
IBM Software Group

®

An Invitation to Ada 2005
Pascal Leroy
Senior Software Engineer
Chairman, Ada Rapporteur Group

IBM Software Group | Rational software

Agenda

Object-Oriented Programming

Access Types

Real-Time, Safety and Criticality

General-Purpose Capabilities

Predefined Environment and Interfacing

IBM Software Group | Rational software

Object-Oriented Programming

Preserve Ada’s strengths for the construction of safe systems
Distinction between specific and class-wide types
Static binding by default, dynamic binding only when necessary
Strong boundary around modules

Enhance object-oriented features
Multi-package cyclic type structures
Multiple-inheritance type hierarchies
Prefix notation
Accidental overloading or overriding
Extension for protected and task types

IBM Software Group | Rational software

Multi-Package Cyclic Type Structures

Impossible to declare cyclic type structures across library package
boundaries

Problem existed in Ada 83
More prominent with the introduction of child units and tagged types
Workarounds result in cumbersome code

IBM Software Group | Rational software

Multi-Package Cyclic Type Structures: Example

with Employees;
package Departments is

type Department is tagged private;
procedure Choose_Manager (D : in out Department;

Manager : in out Employees.Employee);
private

type Emp_Ptr is access all Employees.Employee;
type Department is tagged record

Manager : Emp_Ptr;
end record;

end Departments;

with Departments;
package Employees is

type Employee is tagged private;
procedure Assign_Employee (E : in out Employee;

D : in out Departments.Department);
private

type Dept_Ptr is access all Departments.Department;
type Employee is tagged record

Department : Dept_Ptr;
end record;

end Employees;

Illegal circularity!

IBM Software Group | Rational software

Limited With Clauses

Gives visibility on a limited view of a package
Contains only types and nested packages
Types behave as if they were incomplete
Restrictions on the possible usages of a limited view (no use, no
renaming, etc.)
Cycles are permitted among limited with clauses
Imply some kind of “peeking” before compiling a package

Related change: incomplete tagged types
Can be used as a parameter
Always passed by reference
Support for cycles in object-oriented programming

IBM Software Group | Rational software

Limited With Clauses (cont’d)

package Departments is
type Department is tagged;

end Departments;

limited with Departments;
package Employees is

type Employee is tagged private;
procedure Assign_Employee (E : in out Employee;

D : in out Departments.Department);
private

type Dept_Ptr is access all Departments.Department;
type Employee is tagged record

Department : Dept_Ptr;
end record;

end Employees;

with Employees;
package Departments is

type Department is tagged private;
procedure Choose_Manager (D : in out Department;

Manager : in out Employees.Employee);
private

type Emp_Ptr is access all Employees.Employee;
type Department is tagged record

Manager : Emp_Ptr;
end record;

end Departments;

limited view: implicit, visible through limited with

IBM Software Group | Rational software

Multiple-Inheritance Type Hierarchies

Multiple inheritance too heavy for Ada 95

Java and C# have a lightweight multiple inheritance mechanism:
interfaces

Relatively inexpensive at execution time
No conflicts due to inheriting code from multiple parents

Add interfaces, similar to abstract types but with multiple inheritance
May be used as a secondary parent in type derivations
Have class-wide types
Support for composition of interfaces
No components, no objects

Related change: null procedures
A procedure declared null need not be overridden

IBM Software Group | Rational software

Interfaces: Example

type Model is interface;
type Model_Ref is access all Model’Class;

type Observer is interface;
procedure Notify

(O : access Observer;
M : Model_Ref) is abstract;

type View is interface with Observer;
type View_Ref is access all View’Class;
procedure Display

(V : access View;
M : Model_Ref) is abstract;

type Controller is interface with Observer;
type Controller_Ref is

access all Controller’Class;
procedure Start

(C : access Controller;
M : Model_Ref) is abstract;

procedure Register
(M : access Model;
V : View_Ref) is abstract;

procedure Register
(M : access Model;
C : Controller_Ref) is abstract;

Model-View-Controller
Structure

Model: data structure being
viewed and manipulated
Observer: waits for a change
to a model
View: visual display of a
model
Controller: supports input
devices for a model

Note composition of interfaces

IBM Software Group | Rational software

Interfaces: Example (cont’d)

type Device is tagged private;
procedure Input (D : in out Device);

type Mouse is
new Device and Controller with private;

procedure Input (D : in out Mouse);

procedure Start (D : access Mouse;
M : Model_Ref);

procedure Notify (D : access Mouse;
M : Model_Ref);

type Two_Button_Mouse is
new Mouse with private;

procedure Start
(D : access Two_Button_Mouse;
M : Model_Ref);

procedure Register_And_Start
(D : access Mouse’Class;
M : Model_Ref);

