
Rhapsody in Ada Introduction © I-Logix 1999-2003E1-1

UML -> Rhapsody in Ada

An Example

Rhapsody in Ada Introduction © I-Logix 1999-2003E1-2

Object Orientated Ada
• Ada is not fully OO
• Key Concepts:

– Separate external and internal views
– Encapsulation
– Classification
– Inheritance
– Dynamic Dispatching (Polymorphism)

Ada 83
Ada 95

Rhapsody in Ada Introduction © I-Logix 1999-2003E1-3

Code Generation
• RULES BASED APPROACH

– The Auto-Code Generation is achieved through an
external Code Generator

– The Code Generator has a set of rules to map
UML concepts to Ada Code

– Every single token in the code is customisable
– The User can maintain several rulesets (eg Ada95,

Ada83, Spark)
– The Rules Editor is Java-Based and WYSIWYG

Rhapsody in Ada Introduction © I-Logix 1999-2003E1-4

The Transformation Engine

Code Generation

Reverse Engineering
Roundtripping

Rhapsody in Ada Introduction © I-Logix 1999-2003E1-5

UML to Ada Classes
Class

Class Attributes

Class Pointer

‘this’ Pointer

For Ada83, the SW_t would be just a record – not a
tagged type – so avoid Inheritance if you want the model
to remain Ada83 compatible

Rhapsody in Ada Introduction © I-Logix 1999-2003E1-6

The ‘this’ Pointer

+tick():void
Clock

• Class_t is automatically added as the first
argument to every operation (The ‘this’
pointer)

Rhapsody in Ada Introduction © I-Logix 1999-2003E1-7

A Simple Clock
• What has a clock got to do?

– Maintain minutes, seconds
– Implement timing algorithm (so we don’t get 61

seconds)
– Display the time

Rhapsody in Ada Introduction © I-Logix 1999-2003E1-8

The Clock Class

Rhapsody in Ada Introduction © I-Logix 1999-2003E1-9

Instantiating a Class
Clock

THE MAIN

Rhapsody in Ada Introduction © I-Logix 1999-2003E1-10

The Display Class

Rhapsody in Ada Introduction © I-Logix 1999-2003E1-11

Relationships

Rhapsody in Ada Introduction © I-Logix 1999-2003E1-12

Creating a NEW Instance

Rhapsody in Ada Introduction © I-Logix 1999-2003E1-13

Accessors / Mutators

Rhapsody in Ada Introduction © I-Logix 1999-2003E1-14

Composite Classes

Rhapsody in Ada Introduction © I-Logix 1999-2003E1-15

Alarm Function

Rhapsody in Ada Introduction © I-Logix 1999-2003E1-16

Wake me up at 1.00

+secs : Integer
+mins : Integer

+tick():void
+print():void

Clock

Rhapsody in Ada Introduction © I-Logix 1999-2003E1-17

What if the Alarm is not set?
• Where do we store this?

– An Attribute of the Clock
– An Attribute of the Alarm
– The Alarm State

Call Events (Synchronous)

Rhapsody in Ada Introduction © I-Logix 1999-2003E1-18

Statechart Code - Defs
• Each State & Event has an ID defined in the

Spec file

States
Events

Default State

Rhapsody in Ada Introduction © I-Logix 1999-2003E1-19

Statechart Code - Events
• Events are record Types with accessors

– Events have Data
– Event Data is also record type with accessor

Event DataEvent

Rhapsody in Ada Introduction © I-Logix 1999-2003E1-20

Class Code - Data
• The Class holds extra attributes for the

statechart
– Including a pointer to the current event being

processed

Rhapsody in Ada Introduction © I-Logix 1999-2003E1-21

Statechart Code – Generating Events

• Each Event has a corresponding operation
allowing a client to generate the Event

Rhapsody in Ada Introduction © I-Logix 1999-2003E1-22

Statechart Code for Events
• For Each Event:

– The class has an operation that the client can call
to generate the event into the statechart

• Synchronous: Operation is name of event
• aSynchronous: Operation is named take_eventname

