
A Practical Comparison
Between Java and Ada in
Implementing a Real-Time

Embedded System

Eric Potratz
University of Northern Iowa

Choosing a Virtual Machine

• Real-Time Specification for Java
– Contains features critical for real-time

systems
– Only one reference implementation exists
– Too large for our embedded system

Choosing a Virtual Machine

• SimpleRTJ
 (Developed by RTJ Computing Ltd.)
+ Easy to port to the real-time operating

system used in the Ada version of the
project (MaRTE OS)

+ Small size
– Lacks real-time features like those in the

Real-Time Specification for Java

Convenient Java Features

• Native Methods
– Java

• Particular methods can be declared as native
• Execute machine code, not Java bytecodes

– GNAT & Ada
• Can import & call C/C++ functions
• Can execute specific sequences of assembly

language instructions
– Provides low-level access to specific

hardware that Java and Ada do not

Convenient Java Features
• Concurrency Support

– Thread objects
• Equivalent to Ada’s tasks
• Allow concurrent control in an application

– synchronized methods
• Used to enforce mutual exclusion on an

object’s operations
• Used to implement basic equivalents to Ada’s

protected types
– Concurrency support better integrated into

the Java language than into Ada

Java’s Drawbacks

• Means to implement barriers on
“protected type” operations

Barriers

• Associated with an operation in a
protected type

• Assigned a particular condition
– When the condition is true:

• The barrier is “open”
• Tasks/Threads can execute the operation

– When the condition is false:
• The barrier is “closed”
• Calling tasks/Threads are suspended until the

condition becomes true

Barriers In Ada

• A barrier can be created by:
– Creating a protected type
– Declaring an entry operation in that

protected type
– Assigning the entry condition to that

operation
• Runtime system takes care of the

dynamic aspects of enforcing the entry
barrier

Barriers in Java

• Java provides low-level methods to
produce similar behavior
– wait() — suspends a Thread and places

it in the object’s set of suspended Threads
– notify() — “notifies” (wakes up) one

Thread in the object’s set of suspended
Threads

– notifyAll() — notifies all Threads in
the set of suspended Threads

Barriers in Java

• These are primitive operations
– Have to worry about algorithms that will

produce equivalent behavior to barriers
– These low-level operations are more

complicated and error prone to use

Barriers in Java

• Drawbacks to wait(), notify(), and
notifyAll()

– Their low-level nature complicates adding
more barriers to a class

– Exacerbates nested object lock deadlock
– Inheritance anomaly

Java’s Drawbacks

• Thread scheduling in non-real-time Java
– Arbitrary Thread scheduling

• Ada’s specification defines how to choose tasks
in any situation where one needs to be chosen
to use resources next

• Non-real-time Java may choose Threads
arbitrarily in some situations

• The Real Time Specification for Java provides
virtual machine extensions to support Thread
scheduling policies that address this

Java’s Drawbacks

• Thread scheduling in non-real-time Java
– Priority inversion is not addressed

• Ada addresses this by using priority inheritance
when it schedules tasks

• Non-real-time Java provides no way to address
priority inversion

• The Real-Time Specification for Java does,
though, through the ability to enable particular
Thread scheduling policies

Java’s Drawbacks

• Memory management in non-real-time
Java
– Memory is dynamically allocated
– Objects cannot explicitly be destroyed
– The “garbage collector factor”
– Real-time Java specifications provide

remedies involving non-heap memory
• Real-Time Core Extensions
• Real-Time Specification for Java

Java’s Drawbacks

• Operations available to access single
bits of data
– Useful in implementing device drivers
– Ada: can define a record type and map its

components onto particular bits within a
primitive data type

– Java: provides low-level bit shifting and bit
masking operations

• More complicated to use and error-prone
• Unintuitive behavior

Java’s Drawbacks

• Class Initialization Code and Class
Dependencies
– Ada compilers

• Check package initialization code for
dependency problems

• Report any problems
– Java compilers

• Don’t check the same for similar class
initialization code

• Class initialization process is more error-prone

Conclusion

• How usable is non-real-time Java in
implementing this kind of system?
– The last two drawbacks can be worked

around
– The other drawbacks make non-real-time

Java less than ideal than Ada for this
particular embedded real-time application

– Java is a “work in progress” for embedded
real-time applications like this one

	A Practical Comparison Between Java and Ada in Implementing a Real-Time Embedded System
	Choosing a Virtual Machine
	Choosing a Virtual Machine
	Convenient Java Features
	Convenient Java Features
	Java’s Drawbacks
	Barriers
	Barriers In Ada
	Barriers in Java
	Barriers in Java
	Barriers in Java
	Java’s Drawbacks
	Java’s Drawbacks
	Java’s Drawbacks
	Java’s Drawbacks
	Java’s Drawbacks
	Conclusion

