
A Framework for Designing and Implementing
the Ada Standard Container Library

Jordi Marco and Xavier Franch
Universitat Politècnica de Catalunya (UPC)

Catalonia (Spain)

DALI project: http://www.lsi.upc.es/~gessi/

SIGAda 2003. December 7-11, 2003, San Diego, California, USA

Contents

Introduction

A Quality Model for the Ada Standard Container Library

The Shortcut-Based Framework

Evaluating the Shortcut-Based Framework

Conclusions

Motivation
Assumption: Ada shall include a Standard Container Library (SCL)

As other Object Oriented Languages (C++, Java, Eiffel, …)
Initiatives

Some Action Items issued by the Ada Conformity Assessment
Authority (remarkably AI-302)
Booch Components, Charles Container Library, …
Some events, such as the Standard Container Library for Ada
workshop held during the Ada-Europe 2002 Conference
Other claims

Goal: to provide a framework named the Shortcut-based Framework (SBF)
to be considered as a baseline upon which a high-quality Ada Standard
Container Library can be built

SBF solve the majority of quality drawbacks present in the most
widespread container libraries

A Quality Model for the Ada Standard
Container Library

Based on the ISO/IEC 9126-1 Quality Standard which:

provides a good framework for determining a quality model

general characteristics subcharacteristics attributtes

just fixes the top level hierarchy (characteristics and subcharacteristics)

mentions the convenience of creating hierarchies of quality features

is widespread

The ISO/IEC 9126-1 Quality Standard
Multilevel hierarchy defined by:

6 top level characteristics and their subcharacteristics
Attributes: Measurable, values computed by a metric.

In our approach, intermediate hierarchies of subcharacteristics or
attributes may appear
Quality requirements may be defined as restrictions over the model

Characteristics Subcharacteristics

Functionality suitability, accuracy, interoperability, security , functionality
compliance

Reliability maturity, fault tolerance, recoverability, reliability compliance

Usability understandability, learnability, operability, attractiveness,
usability compliance

Efficiency time behavior, resource behavior, efficiency compliance

Maintainability analyzability, changeability, stability, testability,
maintainability compliance

Portability adaptability, installability, co-existence, replaceability,
portability compliance

Quality Attributes for Functionality in Container
Libraries

Functionality is probably the most relevant quality characteristic in the
domain of container libraries.

Success of the Ada SCL requires exhibiting the appropriate (not necessarily
exhaustive) functionality once considered its design requirements.

Suitability

Suitability is perhaps the more complex functionality subcharacteristic

We decompose it into two new subcharacteristics:

Core Suitability. Types of containers and their implementations
General Suitability. Additional functionalities

Core Suitability attributes

Sequences Associative
Containers

Stack List SetMap

Linked Array Hashing Red-black

Category Variety

Container Variety

Implementation
Variety

Class Stack
Empty
Push
Pop
Top

Operation
Variety

General Suitability attributes

Direct access by position: Iterators:

(item)

Hashing
Implementation

Set Container

Direct
AccessHash(item)

Hashing
Implementation

Set Container

(item4)
(item5)
(item6)

(item3)
(item2)
(item1)

Accuracy attributes

A
B
C

S

position

√
A

C

S.Delete(B)

position

×
A
C

S.Delete(B)

position

Accurate access
by position

A
B
C

S

iterator

√ B
C

S.Delete(A)

iterator

× B
C

S.Delete(A)

iterator

Accurate access
By iterator

The Shortcut Based Framework (SBF)
The Shortcut Concept
Design an object that encapsulates the concept of location or
position of an object in a container, with the following requirements:

Time efficiency
• All the shortcuts operations have constant time

Accuracy
• It is bound to one and only one object in the container
• It does not change while the object which it is bound to is

inside the container

Seccurity
• Access by out-of-date or undefined shortcuts is avoided

The Shortcut Based Framework (SBF)
Classical solution

(object)

Container
Implementation

Concrete
Container

Location
Access

Key points:
– the objects are stored in the

container implementation
– location access is provided

by the container implementation

Some remarks:
– shortcut operations and all iterator

operations have constant time O(1)
– other former operations preserve the

order of complexity
– It becomes easier to control and

manage all exceptional situations

Key points:
– the objects are stored in a Container

base class
– the container implementation store the

shortcuts bound to them

SBF solution

Shortcut
Access

(shortcut) (object)

Concrete Container

Container
Implementation

Container
base class

The Shortcut Based Framework (SBF)
The SBF Hierarchy

Container_
Iterator<Item>

BindToContainer()
First(), Last(),
Next(), Previous(),
Item CurrentItem()
IsDone()
Container_Shortcut

CurrentShortcut()

Shortcut<Item>

Item ItemOf()
bool Defined()

Bidirectional_
Iterator<Item>

BindToContainer()
First(), Last(),
Next(), Previous(),
Item CurrentItem()
IsDone()

Operations for Container n
Operations to be overriden

Concrete container n
...

