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Background 1

● Ada has earned a prominent role in the 
development of critical real-time systems 
– Via support to good software engineering practice
– Via language subsets of deterministic constructs

● Ada  83 was designed to provide language-level 
support to concurrency and real-time 
– A brave decision, with an unintended deferred impact



Background 2

● Real-time systems are concurrent in nature
● Yet, traditional design has dispensed with 

multiple threads of control entirely
– Obviously a problem of the concurrency model, 

which made design and verification difficult
– Ada tasks were consequently viewed as 

● Non-deterministic
● Inefficient
● Heavy weight



Background 3

● Advances in the scheduling analysis theory
– Have lifted the ban on preemptive priority based 

dispatching 
– Have been mapped on new concurrency models, well 

equipped for predictability

● Ada 95 has taken full advantage of this
– New tasking constructs and rules incorporated in the 

Real-Time Annex
– Now a superb tasking model



The Ravenscar Profile 1

● A subset of the Ada 95 tasking model
– Silent on the sequential part of the language

● Restrictions designed to meet the real-time 
community requirements for
– Determinism
– Schedulability analysis
– Memory-boundedness
– Execution efficiency and small footprint
– Suitability for certification



The Ravenscar Profile 2

● Championed by the IRTAW group on behalf of 
the real-time community

● Work started on the basis of Ada 95
– Definition of a tasking model that warrant static 

scheduling analysis using standard dispatching 
policies and well-known analysis schemes

● Fixed-priority preemptive dispatching
● Response time analysis 



The Ravenscar Profile 3

● Not the sole strand of work carried out by the 
IRTAW group
– Very active in the definition and promotion of 

enhancements to the full Ada tasking model

● The Ravenscar Profile is a powerful catalyst to 
the promotion of simple and effective language-
level concurrency
– Crucial to critical applications
– One end of the road to greater expressive power



History in Brief 1
● April 1997, 8th IRTAW

– First definition of the profile, named after the small 
Yorkshire village that hosted the event

● March 1999, 9th IRTAW
– Definition reaffirmed, clarified and published in Ada 

Letters
– Suspension objects allowed in

● September 2000, 10th IRTAW
– Very positive use and implementation reports
– Profile definition submitted to the ARG



History in Brief 2

● April 2002, 11th IRTAW
– ARG definition of the Profile is agreed upon
– Confirmed the need for 

● FIFO_Within_Priorities dispatching policy
● Ceiling_Locking locking policy

● December 2002, WG9 
– 2 approved AIs formally define the Profile

● AI-00305 new pragmas and additional
restrictions (D.7 and H.5)

● AI-00249 configuration pragma Profile with
Ravenscar runtime profile argument (D.13)



History in Brief 3

● December 2000, WG9 
– The HRG charged to produce a rationale for the Profile

● January 2003, HRG
– “Guide for the use of the Ada Ravenscar Profile in high 

integrity systems” published by the University of York as 
public technical report 
(ftp://ftp.cs.york.ac.uk/reports/YCS-2003-348.pdf)

● December 2003, WG9
– The HRG Guide to become an ISO TR



History in Brief 4
● January 2001, ESA

– Ada Ravenscar Products Evaluation Programme
● A 6-month sponsored initiative for European space industy to 

evaluate the expressive power of the Profile and the adequacy 
of the Ada Ravenscar Technology

● 2 early-adopter products
– Aonix ObjectAda/RAVEN
– UPM GNAT/ORK

● 8 small case studies covering a range of software components 
of typical space applications

● November 2001, ESA
– Evaluators workshop

● http://www.estec.esa.nl/wmwww/EME/Ravenscar_Evaluation/
proceedings.htm 



History in Brief 5

● Evaluators reported
– Happy with improved expressive power over 

alternative custom solutions
● Profile restrictions were found to be more liberal than self-

imposed ones

– Could meet all known application requirements
● Need to understand how to express timeouts without 

dropping restrictions

– Would like to see guidance material
● Design and coding patterns



Understanding the Profile 1

● The Ravenscar Profile is an alternative mode of 
operation defined by the standard 
– pragma Profile (Ravenscar)