Mouse is a concrete type
implementing interface Controller

Only one concrete parent, Device
Any number of interface parents

Mouse inherits operations from all of
its parents

May (but need not) override Input
Must override Start and Notify

Two_Button_Mouse inherits all the
operations of Mouse

May (but need not) override some
of them

Register_And_Start is a class-wide
operation

IBM Software Group | Rational software

Prefix Notation

A call must identify the package in which an operation is declared
Dispatching operations are often implicitly declared

Class-wide operations not inherited
Declared in the original package where they appear

Hard to identify the package where an operation is declared
Difficulty compounded by the fact that the choice between dispatching
and class-wide may be an implementation detail
Use clauses are unappealing

IBM Software Group | Rational software

Prefix Notation (cont’d)

Add support for the Object.Operation notation common in other object-
oriented languages

Only for tagged types and access designating tagged types
Dispatching operations and class-wide operations declared in the same package
as the type are eligible
First parameter of the subprogram must be a controlling parameter
Prefix passed as first parameter

M : Model_Ref;
V : View_Ref;
C : Controller_Ref;
D : aliased Mouse;
…
V.Display (M); -- equivalent to Display (V, M)
D.Start (M); -- equivalent to Start (D, M)
D.Input; -- equivalent to Input (D)
D.Register_And_Start (M); -- equivalent to

-- Register_And_Start (D’Access, M);

IBM Software Group | Rational software

Accidental Overloading or Overriding

A typographic error may change overriding into overloading or vice-versa

Optional syntax to specify that a subprogram is an override or an overload
For compatibility, the absence of a qualifier means “don’t know”

type Root_Type is new Ada.Finalization.Controlled with …;

overriding
procedure Finalize (Object : in out Root_Type); -- OK.

type Derived_Type is new Root_Type with …;

overriding
procedure Finalise (Object : in out Derived_Type); -- Error here.

not overriding
procedure Do_Something (Object : in out Derived_Type); -- OK.

IBM Software Group | Rational software

Extensions for Protected and Task Types

Type extensions might be useful for protected and task types in
addition to record types

Inheriting of code is complex, notably because of the difficulty to
specify how guards and barriers are inherited

Simpler approach: define interfaces for protected and task types
Includes support for composition of interfaces
A protected or task type may implement any number of interfaces

Proposal still in a state of flux

IBM Software Group | Rational software

Agenda

Object-Oriented Programming

Access Types

Real-Time, Safety and Criticality

General-Purpose Capabilities

Predefined Environment and Interfacing

IBM Software Group | Rational software

Generalized Use of Anonymous Access Types

Most OO languages allow free conversion of a reference to a
subclass to a reference to its superclass

Ada requires explicit conversions which degrade readability

Allow anonymous access types in all contexts
Avoids most explicit conversions
Avoids proliferation of access types
Unsure about function returning anonymous access types, yet

IBM Software Group | Rational software

Generalized Use of Anonymous Access Types: Example

type Animal is tagged …;
type Horse is new Animal with …;
type Pig is new Animal with …;

type Acc_Horse is access all Horse’Class;
type Acc_Pig is access all Pig;

Napoleon, Snowball : Acc_Pig := …;
Boxer, Clover : Acc_Horse := …;
Animal_Farm : constant array (Positive range <>) of

access Animal’Class :=
(Napoleon, Snowball, Boxer, Clover);

type Noah_S_Arch is
record

Stallion, Mare : access Horse;
Boar, Sow : access Pig;

end record;

IBM Software Group | Rational software

Downward Closures for Access to Subprogram Types

Access-to-subprogram types subject to accessibility checks
Necessary to prevent dangling references
Requires awkward idioms to deal with nested subprograms

type Integrand is access function (X : Float) return Float;

function Integrate (Fn : Integrand; Lo, Hi : Float) return Float;

Anonymous access-to-subprogram types
Cannot be assigned
Cannot be used to create dangling references

function Integrate (Fn : access function (X : Float) return Float;
Lo, Hi : Float) return Float;

IBM Software Group | Rational software

Constancy and Null Exclusion

No access-to-constant parameters or discriminants in Ada 95

Would be useful for:
Declaring controlling parameters of an operation that doesn't modify
the designated object
Providing read-only access via a discriminant
Interfacing with other languages

