Verifying LTL properties of concurrent Ada programs with

Quasar

ACM SIGAda 2003

S. Evangelista(*), C. Kaiser,
J-F Pradat-Peyre and P. Rousseau(*)

® CEDRIC CNAM - Paris #

December 10, 2003

SIGAda 2003

‘ Quasar Presentation (1/2) I

Quasar Analyzes concurrent Ada programs

Method : from source code to model
Based on the Petri nets formalism

Simple to use
— Automatic tool
— No Petri nets knowledge required

— Graphical interface

SIGAda 2003

‘ Quasar Presentation (2/2) I

e (Quasar proceeds in four steps :

— Slicing : suppressing all the elements of the source

code not related to the property to verify

— Translation : translating the sliced source code

into a Petri net

— Verification : using structural and model-checking

techniques to validate the property

— Construction of a report : using counter-example
and making the link between the formal model and

the source code

SIGAda 2003

Peterson Example (1/2) I

task Type_ T,
task body Type_T is
My_d : Id := 1,
begin
loop
Put_Line (”Before_actions,_task.” & Id’Image (My_Id));
Peterson.Enter (My_Id);
Set_Controller_Instruction (My_Id);
Peterson.Quit (My_Id);
Put_Line (" After_actions_section,_task.” & Id’Image (My_Id));
end loop;
end Type_T;

T_One : Type_T,
T _Two : Type T

SIGAda 2003

Peterson Example (2/2) I

Priority : Id := 1;
Candidate : Tab_Candidate := (others => False);

procedure Enter (X : in Id) is
Other : Id := (X mod 2) + 1;

begin

Candidate (X) := True;

Priority := Other;

while Condition_Not_Satisfied loop null; end loop;
end Enter;

Let us check three solutions
e not ((Candidate (X)) and (Priority = X))
e (Candidate (Other)) and (Priority = Other)
e (Candidate (Other)) or (Priority = Other)

SIGAda 2003

First Step : Slicing'

e Sliced program : without the colored lines

task Type_T;
task body Type_T is
My Id : Id := 1;
begin
loop
Put_Line (”Before actions, task ” & Id’Image (My_Id));
Peterson.Enter (My_Id);
Set_Controller_Instruction (My_Id);
Peterson.Quit (My_Id);
Put_Line (" After actions section, task ” & Id’Image (My_Id));
end loop;
end Type_T;

T _One : Type_T;
T Two : Type_T;

SIGAda 2003

Second Step : Translation - Patterns'

e Building the Petri net with components : patterns

— sub-net : a partial Petri net corresponding to an
element of the Ada language

— meta-net : an abstraction of sub-net used to
represent general part of an element (example : the
statements of a loop)

e and with operators :

— Substitution : replacing a meta-net by its
corresponding sub-nets

— Merging : merging two sub-nets

SIGAda 2003

Second Step : Translation - Examplel

e Substitution example

loop
Peterson.Enter;
end loop;

SIGAda 2003

Third Step : Verification - Process'

e Expressing the properties with a formal

temporal logic

LTL (Linear Time Temporal Logic)
— Atomic propositions
— Propositional operators : =, A, V
— Temporal operators :

U [until] (G [always|, F |[eventually]), X (next)

e Verifying the properties by model-checking

SIGAda 2003

‘Third Step : Verification - Examplel

We want to verify the property :
“If the task T_One 1s candidate to enter in the critical

section, T_One will access the critical section”

LTL — (T_One is Candidate) = F (T_One is in CS)

LTL manipulation :
e Not intuitive and error prone

e Difficulty to make reference to specific parts of

the program

10

SIGAda 2003

‘Third Step : Verification - Our solution'

e Using templates for simplifying LTL manipulation

— Concerns usual properties

— Keeps the advantages of LTL (precision and

expressiveness)

— Keeps the advantages of automatization

11

SIGAda 2003

‘Third Step : Verification - Templates (1/ 2)'

e State accessibility

— Inevitable state : =89 U (sg = F s1)

| | | | | |
| | | | | | >

—50 -5

— Inevitable state with condition :

=59 U (sg = (Cond U F s;))

— Home state : =85 U (s = G(F s1))

12

SIGAda 2003

Third Step : Verification - Templates (2/2)

e Bounded Wait : G(sg = F sy)

e Safety property : G(— s)

e Stability property : = f U G(f)

e Fixpert mode : all LTL properties

13

SIGAda 2003

‘Third Step : Verification - Program referencel

e Semi-graphical definition of atomic properties

based either on :
— Value of variable
— State of tasks (selected by line number)

— ... still under development

x Length of entry queues

14

SIGAda 2003

Third Step : Verification - Example (cont.)

e Choice of the template — Bounded Wait : G (sg = F s1)
— 8p : T_One 1s Candidate
— 81 : T_One 1s in CS

e Atomic proposition definition :
— T_One is Candidate

— value of a variable
— (Candidate(1) = True)
— T _One is in CS

— Selection of a task variable and task body line
— T_One@8§

15

SIGAda 2003

‘Fourth Step : Report'

e Automatic detection of the sequence leading to

the error

e Step by step graphical representation of this
sequence

e Programmers can understand easily the design error

using the generated trace
e Correction and new check of the program

Quasar allows us to verify that the second solution of

Peterson example is the only valid one

16

SIGAda 2003

\ Conclusion I

e An easy way to add verification of LTL properties

in Quasar using templates

e Future works

— Extending coverage of the language (pointers, dynamic
tasking, objects, ...)

— Extending temporal properties to Computational Tree Logic
(CTL)
— Improving specific verification techniques
x Structural techniques with colored Petri nets
reductions

x Model-checking using the knowledge of the generated
Petri nets structure

17