– Equivalent to a set of configuration pragmas

● Any run-time profile is legally expressed as a 
collection of restrictions

● We shall first understand what it allows
– Then we will move on to what it prohibits



Understanding the Profile 2

● The Profile allows
– Task and protected types and objects at library level

● Task type and protected type discriminants
● Protected procedure as statically bound interrupt handler
● Max 1 entry per protected object with max 1 task queued at any 

time - Barrier must be a single Boolean variable
● Use of E'Count in protected entries bodies

– Atomic and Volatile pragmas
– delay_until statements
– Synchronous task control
– Ada.Real_Time



Understanding the Profile 3

pragma Task_Dispatching_Policy (FIFO_Within_Priorities);
pragma Locking_Policy (Ceiling_Locking);
pragma Detect_Blocking;
pragma Restrictions (

Max_Entry_Queue_Length => 1,
Max_Protected_Entries => 1,
Max_Task_Entries => 0,
No_Abort_Statements,
No_Asynchronous_Control,
No_Calendar,
No_Dynamic_Attachment,
No_Dynamic_Priorities,
No_Implicit_Heap_Allocations,
No_Local_Protected_Objects,
No_Protected_Type_Allocators,
No_Relative_Delay,
No_Requeue_Statements,
No_Select_Statements,
No_Task_Allocators,
No_Task_Attributes_Package,
No_Task_Hierarchy,
No_Task_Termination,
Simple_Barriers);

pragma Task_Dispatching_Policy (FIFO_Within_Priorities);
pragma Locking_Policy (Ceiling_Locking);
pragma Detect_Blocking;
pragma Restrictions (

Max_Entry_Queue_Length => 1,
Max_Protected_Entries => 1,
Max_Task_Entries => 0,
No_Abort_Statements,
No_Asynchronous_Control,
No_Calendar,
No_Dynamic_Attachment,
No_Dynamic_Priorities,
No_Implicit_Heap_Allocations,
No_Local_Protected_Objects,
No_Protected_Type_Allocators,
No_Relative_Delay,
No_Requeue_Statements,
No_Select_Statements,
No_Task_Allocators,
No_Task_Attributes_Package,
No_Task_Hierarchy,
No_Task_Termination,
Simple_Barriers);

The profile corresponds to

AI-00305



Understanding the Profile 4

● Static existence model
– Restrictions ensure that the set of tasks and interrupts 

to be analysed is fixed and has static attributes after 
program elaboration

● Static synchronisation and communication model
– No rendezvous for task synchronisation and 

communication
– Local protected objects meaningless for intertask 

synchronisation and communication



Understanding the Profile 5

● Deterministic memory usage
– No implicit dynamic memory allocation by the 

implementation
– Use of standard or user-defined storage pool via 

explicit allocators allowed
● User must have visibility or control over how  the pool  is 

managed

● Deterministic execution model
– No task queues on protected entries
– No > 1 barriers becoming open simultaneously
– Simpler runtime code



Understanding the Profile 6
● Enforced runtime detection of potentially blocking 

operations within a protected operation
– Stronger requirement on runtime → new H.5(1) 
– Only few cases left from 9.5.1(9-16)

● Protected entry calls and delay_until statements

– Detection at point of execution allowed as opposed to at 
point of call

– Allows efficient and temporally deterministic 
implementation of Ceiling_Locking policy

● Ceiling priority on uniprocessors needs no locks and causes no 
queueing 



Examples of use 1
task type Cyclic (Pri        : System.Priority; 

Cycle_Time : Positive) is
pragma Priority (Pri); 

end Cyclic; 
task body Cyclic is

Next_Period :          Ada.Real_Time.Time; 
Period      : constant Ada.Real_Time.Time_Span := 