Literal null disallowed for anonymous access types
Causes confusion
Problematic when interfacing with a foreign language

IBM Software Group | Rational software

Constancy and Null Exclusion (cont’d)

Define an explicit way to exclude nulls from an access subtype
Make existing anonymous access types include null by default

Provide a mechanism for declaring constant anonymous access
types

type Non_Null_Ptr is not null access T;

-- X guaranteed to not be null.
procedure Show (X : Non_Null_Ptr);

-- Pass by reference, but don't allow designated object to be updated;
-- guarantee Y is non-null.
procedure Pass_By_Ref (Y : not null access constant Rec);

-- Any pointer to a graph may be passed to the display routine,
including null.
procedure Display (W : access Window;

G : access constant Graph'Class);

IBM Software Group | Rational software

Agenda

Object-Oriented Programming

Access Types

Real-Time, Safety and Criticality

General-Purpose Capabilities

Predefined Environment and Interfacing

IBM Software Group | Rational software

Ravenscar Profile for High-Integrity Systems

De facto standard defined by the IRTAW
Intended for use in high-integrity system
Makes it possible to use a reduced, reliable run-time kernel
Many capabilities generally useful for other application domains

Add new restrictions and pragmas Detect_Blocking and Profile

Define Ravenscar in terms of predefined restrictions and pragmas
Current users of Ravenscar virtually unaffected
Some application domains only need to abide by some of the
restrictions, not the whole profile
Implementers may define new profiles for specific needs

IBM Software Group | Rational software

Dynamic Ceiling Priorities

Tasks have dynamic priorities in Ada 95

Protected objects only have static ceiling priorities
Unfortunate for some applications

Add attribute Priority
Prefix is a protected object
Gives the ceiling priority of the object
Attribute is a variable: may be updated, providing dynamic behavior
Completes the language in terms of dynamic priorities

IBM Software Group | Rational software

Timing Events

Some scheduling schemes require to execute code at a particular future time
To asynchronously change the priority of a task
To allow tasks to come off the delay queue at a different priority

High priority “minder” task needed in Ada 95
Inefficient and inelegant

Add a mechanism to allow user-defined procedures to be executed at a
specified time

Without the need to use a task or a delay statement

Provided by new predefined unit Ada.Real_Time.Timing_Events
Limited private type Timing_Event represents an event occurring at some time
Time may be absolute or relative
Protected procedure may be used to handle a timing event

IBM Software Group | Rational software

Execution-Time Clocks and Budgeting

Measuring execution time is fundamental for the safe execution of real-time
systems

Use of aperiodic servers to control allocation is becoming common; requires
budget control

New predefined package Ada.Real_Time.Execution_Time
Private type CPU_Time represents the CPU time consumed by a task
Handler called when a task has consumed a predetermined amount of CPU
Supports CPU-based scheduling

New predefined package Ada.Real_Time.Execution_Time.Group_Budgets
Private type Group_Budget represents a CPU budget for use by a group of tasks
Operations to add or remove a task to a group
Operations to query the remaining budget and change the budget
Handler called when a budget has expired

IBM Software Group | Rational software

Scheduling Mechanisms

Ada 95 only has FIFO scheduling
Other policies may be defined by an implementation, but they are not portable

Other scheduling techniques are used in practice
Round robin
Earliest deadline first

Round robin is very common and fits well with the current FIFO

Earliest deadline first is the preferred scheduling mechanism for soft real-
time

Much better CPU usage (40% more before deadlines are missed)

Add a mechanism to mix scheduling techniques in an application

IBM Software Group | Rational software

Agenda

Object-Oriented Programming

Access Types

Real-Time, Safety and Criticality

General-Purpose Capabilities

Predefined Environment and Interfacing

IBM Software Group | Rational software

Access to Private Units in the Private Part

Impossible to reference a private unit in the private part of a
public package

Private with clause gives visibility at the beginning of the
private part
private package Claw.Low_Level_Image_Lists is

…
end;

private with Claw.Low_Level_Image_Lists;
package Claw.Image_List is

… -- May not use Low_Level_Image_Lists here.
private

… -- May use Low_Level_Image_Lists here.
end;

IBM Software Group | Rational software

Aggregates for Limited Types

Limited types prevent copying of values
Have limitations unrelated to copying
Aggregates not available: no full coverage checking

Allow aggregates for limited types
New syntax to force default initialization of some components

private protected type Semaphore is …;
type Object is limited

record
Sem: Semaphore;
Size : Natural;

end record;
type Ptr is access Object;

X : Ptr := new Object'(Sem => <>, Size => 0); -- Coverage checking.