– Or gen_eventname

– The Class has a ‘state_take_eventname’ for each
state

• Allows each state to handle an event independently

Rhapsody in Ada Introduction © I-Logix 1999-2003E1-23

Event Operation Code

Creates the Event

Calls the Root of the Statechart with the new Event

Rhapsody in Ada Introduction © I-Logix 1999-2003E1-24

Event Initialisation Code

Rhapsody in Ada Introduction © I-Logix 1999-2003E1-25

Statechart Structure
• The Statechart is one large switch statement,

broken up into smaller switch statements
• Take_Event checks overall statechart

behaviour (eg is it started yet?)
– Take_Event calls Dispatch Event to pass the event

onto the current state
– Each state has its own take_event operation as a

root
• This dispatches any event received to :
• Each state then has its own take_eventname to actually

handle the event

Rhapsody in Ada Introduction © I-Logix 1999-2003E1-26

Take_Event

Check If Statechart is still active

Set current Event

Dispatch Event

Rhapsody in Ada Introduction © I-Logix 1999-2003E1-27

Dispatch_Event
• Dispatch Event identifies the current State and

calls the ‘root’ take event operation of that
state

Rhapsody in Ada Introduction © I-Logix 1999-2003E1-28

The Alarm Set State
• The State_Take_Event operation identifies

the event and calls the appropriate
take_eventname for that state
– Analagous to individual ‘dispatch_event’ operations

for each state

Rhapsody in Ada Introduction © I-Logix 1999-2003E1-29

Alarm_Set_Take_Sound_Alarm
Leaving the State

Action On Transition

Entering the next state

Rhapsody in Ada Introduction © I-Logix 1999-2003E1-30

aSynchronous Statecharts
• Require an Event Handler – ‘Active Context’

To Be Continued ….

Rhapsody in Ada Introduction © I-Logix 1999-2003E1-31

Creating an Event Driven Statechart
• Create the Statechart as usual.
• Add an EventHandler Class & make its Class Visibility

Private
– Make it Active
– Add a Dependency from it to any Reactive Class and

stereotype that to <<Active Context>>

TheEventHandler

Timer

 <<Active Context>>

The combination of these two things causes extra
operations to be generated in the EventHandler

Rhapsody in Ada Introduction © I-Logix 1999-2003E1-32

Statechart Code
• An Example Statechart

Events are defined at
Package Level

States are defined in
the Statechart Code
for the Class

Rhapsody in Ada Introduction © I-Logix 1999-2003E1-33

Statechart Event Dispatching Code
• Important Operations Generated for a Statechart:

procedure start_behavior Kicks off the Statechart

Procedure take_eventname
One Procedure is generated per Event
EG: procedure take_evStop

Creates an Event and passes it to it’s Active
Context to be placed on a queue.

procedure take_event (Event) Actually Consumes the Event and causes a
State Transition. Called by the Active Context

procedure Initialize
procedure Finalize

Constructor/Destructor

Rhapsody in Ada Introduction © I-Logix 1999-2003E1-34

Instantiating a Reactive Object
• Create the Event Handler and Initialise it

• Create the Reactive Object and Initialise it

• Register the Reactive object with the Event Handler

• Start the Event Handler Task
– Causes it to spawn a thread and process its object queue

repeatedly

• Start the Reactive Object’s Statemachine

Rhapsody in Ada Introduction © I-Logix 1999-2003E1-35

Framework Use Sequence
• A sequence of the

prior collaboration
is shown here.

• The client does
the creation,
starting, message
sending and
deletion in an
orderly fashion.

Rhapsody in Ada Introduction © I-Logix 1999-2003E1-36

Framework Internal Behavior
• If we look at the

start operation for
an active object
more closely we
see there is much
going on.

• A task is spawned
and the reactive
object queue is
processed
repeatedly to
cause event
consumption in
the reactive state
chart.

	UML -> Rhapsody in Ada
	Object Orientated Ada
	Code Generation
	The Transformation Engine
	UML to Ada Classes
	The ‘this’ Pointer
	A Simple Clock
	The Clock Class
	Instantiating a Class
	The Display Class
	Relationships
	Creating a NEW Instance
	Accessors / Mutators
	Composite Classes
	Alarm Function
	Wake me up at 1.00
	What if the Alarm is not set?
	Statechart Code - Defs
	Statechart Code - Events
	Class Code - Data
	Statechart Code – Generating Events
	Statechart Code for Events
	Event Operation Code
	Event Initialisation Code
	Statechart Structure
	Take_Event
	Dispatch_Event
	The Alarm Set State
	Alarm_Set_Take_Sound_Alarm
	aSynchronous Statecharts
	Creating an Event Driven Statechart
	Statechart Code
	Statechart Event Dispatching Code
	Instantiating a Reactive Object
	Framework Use Sequence
	Framework Internal Behavior

