Overview of Presentation

What is Ada?
What is ACM?
What is SIGAda?
Introduction of SIGAda Officers
How Not to do Systems Engineering
Ada Engineered Products
Common Characteristics of Ada Applications
Future of Ada
What Is Ada?

An internationally standardized language designed for large-scale, long-lived real-time / embedded applications where reliability is critical

Originally designed by a team led by Jean Ichbiah in the early 1980’s ⇒ Ada 83

- Pascal + packages + exceptions + tasking + generics

Revised by a team led by S. Tucker Taft in the early 1990’s ⇒ Ada 95

- Ada 83 + OOP + child libraries + protected objects
- Also: generalized “pointers”, richer API interfacing, “Specialized Needs” annexes

Revision Process started for ~2005 ⇒ Ada 05 | Ada 0X

Ada is a Language for Building Industrial Strength Systems
What Is the ACM?

What Is ACM?

- Association for Computing Machinery
- World’s oldest and largest scientific computing society
- A major force in advancing the skills and knowledge of Information Technology professionals since 1947
- Has approximately 75,000 members worldwide
- Valuable resource for rapidly changing IT field
- Approximately 30 Special Interest Groups

SIGs in General

- Keep you up to date with the latest technical developments
- Provide focused resources and forums for discussion
- Help you network with colleagues outside your immediate workshop
What Is SIGAda?

- Special Interest Group in the Ada Programming Language; formed in 1981; ~ 500 members today
- Dedicated to all aspects of the Ada Language
- Played a significant role in the evolution of the Ada Standard:
 - Ada Language Issues Working Group (ALIWG)
 - Performance Issues Working Group (PIWG)
 - Numeric Working Group (NUMWG)
 - Ada Run Time Environment Working Group (ARTEWG)
 - Ada Semantic Interface Working Group (ASIS)
- Played a significant in educating the Ada community
 - Education Working Group (EDWG)
 - Application Program Interface (API) WG (APIWG)
What Is SIGAda? (continued)

• Work with the Ada Community for Ada Advocacy
 • SIGAda Local Chapters • Ada Advocacy Booth
• Publish Ada Letters quarterly
• Cooperate with the Ada International Community
 • Ada-Europe, Japan, ISO/IEC JTC1/SC22 WG9
• Formal Approved Category C Liaison with WG9
 • Important benefit of SIGAda membership
• Provide a wealth of Ada information on our home page => http://www.acm.org/sigada
• Conduct the annual SIGAda Conference

Membership is Valuable for your Professional Development
We welcome volunteers who want to get involved
What Are the Benefits of SIGAda Membership?

Benefits of SIGAda Membership

Be part of a powerful resource for the software community’s ongoing understanding of the scientific, technical, and organizational aspects of the use, standardization, environments, and implementations of the Ada language.

Keep you up to date with the latest Ada-related technical developments.

Provide you with focused resources and forums for discussion on Ada issues.

Help you network with colleagues outside your immediate employ.

Provide you with opportunities to help evolve the Ada language.

Provide you with opportunities to help benefit the entire Ada community.

Provide you with opportunities to help advance your professional career.

Provide you with an annual International SIGAda Conference dedicated to Ada technologies with reduced registration rates.

Provide you with a quarterly professional newsletter, ACM Ada Letters, in print, with on-line access, which is the best way to stay current on Ada and Ada community happenings.

Provide you with notification of conferences, through mail and the SIGAda electronic member mailing list.

Provide you with access to all SIGAda material in the ACM Digital Library.
SIGAda Officers

Original Term: 1 July 01- 30 June 03
Reaffirmed for: 1 July 03- 30 June 05

Chair: Currie Colket
Vice Chair for Meetings and Conferences: David Harrison
Vice Chair for Liaison: Ann Brandon
Treasurer: John McCormick
Secretary: Clyde Roby
International Representative: Jean-Pierre Rosen

Past Chair: Ben Bros gol

Elections Planned for early 2005
Contact Ben Bros gol if interested in running
How Not To Do Systems Engineering And The Sinking Of The Largest Offshore Oil Platform

March 2001

Disclaimer: Slides Received From Unknown Author
For those of you who may be involved in the engineering of systems
Please read this quote from a Petrobras executive,
extolling the benefits of cutting quality assurance and inspection costs,
on the project that sunk into the Atlantic Ocean off the coast of Brazil in March 2001.
"Petrobras has established new global benchmarks for the generation of exceptional shareholder wealth"
through an aggressive and innovative programme of cost cutting on its P36 production facility.
Conventional constraints have been successfully challenged
and replaced with new paradigms appropriate to the globalised corporate market place.
Through an integrated network of facilitated workshops,
the project successfully rejected the established constricting
and negative influences of prescriptive engineering,
onerous quality requirements, and outdated concepts of inspection and client control.
Elimination of these unnecessary straitjackets has empowered the project's suppliers and contractors to propose highly economical solutions.
with the win-win bonus of enhanced profitability margins for themselves.
The P36 platform shows the shape of things to come.
in unregulated global market economy of the 21st Century.”
And now you have seen the final result of this proud achievement by Petrobras.
Ada Engineered Products (1)
LAMPS SH-60R ASW Helicopter
Ada Engineered Products (2)
Boeing 777 Commercial Aviation

- Airbus 320
- Airbus 330
- Airbus 340
- Beechjet 400A
- Beech Starship I
- Beriev BE-200
- Boeing 737
- Boeing 747
- Boeing 757
- Boeing 767
- Boeing 777
- Canadair Regional Jet
- Embraer CBA-123
- Embraer CBA-145
- Fokker F-100
- Ilyushin 96M
- LM Hercules
- Saab 2000
- Tupolev TU-204
CANAL+ TECHNOLOGIES is the world's leading provider of digital broadcasting and interactive TV software solutions. Its field-proven systems are being used by more than 20 different digital operators and over 15.7 million set-top boxes based on its technologies are currently deployed. [Up from 4.7 million in 2001]
Ada Engineered Products (4)
Hertz Neverlost
Ada Engineered Products (5)
70’Kingcat M270 Luxury Power Catamaran
Inertial Confinement Fusion
192 Lasers (510 Meters Path)
1.8 megajoules
Tiny Target – 600 µm diameter
At Lawrence Livermore National Laboratory
$2,000,000,000.00 Contract

Awarded to Lockheed Martin in March 2003

Modernization program to update hosts for FAA Air Traffic Control

Estimate 1.2 MSLOC with the majority in Ada

Reuse of ~ 500K Ada SLOC for DSR/URET Programs
Common Characteristics of Ada Applications

- Reliability is a real concern
- Control safety or mission critical applications
- Control hard real-time or near real-time application
- Reliability is a real concern
- Control highly distributed systems
- Control systems with multiple interfaces
- Reliability is a real concern

Achieved via a sound systems engineering approach

With the Ada Language as a Key Technology
Future of Ada - Optimistic on Ada

Ongoing requirements for languages that support industrial strength engineering solutions

Ada language meets the requirements that it was originally designed to satisfy

- Large-scale, long-lived, high-integrity real-time embedded applications

Ada survived the period when it was most at risk

- 1997-98, after the closing of the AJPO
- Ada usage appears on the rise
- Ada is expanding into new domains

Technology is mature

I’m Upbeat on Ada
Ada Really Works
A Special Thanks to Our Corporate Sponsors