regions of code
• Priority ceilings for efficient lock management
• Subsets for specialized application areas

Political lessons
• Remember that customers want solutions, not technology
• Beware the culture clash

Real-time applications take a static approach to ensure predictability
All heap objects are allocated at system startup
OOP and garbage collection have not been popular

Challenges
• Sacrificing performance/flexibility for safety (an effect of Garbage

Collection) has always been a hard sell to the real-time community

From BMB presentation
To RTJEG, March ’99

20

Ada and Real-Time Java: Friends or Foes?
Friends
• “The enemy of my enemy is my friend”
• Cross-fertilization of ideas beneficial to both

Many Ada concepts influenced RTSJ and Real-Time Core Extensions
– Priority Ceiling, ATC, absolute delay, Ravenscar profile

RTSJ can serve as model for future Ada work in some areas
– “On line” feasibility analysis, integrated support for real-time characteristics

• RTSJ-compliant JVM is feasible target for Ada

Foes
• Ada and Real-Time Core Extensions compete in same market

But RTCE has not yet been implemented

Peaceful coexistence
• Ada and RTSJ have different markets

Ada: traditional real-time
RTSJ: organization already committed to Java

	Introduction
	Why Consider Java for Real-Time?
	Summary of Java Thread Model (1)
	Summary of Java Thread Model (2)
	Critique of Java Thread Model (1)
	Critique of Java Thread Model (2)
	Problems with Java for Real-Time (1)
	Regular Java Semantics for Scheduling
	Problems with Java for Real-Time (2)
	History of Real-Time Java Efforts
	Summary of Main RTSJ Features
	Scheduling in the RTSJ
	Synchronization in the RTSJ
	Memory Areas in the RTSJ
	Asynchrony in the RTSJ
	Ada and RTSJ - The Process
	Ada and RTSJ: The Technology
	How Can Ada Experience Help Real-Time Java?
	Ada and Real-Time Java: Friends or Foes?

