
An Introduction to
the Ravenscar Profile

Tullio Vardanega
University of Padua, Italy

member of the HRG

SIGAda 2003

Outline of Contents

● Background
● The Ravenscar Profile
● History in Brief
● Understanding the Profile
● Examples of Use
● Conclusions

Background 1

● Ada has earned a prominent role in the
development of critical real-time systems
– Via support to good software engineering practice
– Via language subsets of deterministic constructs

● Ada 83 was designed to provide language-level
support to concurrency and real-time
– A brave decision, with an unintended deferred impact

Background 2

● Real-time systems are concurrent in nature
● Yet, traditional design has dispensed with

multiple threads of control entirely
– Obviously a problem of the concurrency model,

which made design and verification difficult
– Ada tasks were consequently viewed as

● Non-deterministic
● Inefficient
● Heavy weight

Background 3

● Advances in the scheduling analysis theory
– Have lifted the ban on preemptive priority based

dispatching
– Have been mapped on new concurrency models, well

equipped for predictability

● Ada 95 has taken full advantage of this
– New tasking constructs and rules incorporated in the

Real-Time Annex
– Now a superb tasking model

The Ravenscar Profile 1

● A subset of the Ada 95 tasking model
– Silent on the sequential part of the language

● Restrictions designed to meet the real-time
community requirements for
– Determinism
– Schedulability analysis
– Memory-boundedness
– Execution efficiency and small footprint
– Suitability for certification

The Ravenscar Profile 2

● Championed by the IRTAW group on behalf of
the real-time community

● Work started on the basis of Ada 95
– Definition of a tasking model that warrant static

scheduling analysis using standard dispatching
policies and well-known analysis schemes

● Fixed-priority preemptive dispatching
● Response time analysis

The Ravenscar Profile 3

● Not the sole strand of work carried out by the
IRTAW group
– Very active in the definition and promotion of

enhancements to the full Ada tasking model

● The Ravenscar Profile is a powerful catalyst to
the promotion of simple and effective language-
level concurrency
– Crucial to critical applications
– One end of the road to greater expressive power

History in Brief 1
● April 1997, 8th IRTAW

– First definition of the profile, named after the small
Yorkshire village that hosted the event

● March 1999, 9th IRTAW
– Definition reaffirmed, clarified and published in Ada

Letters
– Suspension objects allowed in

● September 2000, 10th IRTAW
– Very positive use and implementation reports
– Profile definition submitted to the ARG

History in Brief 2

● April 2002, 11th IRTAW
– ARG definition of the Profile is agreed upon
– Confirmed the need for

● FIFO_Within_Priorities dispatching policy
● Ceiling_Locking locking policy

● December 2002, WG9
– 2 approved AIs formally define the Profile

● AI-00305 new pragmas and additional
restrictions (D.7 and H.5)

● AI-00249 configuration pragma Profile with
Ravenscar runtime profile argument (D.13)

History in Brief 3

● December 2000, WG9
– The HRG charged to produce a rationale for the Profile

● January 2003, HRG
– “Guide for the use of the Ada Ravenscar Profile in high

integrity systems” published by the University of York as
public technical report
(ftp://ftp.cs.york.ac.uk/reports/YCS-2003-348.pdf)

● December 2003, WG9
– The HRG Guide to become an ISO TR

History in Brief 4
● January 2001, ESA

– Ada Ravenscar Products Evaluation Programme
● A 6-month sponsored initiative for European space industy to

evaluate the expressive power of the Profile and the adequacy
of the Ada Ravenscar Technology

● 2 early-adopter products
– Aonix ObjectAda/RAVEN
– UPM GNAT/ORK

● 8 small case studies covering a range of software components
of typical space applications

● November 2001, ESA
– Evaluators workshop

● http://www.estec.esa.nl/wmwww/EME/Ravenscar_Evaluation/
proceedings.htm

History in Brief 5

● Evaluators reported
– Happy with improved expressive power over

alternative custom solutions
● Profile restrictions were found to be more liberal than self-

imposed ones

– Could meet all known application requirements
● Need to understand how to express timeouts without

dropping restrictions

– Would like to see guidance material
● Design and coding patterns

Understanding the Profile 1

● The Ravenscar Profile is an alternative mode of
operation defined by the standard
– pragma Profile (Ravenscar)

