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Choosing a Virtual Machine

• Real-Time Specification for Java
– Contains features critical for real-time 

systems
– Only one reference implementation exists
– Too large for our embedded system



Choosing a Virtual Machine

• SimpleRTJ
 (Developed by RTJ Computing Ltd.)
+ Easy to port to the real-time operating 

system used in the Ada version of the 
project (MaRTE OS)

+ Small size
– Lacks real-time features like those in the 

Real-Time Specification for Java



Convenient Java Features

• Native Methods
– Java

• Particular methods can be declared as native
• Execute machine code, not Java bytecodes

– GNAT & Ada
• Can import & call C/C++ functions
• Can execute specific sequences of assembly 

language instructions
– Provides low-level access to specific 

hardware that Java and Ada do not



Convenient Java Features
• Concurrency Support

– Thread objects
• Equivalent to Ada’s tasks
• Allow concurrent control in an application

– synchronized methods
• Used to enforce mutual exclusion on an 

object’s operations
• Used to implement basic equivalents to Ada’s

protected types
– Concurrency support better integrated into 

the Java language than into Ada



Java’s Drawbacks

• Means to implement barriers on 
“protected type” operations



Barriers

• Associated with an operation in a 
protected type

• Assigned a particular condition
– When the condition is true:

• The barrier is “open”
• Tasks/Threads can execute the operation

– When the condition is false:
• The barrier is “closed”
• Calling tasks/Threads are suspended until the 

condition becomes true



Barriers In Ada

• A barrier can be created by:
– Creating a protected type
– Declaring  an entry operation in that 

protected type
– Assigning the entry condition to that 

operation
• Runtime system takes care of the 

dynamic aspects of enforcing the entry 
barrier



Barriers in Java

• Java provides low-level methods to 
produce similar behavior
– wait() — suspends a Thread and places 

it in the object’s set of suspended Threads
– notify() — “notifies” (wakes up) one 

Thread in the object’s set of suspended 
Threads

– notifyAll() — notifies all Threads in 
the set of suspended Threads



Barriers in Java

• These are primitive operations
– Have to worry about algorithms that will 

produce equivalent behavior to barriers
– These low-level operations are more 

complicated and error prone to use



Barriers in Java

• Drawbacks to wait(), notify(), and
notifyAll()

– Their low-level nature complicates adding 
more barriers to a class

– Exacerbates nested object lock deadlock
– Inheritance anomaly



Java’s Drawbacks

• Thread scheduling in non-real-time Java
– Arbitrary Thread scheduling

• Ada’s specification defines how to choose tasks 
in any situation where one needs to be chosen 
to use resources next

• Non-real-time Java may choose Threads 
arbitrarily in some situations

• The Real Time Specification for Java provides 
virtual machine extensions to support Thread 
scheduling policies that address this



Java’s Drawbacks

• Thread scheduling in non-real-time Java
– Priority inversion is not addressed

• Ada addresses this by using priority inheritance 
when it schedules tasks

• Non-real-time Java provides no way to address 
priority inversion

• The Real-Time Specification for Java does, 
though, through the ability to enable particular 
Thread scheduling policies



Java’s Drawbacks

• Memory management in non-real-time 
Java
– Memory is dynamically allocated
– Objects cannot explicitly be destroyed
– The “garbage collector factor”
– Real-time Java specifications provide 

remedies involving non-heap memory
• Real-Time Core Extensions
• Real-Time Specification for Java



Java’s Drawbacks

• Operations available to access single 
bits of data
– Useful in implementing device drivers
– Ada: can define a record type and map its 

components onto particular bits within a 
primitive data type

– Java: provides low-level bit shifting and bit 
masking operations

• More complicated to use and error-prone
• Unintuitive behavior



Java’s Drawbacks

• Class Initialization Code and Class 
Dependencies
– Ada compilers

• Check package initialization code for 
dependency problems

• Report any problems
– Java compilers

• Don’t check the same for similar class 
initialization code

• Class initialization process is more error-prone



Conclusion

• How usable is non-real-time Java in 
implementing this kind of system?
– The last two drawbacks can be worked 

around
– The other drawbacks make non-real-time 

Java less than ideal than Ada for this 
particular embedded real-time application

– Java is a “work in progress” for embedded 
real-time applications like this one
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