...

...
Concrete implementation k of
Container 1

Overriding operations

Container_Shortcut Add (Item)
Container_Shortcut AddBefore(Item,

Container_shortcut)
Delete (Container_Shortcut)
Modify (Container_Shortcut, Item)
unsigned long Nitems()

Container<Item>

Container_
Shortcut<Item>

Item ItemOf()
bool Defined()Concrete container 1

Operations for Container 1
Operations to be overriden

Concrete implementation 1 of
Container 1

Overriding operations

The Shortcut Based Framework (SBF)
Consequences

The Shortcut concept offers several benefits to container’s
inheritors:

Access by shortcuts and iterations are independent of the underlying
representation of a concrete container

Efficiency of Shortcuts make possible reuse containers in context with
high efficiency constraints

The access to the objects by means of Shortcuts is accurate and secure

The children classes inherits shortcuts operations as a black box

Iterate with out committing to a specific container with the same
performance

Drawbacks:
Some time and space overhead → can be saved later

SBF Sample Code

Using SBF for an array based implementation (MapArray) of the
concrete container Map

The Sample shows the main points of the SBF:

The Application of the Template Method design pattern

The use of parent and children classes as black boxes

The persistence of iterators and shortcuts

The possibility of define generic algorithms

Delete Containers.Maps procedure

procedure Delete (In_The_Container : in out Map; The_Key: Key) is
Sh : Shortcut;

begin
Sh := Dispatching_Get(In_The_Container,The_Key);
Dispatching_Delete(In_The_Container,The_Key);
Containers.Delete(Container(In_The_Container),Sh);

end Delete;

procedure Dispatching_Delete (In_The_Container : in out Map'Class; The_Key: Con_Key) is
begin

Con_Delete(In_The_Container,The_Key);
end Dispatching_Delete;

Deleting the shorcut
from the implementationDeleting the object
from the base class

ConDelete Containers.Maps.Arrays procedure

procedure Con_Delete (In_The_Container : in out MapArray; The_Key: Con_Key) is
begin

if not Con_Exist(In_The_Container,The_key) then
raise Not_Existing_Key;

end if;
In_The_Container.FirstFree := In_The_Container.FirstFree -1;
for i in In_The_Container.Cache .. In_The_Container.FirstFree-1 loop

In_The_Container.MapA(i) :=
In_The_Container.MapA(i+1);

end loop;
Finalize(In_The_Container.MapA(In_The_Container.FirstFree));

end Con_Delete;

SBF Sample Code generic algorithm: Sort

procedure Sort (C1: in out C.Container'Class) is
function Min_In_Range is new GenericAlgorithms.Min_In_Range

(Item => Item, "<" => "<", BI => C.Container_Iterators);
It1, It2, ItMin : C.Iterator;

begin
if Cardinality(C1) /= 0 then

Bind_To_Container(It1,C1); Bind_To_Container(It2,C1);
Last(It2); Next(It2);
while not IsDone(It1) loop

ItMin := Iterator(Min_In_Range(It1,It2));
Swap(It1,ItMin);
Next(It1);

end loop;
end if;

end Sort;

5 3 1 2 7 8

s1 s2 s3

Sorting a MapArray Container
Client shortcuts

Container base class

Array implementation
of the map class

After sorting a container client shortcuts refer to the same element
and concrete container not change

s2 s3s1

1 2 3 5 7 8

Client shortcuts

Container base class

Array implementation
of the map class

Evaluating the SBF
Assessment of the Goal Question Metrics:

Core Suitability → not affected

General Suitability → maximum values

Algorithmic Variety (algorithms provided and posiblity of
define new ones) → both cases are well-suited

Accuracy and security → avoid wrong situations

Efficiency → same order of magnitude
→ some overhead in real time and in

resource utilization amortized
iterating and in external references

Conclusions
Benefits:

Provides High-quality access by position and iterators.
They are accurate and secure
Allow update the container during traversal
All the containers offers the same operations for iterating and access
by position with the same performance

Provides absolute freedom for the core suitability of the library
Extending the library is easier due to the reuse of code of
shortcuts and iterators
Changeability is improved because there is no coupling between
their components

Small time and space overhead

Price:

Thanks

	A Framework for Designing and Implementingthe Ada Standard Container Library
	Contents
	Motivation
	A Quality Model for the Ada Standard Container Library
	The ISO/IEC 9126-1 Quality Standard
	Quality Attributes for Functionality in Container Libraries
	Suitability
	Core Suitability attributes
	General Suitability attributes
	Accuracy attributes
	The Shortcut Based Framework (SBF)
	The Shortcut Based Framework (SBF)
	Evaluating the SBF
	Conclusions