Ada.Real_Time.Microseconds (Cycle_Time); 
-- Other declarations 

begin
-- Initialization code 
Next_Period := Ada.Real_Time.Clock + Period; 
loop -- wait one whole period before executing

delay until Next_Period; 
-- Non-suspending periodic response code 
-- May include calls to protected procedures 
Next_Period := Next_Period + Period; 

end loop; 
end Cyclic; 
-- 2 task objects of this type 
A_Cyclic_Task       : Cyclic (20,200); 
Another_Cyclic_Task : Cyclic (15,100);



Examples of use 2

-- A suspension object SO is declared in a visible library unit 
-- and is set to True in another (releasing) task 
task type Sporadic (Pri : System.Priority) is

pragma Priority (Pri); 
end Sporadic; 

task body Sporadic is
-- Declarations 

begin
-- Initialization code 
loop

Ada.Synchronous_Task_Control.Suspend_Until_True (SO); 
-- Non-suspending sporadic response code 

end loop; 
end Sporadic; 

An_Event_Triggered_Task : Sporadic (17);



Examples of use 3
protected type Event (Ceiling : System.Priority) is

entry Wait (D :    out Data); 
procedure Signal (D : in Data); 

private -- Ceiling priority defined for each object 
pragma Priority (Ceiling); 
Current   : Data; -- Event data declaration 
Signalled : Boolean := False; 

end Event; 

protected body Event is
entry Wait (D : out Data) when Signalled is
begin

D := Current; 
Signalled := False; 

end Wait; 
procedure Signal (D : in Data) is
begin

Current   := D; 
Signalled := True; 

end Signal; 
end Event;



Examples of use 4

Event_Object : Event (15); 

task Event_Handler is
pragma Priority (14); -- must be not greater than 15

end Event_Handler; 

task body Event_Handler is
-- Declarations, including D of type Data 

begin
-- Initialization code 
loop

Event_Object.Wait (D); 
-- Non-suspending event handling code 

end loop; 
end Event_Handler;



Examples of use 5

protected PO is
entry Call (Timeout : out Boolean); 
procedure Release_Call; 
procedure Time_Out; 

private
Timed_Out : Boolean := False; 
Release   : Boolean := False; 

end PO; 

select
PO.Call; 
Timeout := False; 

or
delay until Some_Time; 
Timeout := True; 

end select;

A standard timed entry call 
in full Ada can be expressed 
in Ravenscar by a composite 
structure , which:
- extends PO to return the

timeout value to the user 
- models the user as an event-

triggered task
- employs an extra task to 

deliver the timeout event

A standard timed entry call 
in full Ada can be expressed 
in Ravenscar by a composite 
structure , which:
- extends PO to return the

timeout value to the user 
- models the user as an event-

triggered task
- employs an extra task to 

deliver the timeout event



Examples of use 6
protected body PO is

procedure Time_Out is
begin

if Call'Count = 1 then
Timed_Out := True; 
Release   := True; 

end if; 
end Time_Out; 
procedure Release_Call is
begin

Timed_Out := False; 
Release   := True; 

end Release_Call; 
entry Call (Timeout : out Boolean) when Release is
begin

Timeout := Timed_Out; 
Release := False; 
-- further non-suspending code if necessary 

end Call; 
end PO;

The user task first arms the 
timeout task and then calls 
PO.Call

After receiving the timeout value
the timeout task suspends itself
until Some_Time and then
calls PO.Time_Out

The partner task calls 
PO.Release_Call to complete the
synchronisation

The user task first arms the 
timeout task and then calls 
PO.Call

After receiving the timeout value
the timeout task suspends itself
until Some_Time and then
calls PO.Time_Out

The partner task calls 
PO.Release_Call to complete the
synchronisation



Conclusions

● Ada has a superb tasking model, which the current 
revision process will further improve

● Critical real-time applications need safe tasking
– The Ravenscar Profile is a best-fit response to this need
– An excellent vehicle to get more users into well-

designed language-level concurrency

● The Ravenscar Profile cannot compete with the 
full language for expressive power
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