IBM Software Group | Rational software

Pragma Unsuppress

Some algorithms may depend on the presence of canonical checks
Interactions with pragma Suppress may lead to bugs

Pragma Unsuppress revokes the permission granted by Suppress
function "*" (Left, Right : Saturation_Type) return Saturation_Type is

pragma Unsuppress (Overflow_Check);
begin

return Integer (Left) * Integer (Right);
exception

when Constraint_Error =>
if (Left > 0 and Right > 0) or (Left < 0 and Right < 0) then

return Saturation_Type'Last;
else

return Saturation_Type’First;
end if;

end "*";

IBM Software Group | Rational software

Agenda

Object-Oriented Programming

Access Types

Real-Time, Safety and Criticality

General-Purpose Capabilities

Predefined Environment and Interfacing

IBM Software Group | Rational software

Unchecked Unions: Variant Records with no Run-Time
Discriminant

No support in Ada 95 for interfacing with C unions
Unchecked_Conversion not satisfactory

Pragma Unchecked_Union prevents discriminants from being stored
Operations that need to read a discriminant are either illegal or raise
Program_Error

union { type Number (Kind : Precision) is
spvalue double; record
struct { case Kind is

length int; when Single_Precision =>
first *double; SPValue : Long_Float;

} mpvalue; when Multiple_Precision =>
} number; MP_Value_Length : Integer;

MP_Value_First : Access_Long_Float;
end case;

end record;
pragma Unchecked_Union (Number);

IBM Software Group | Rational software

Vector and Matrix Operations

ISO/IEC 13813 defined real and complex vectors and matrices for
Ada 83

No support for basic linear algebra
Not provided by vendors

Integrate this capability in Annex G (Numerics)
Two new predefined units: Ada.Numerics.Generic_Real_Arrays and
Ada.Numerics.Generic_Complex_Arrays
Adapted for Ada 05
Add support for basic linear algebra: inversion, resolution, eigensystem
May be used as an interface to existing linear algebra libraries or as a
self-standing implementation

IBM Software Group | Rational software

Container Library

Numerous container libraries available as public domain software
Stacks, lists, maps, sets, trees, queues, graphs, etc…

Language-defined containers would improve portability and usability
of the language

Delegated by the ARG to outside groups
Not enough resources in the ARG to fully specify a bulky API
Proposals will be evaluated by the ARG

IBM Software Group | Rational software

Directory Operations

Modern operating systems have a tree-structured file system

Applications need to manage these file systems

New predefined package Ada.Directory_Operations
Query and set the current directory
Create and remove directories or directory trees
Copy and rename files and directories
Decompose and compose file and directory paths
Check the existence, size and modification time of a file
Iterate over files and directories

IBM Software Group | Rational software

Conclusion

Snapshot of work in progress
Other features are being considered
More work needed to integrate all the changes together: consistency,
orthogonality

Schedule-driven: expect completion around the end of 2005
Features frozen by the end of this year
Implementers may want to do pilot implementation of some new
features, based on user demand

Make Ada safer, more powerful, more appealing to new and existing
users

	An Invitation to Ada 2005
	Agenda
	Object-Oriented Programming
	Multi-Package Cyclic Type Structures
	Multi-Package Cyclic Type Structures: Example
	Limited With Clauses
	Limited With Clauses (cont’d)
	Multiple-Inheritance Type Hierarchies
	Interfaces: Example
	Interfaces: Example (cont’d)
	Prefix Notation
	Prefix Notation (cont’d)
	Accidental Overloading or Overriding
	Extensions for Protected and Task Types
	Agenda
	Generalized Use of Anonymous Access Types
	Generalized Use of Anonymous Access Types: Example
	Downward Closures for Access to Subprogram Types
	Constancy and Null Exclusion
	Constancy and Null Exclusion (cont’d)
	Agenda
	Ravenscar Profile for High-Integrity Systems
	Dynamic Ceiling Priorities
	Timing Events
	Execution-Time Clocks and Budgeting
	Scheduling Mechanisms
	Agenda
	Access to Private Units in the Private Part
	Aggregates for Limited Types
	Pragma Unsuppress
	Agenda
	Unchecked Unions: Variant Records with no Run-Time Discriminant
	Vector and Matrix Operations
	Container Library
	Directory Operations
	Conclusion

