
SIGAda 2003

Experiences in developing a
typical Web/Database application

J-P. Rosen
Adalog

An AXLOG Group company

rosen@adalog.fr

SIGAda 2003

The need
• Managing the registration process to Adalog’s

training sessions
+ Several persons in charge
+ In various locations, not available

at the same times
+ Must answer the phone immediately!

• Pinging people
+ Prepare hand-outs
+ Reserve restaurant
+ …

• Managing mailing
+ Classical database extraction

Fabienne

Catherine
JPR

Maria

SIGAda 2003

The constraints
• Use free software
• User interface usable by casual users
• Availability on Windows and Linux
• Independent of any particular DBMS
• Easily modifiable
• Deal with concurrent accesses
• Efficiency is not a concern
• Reliability is a concern

SIGAda 2003

The solution

Intranet
Regular Web

browser

Database +
Web server

Local GUI

Regular Web
browser

Regular Web
browser

E-mail
notifications

SIGAda 2003

AWS

• Ada Web Server (Pascal Obry)
+ A set of packages for managing http/https

connections
+ Facilities for managing pages
+ Facilities for building pages

• Basic behaviour
procedure Start(Web_Server : in out HTTP;

Callback : in Response.Callback;
Config : in AWS.Config.Object);

type Callback is access
function (Request : Status.Data) return Response.Data;

SIGAda 2003

AWS - Dispatchers
• A call-back procedure appropriate to the

basic behaviour
• Analyzes the request and:

+ Dispatches to other functions according to the URI
(URI dispatcher)

+ Considers the URI as a file name and returns the
corresponding file (Page dispatcher)

+ Dispatches to other functions according to the method
(Method dispatcher)

+ Dispatches to other functions according to the host
name (virtual host dispatcher)

SIGAda 2003

AWS – Templates parser
• Tags and Vector-Tags

+ Tag: associates a value to a name (string)
+ Vector-tag: associates several values to a name (string)
+ Referred to in template as @@_name_@@

• Conditions
@@IF@@ <condition>

…
@@END_IF@@

• Tables
@@TABLE@@

…
@@END_TABLE@@

Content included only if <condition>
is true

Repeat contents, picking up one value
from each vector-tag for each iteration

SIGAda 2003

AWS – Other features
• Session management
• Mail client
• HTTP client
• Server push
• SOAP support (server and client)
• LDAP support
• JABBER support
• … and more

SIGAda 2003

Gesem filters and dispatchers

Access control filter

URI dispatcher

Page dispatcher

Access allowed ?

Associated Ada
function ?

Associated page ?

“Not allowed”

Ada function

Regular page

“Page not found”

yes

no

no

yes

yes

no

Request "Engine"
package

SIGAda 2003

A typical page

Fixed
elements

Variable
elements

Buttons

SIGAda 2003

The page design pattern
with AWS.Response;
package Pages.Some_Page is

function Build (<parameters>)return AWS.Response.Data;
end Pages.Some_Page;

package body Pages.Some_Page is
My_Name : constant String := "some_page";

function Build (<Parameters>)
return Response.Data is ...

function Buttons (Request : in AWS.Status.Data)
return Response.Data is ...

function Page (Request : in AWS.Status.Data)
return Response.Data is ...

begin
Engine.Register(My_Name, Page'Access, Buttons'Access);

end Pages.Some_Page;

some_page.html some_page.btns

SIGAda 2003

Reliability
•Every page has an exception handler:
exception

when Occur : others =>
return Pages.Error.Build

(Unit => "pages." & My_Name,
Subprogram => “Name of subprogram",
Occur => Occur);

SIGAda 2003

Concurrency
• Concurrent access is extremely unlikely, but

possible
+ Recognize users from their IP address
+ Use a global lock:

• Only one user can modify at any one time
• "Modify" button on each page to grab the lock

• But beware of "back" button
+ Display a page
+ Modify it (get lock)
+ Validate (release lock)
+ Back page: the page is modifiable, but the user doesn't own the

lock !
+ Checked by the access control filter => page expired

SIGAda 2003

Local interface (1)
• Manages the application

+ Stop, lock database…
+ Shows uncommitted transactions

• Monitors requests
+ Clear window
+ Save content to

file

•Plain GTK
•Generated automatically
with GLADE

SIGAda 2003

Local interface (2)
• Problem: GtkAda allows only one task in

the GUI
+ But many tasks need to update the interface

• Solution: the main task manages the
interface
+ Usual pattern, terminate program when exiting main

loop
+ Updates are messages, queued in a FIFO
+ How do you notify that a new message has arrived?

• Avoid active loops
• Schedule an idle-callback

SIGAda 2003

Choosing the database interface
• Gate

+ Didn’t like embedded SQL
+ Drives other Ada tools (emacs!) crazy

• mySQL binding
+ Fear to depend on any special database system

• mySQL + ODBC
+ DB independent
+ Allows other applications to access DB
+ Available for both Linux and Windows
+ Somewhat low level, but easy to use a higher level

binding.

SIGAda 2003

Objects design pattern
with Globals, Data_Manager, AWS.Templates;
use Globals;
package Objects.Abstraction is

end Objects.Abstraction;

type Data is
record

…
end record;

-- Operations on Abstraction.Data

Ada
view

function Image (Item : Data)return Array_Of_Unbounded;
function Value (Item : Array_Of_Unbounded)return Data;
package Manager is new Data_Manager

(Data => Data,
Data_Name => "my_data",
Columns => "col1, col2, col3");

subtype Handle is Manager.Handle;
type List is array (Positive range <>)of Handle;

Database
view

function Associations (Item : Handle) return Translate_Table;
function Associations (Item : List) return Translate_Table;
function Extract (Param : AWS.Parameters.List) return Data;

Templates
(HTML) view

SIGAda 2003

AWS vs. Apache
• The application is an executable, not a set of

scripts
+ Must recompile when functionnalities are

added/changed
+ NOT when presentation changes (thanks to templates)

• Easy to deal with concurrent access
+ Thanks to protected types!

• Possibility of having a control panel
• Easy to distribute

+ Can even be made a single executable

SIGAda 2003

Lessons learned (1)

• Separate concerns

• Reliability
+ Exceptions are great!

• AWS is powerful enough
+ No Javascript
+ The template parser is great!

Pages

Content
management Objects

DB_Interface

Data
management

User_interface

Local GUI
management

HTTP
management

Engine

SIGAda 2003

Lessons learned (2)
• A web interface is difficult to manage

+ User can close the browser at any time (even with
uncommitted transactions), but the application is not
aware!

+ User can call "previous page" at any time: no global
state

• Portability
+ > 10_000 SLOC in 81 compilation units
+ Network interface + GUI + Database interface
+ No difference between Linux and Windows version
+ Ada is great!

SIGAda 2003

	Experiences in developing a typical Web/Database application
	The need
	The constraints
	The solution
	AWS
	AWS - Dispatchers
	AWS – Templates parser
	AWS – Other features
	Gesem filters and dispatchers
	A typical page
	The page design pattern
	Reliability
	Concurrency
	Local interface (1)
	Local interface (2)
	Choosing the database interface
	Objects design pattern
	AWS vs. Apache
	Lessons learned (1)
	Lessons learned (2)