– Equivalent to a set of configuration pragmas

● Any run-time profile is legally expressed as a
collection of restrictions

● We shall first understand what it allows
– Then we will move on to what it prohibits

Understanding the Profile 2

● The Profile allows
– Task and protected types and objects at library level

● Task type and protected type discriminants
● Protected procedure as statically bound interrupt handler
● Max 1 entry per protected object with max 1 task queued at any

time - Barrier must be a single Boolean variable
● Use of E'Count in protected entries bodies

– Atomic and Volatile pragmas
– delay_until statements
– Synchronous task control
– Ada.Real_Time

Understanding the Profile 3

pragma Task_Dispatching_Policy (FIFO_Within_Priorities);
pragma Locking_Policy (Ceiling_Locking);
pragma Detect_Blocking;
pragma Restrictions (

Max_Entry_Queue_Length => 1,
Max_Protected_Entries => 1,
Max_Task_Entries => 0,
No_Abort_Statements,
No_Asynchronous_Control,
No_Calendar,
No_Dynamic_Attachment,
No_Dynamic_Priorities,
No_Implicit_Heap_Allocations,
No_Local_Protected_Objects,
No_Protected_Type_Allocators,
No_Relative_Delay,
No_Requeue_Statements,
No_Select_Statements,
No_Task_Allocators,
No_Task_Attributes_Package,
No_Task_Hierarchy,
No_Task_Termination,
Simple_Barriers);

pragma Task_Dispatching_Policy (FIFO_Within_Priorities);
pragma Locking_Policy (Ceiling_Locking);
pragma Detect_Blocking;
pragma Restrictions (

Max_Entry_Queue_Length => 1,
Max_Protected_Entries => 1,
Max_Task_Entries => 0,
No_Abort_Statements,
No_Asynchronous_Control,
No_Calendar,
No_Dynamic_Attachment,
No_Dynamic_Priorities,
No_Implicit_Heap_Allocations,
No_Local_Protected_Objects,
No_Protected_Type_Allocators,
No_Relative_Delay,
No_Requeue_Statements,
No_Select_Statements,
No_Task_Allocators,
No_Task_Attributes_Package,
No_Task_Hierarchy,
No_Task_Termination,
Simple_Barriers);

The profile corresponds to

AI-00305

Understanding the Profile 4

● Static existence model
– Restrictions ensure that the set of tasks and interrupts

to be analysed is fixed and has static attributes after
program elaboration

● Static synchronisation and communication model
– No rendezvous for task synchronisation and

communication
– Local protected objects meaningless for intertask

synchronisation and communication

Understanding the Profile 5

● Deterministic memory usage
– No implicit dynamic memory allocation by the

implementation
– Use of standard or user-defined storage pool via

explicit allocators allowed
● User must have visibility or control over how the pool is

managed

● Deterministic execution model
– No task queues on protected entries
– No > 1 barriers becoming open simultaneously
– Simpler runtime code

Understanding the Profile 6
● Enforced runtime detection of potentially blocking

operations within a protected operation
– Stronger requirement on runtime → new H.5(1)
– Only few cases left from 9.5.1(9-16)

● Protected entry calls and delay_until statements

– Detection at point of execution allowed as opposed to at
point of call

– Allows efficient and temporally deterministic
implementation of Ceiling_Locking policy

● Ceiling priority on uniprocessors needs no locks and causes no
queueing

Examples of use 1
task type Cyclic (Pri : System.Priority;

Cycle_Time : Positive) is
pragma Priority (Pri);

end Cyclic;
task body Cyclic is

Next_Period : Ada.Real_Time.Time;
Period : constant Ada.Real_Time.Time_Span :=

Ada.Real_Time.Microseconds (Cycle_Time);
-- Other declarations

begin
-- Initialization code
Next_Period := Ada.Real_Time.Clock + Period;
loop -- wait one whole period before executing

delay until Next_Period;
-- Non-suspending periodic response code
-- May include calls to protected procedures
Next_Period := Next_Period + Period;

end loop;
end Cyclic;
-- 2 task objects of this type
A_Cyclic_Task : Cyclic (20,200);
Another_Cyclic_Task : Cyclic (15,100);

Examples of use 2

-- A suspension object SO is declared in a visible library unit
-- and is set to True in another (releasing) task
task type Sporadic (Pri : System.Priority) is

pragma Priority (Pri);
end Sporadic;

task body Sporadic is
-- Declarations

begin
-- Initialization code
loop

Ada.Synchronous_Task_Control.Suspend_Until_True (SO);
-- Non-suspending sporadic response code

end loop;
end Sporadic;

An_Event_Triggered_Task : Sporadic (17);

Examples of use 3
protected type Event (Ceiling : System.Priority) is

entry Wait (D : out Data);
procedure Signal (D : in Data);

private -- Ceiling priority defined for each object
pragma Priority (Ceiling);
Current : Data; -- Event data declaration
Signalled : Boolean := False;

end Event;

protected body Event is
entry Wait (D : out Data) when Signalled is
begin

D := Current;
Signalled := False;

end Wait;
procedure Signal (D : in Data) is
begin

Current := D;
Signalled := True;

end Signal;
end Event;

Examples of use 4

Event_Object : Event (15);

task Event_Handler is
pragma Priority (14); -- must be not greater than 15

end Event_Handler;

task body Event_Handler is
-- Declarations, including D of type Data

begin
-- Initialization code
loop

Event_Object.Wait (D);
-- Non-suspending event handling code

end loop;
end Event_Handler;

Examples of use 5

protected PO is
entry Call (Timeout : out Boolean);
procedure Release_Call;
procedure Time_Out;

private
Timed_Out : Boolean := False;
Release : Boolean := False;

end PO;

select
PO.Call;
Timeout := False;

or
delay until Some_Time;
Timeout := True;

end select;

A standard timed entry call
in full Ada can be expressed
in Ravenscar by a composite
structure , which:
- extends PO to return the

timeout value to the user
- models the user as an event-

triggered task
- employs an extra task to

deliver the timeout event

A standard timed entry call
in full Ada can be expressed
in Ravenscar by a composite
structure , which:
- extends PO to return the

timeout value to the user
- models the user as an event-

triggered task
- employs an extra task to

deliver the timeout event

Examples of use 6
protected body PO is

procedure Time_Out is
begin

if Call'Count = 1 then
Timed_Out := True;
Release := True;

end if;
end Time_Out;
procedure Release_Call is
begin

Timed_Out := False;
Release := True;

end Release_Call;
entry Call (Timeout : out Boolean) when Release is
begin

Timeout := Timed_Out;
Release := False;
-- further non-suspending code if necessary

end Call;
end PO;

The user task first arms the
timeout task and then calls
PO.Call

After receiving the timeout value
the timeout task suspends itself
until Some_Time and then
calls PO.Time_Out

The partner task calls
PO.Release_Call to complete the
synchronisation

The user task first arms the
timeout task and then calls
PO.Call

After receiving the timeout value
the timeout task suspends itself
until Some_Time and then
calls PO.Time_Out

The partner task calls
PO.Release_Call to complete the
synchronisation

Conclusions

● Ada has a superb tasking model, which the current
revision process will further improve

● Critical real-time applications need safe tasking
– The Ravenscar Profile is a best-fit response to this need
– An excellent vehicle to get more users into well-

designed language-level concurrency

● The Ravenscar Profile cannot compete with the
full language for expressive power

	An Introduction to the Ravenscar Profile
	Outline of Contents
	Background1
	Background2
	Background3
	The Ravenscar Profile1
	The Ravenscar Profile2
	The Ravenscar Profile3
	History in Brief1
	History in Brief2
	History in Brief3
	History in Brief4
	History in Brief5
	Understanding the Profile1
	Understanding the Profile2
	Understanding the Profile3
	Understanding the Profile4
	Understanding the Profile5
	Understanding the Profile6
	Examples of use1
	Examples of use2
	Examples of use3
	Examples of use4
	Examples of use5
	Examples of use6
	Conclusions

