
A Technical PresentationA Technical Presentation

and Global Data Checkingand Global Data Checking
Presented by

Ian Gilchrist
Software Products Consultant

ian.gilchrist@iplbath.com

In the next 30 minutes you will see:
Short statement on what AdaTEST 95 is and does.
Use of AdaTEST 95 to create and run a simple unit
test

Without Global Data checking
With Global Data checking
Adding coverage analysis

Conclusion and questions

(for Ada 83), first released in 1992
followed in 1996
Current version is 2.0

is a unit/integration testing tool
Dynamic Testing – see below
Coverage Analysis – many types
Static Analysis – code/complexity metrics
Many Host and Target platforms supported
Certified (many times) to Safety-Crit std (DO-178B Level A)

Testing techniques supported include:
Black and White Box testing
Exception monitoring
Programmable ‘stubs’
Automated build and run
Timing Analysis
Full support for tasking, elaboration code,
Ravenscar…

Dynamic TestingDynamic Testing

Dynamic Testing When Dynamic Testing When
Dynamic Testing

Executing the software, under known conditions
Predict what should happen
Verifying results against expected outcomes

Unit Test
All software testing should start at the unit or module
level isolation test.
For Ada the most convenient unit is a file containing
one or more packages/classes.

Integration Test
Clusters of packages/classes
Tasks
Sub-systems…

How Dynamic Testing worksHow Dynamic Testing works

Compile
Link Execute

Source
Code

Ada
Test

Script

Other
Libraries

Full
Results

File

Results
Summary

Pass/Fail
Code

External
Objects

Test Script Wizard

Libraries

Stubs

HTML
Results

View

Test
Exe

Input Test data and
create Stubs

Demo - Software under TestDemo - Software under Test

Class STACK specification
A Stack object shall be created in a Null state.

‘Push’ shall insert integer input onto top of Stack;
‘Memory_Fault’ exception shall be raised if a new node
cannot be created due to memory failure.

‘Pop’ shall return an integer from the top of the Stack;
Popping the last integer shall return the Stack to a Null State.

Popping from an empty stack shall raise the ‘Empty_Pop’
exception.

‘Reset’ shall pop all items from the stack.

Global data item ‘Memory_Status’ shall not be affected by
any of the above calls.

Demo - Software under Test Demo - Software under Test
Package Stack is

type Object is tagged private;
procedure Push (The: in out Object;

Value: in Integer);
procedure Pop (The: in out Object;

Value : out Integer);
procedure Reset (The: in out Object);
Empty_Pop: exception; -- can be raised by Pop
Memory_Fault: exception; -- can be raised by Push
-- Global data
type Status is (Corrupt, Valid);
Memory_Status:Status := Valid;

Private
type Node;
type Access_Node;
type Object is tagged record

Head : Access_Node;
end record;

type Node is …

Test Preliminaries for ‘Stack’Test Preliminaries for ‘Stack’

White Box Testing
Test script is written as ‘child’ procedure, thus
giving direct access to Stack Head.

Easy to check Null state of Stack

Design for Testability
A package body function ‘New_Node’ will be
used to allocate memory for new nodes.

This can be stubbed, making it easy to simulate ‘out of
memory’ situation.

Test Plan for ‘Stack’Test Plan for ‘Stack’
Three test cases initially:

1. ‘New Stack’
Check Head is null
Pop, and check Empty_Pop is raised

2. ‘Push and Pop – nominal usage’
Push and Pop three numbers
Check returns are as expected
Check Head is null

3. ‘Reset’
Push three numbers
Reset
Check Head is null

- Demo- Demo

Dynamic Test for package Stack

Laptop computer

Demo

Demo - Software under TestDemo - Software under Test

Class STACK specification
A Stack object shall be created in a Null state.

‘Push’ shall insert integer input onto top of Stack;
‘Memory_Fault’ exception shall be raised if a new node
cannot be created due to memory failure.

‘Pop’ shall return an integer from the top of the Stack;
Popping the last integer shall return the Stack to a Null State.

Popping from an empty stack shall raise the ‘Empty_Pop’
exception.

‘Reset’ shall pop all items from the stack.

Global data item ‘Memory_Status’ shall not be affected by
any of the above calls.

Positive and Negative TestingPositive and Negative Testing
One definition of Testing is:

“(The verification) that software performs its
intended function and does not perform any
unintended function” (IEC 61508)
These can be called ‘positive testing’ and ‘negative
testing’ respectively

In the context of Ada unit testing here are some
aspects of ‘negative testing’:

Checking unwanted external calls are not made
Checking unwanted exceptions are not raised
Checking unwanted memory accesses, including
global data, are not made

My aim is to demonstrate the latter point, using new
AdaTEST ‘Test Support Packages’

Test Support PackagesTest Support Packages
Test Support Packages (TSPs) provide an option
for:

Automating Global Data corruption detection
All data in Package Specs

Automatic instantiation of Checks for user-defined
types

Method of use:
Generate TSPs

<Package>.TSP or TSP_<Package>
Compile in the test lib
Use Test Script Generation wizard to incorporate
named TSPs in current script

 - Demo - Demo

Dynamic Test for Stack
With Global Data checking

Laptop computer

Demo

Coverage AnalysisCoverage Analysis

Coverage AnalysisCoverage Analysis

provides
Code coverage at levels of

Entry Points
Statements (Line)
Decisions (Branch)
Conditions (Boolean Expression)
MC/DC (Masking and Unique-Cause types)
Exceptions (handlers & statements)
Path Checking

Data Value Coverage
via Assertions

How Coverage fits inHow Coverage fits in

Compile
Link Execute

Source
Code

Ada
Test

Script

Other
Libraries

Full
Results

File

Results
Summary

Pass/Fail
Code

External
Objects

Stubs

Libraries

Analysis Wizard

HTML
Results

View

Ada
Test
Exe

Coverage
Rule
Set

Wizard selection
of RuleSet and

Coverage options

Copy of
Source
Code

Copy of the source
code is instrumented

for Coverage

Analysis Analysis
‘Rule-sets’ are user-defined.

Examples:
‘Half of all Statements’

Statement_Coverage >= 50%
‘All Branches’

Decision_Coverage = 100%
‘DO-178B Level A’

Statement_Coverage = 100%
Decision_Coverage = 100%
Boolean_Operand_Effectiveness = 100%

Coverage - DemoCoverage - Demo

Dynamic Test for package STACK
With Coverage Analysis

100% Statement Coverage
100% Decision Coverage

Laptop computer

Demo

Conclusions
Standard ‘positive’ testing is always a good thing

Find (and remove) bugs
Improve reliability etc of code

‘Negative’ testing is enhanced testing
External calls NOT made if not wanted
Exceptions NOT raised if not wanted
Global data NOT corrupted

All of these points supported by
Standard usage
Test Support Packages

Want to know more?
Ask me

Ian.gilchrist@iplbath.com
Tel: +44-1225-475000

Speak to our US agents:
Mr Scott Thomas, QCS, Portland OR
cst@qcsltd.com
Tel: 503/646-9991

Visit IPL website
www.iplbath.com

Any questions?

	Tand Global Data Checking
	
	T
	T
	Dynamic Testing
	Dynamic Testing When
	How TDynamic Testing works
	Demo - Software under Test
	Demo - Software under Test
	
	Test Plan for ‘Stack’
	T- Demo
	Demo - Software under Test
	Positive and Negative Testing
	T Test Support Packages
	T - Demo
	Coverage Analysis
	Coverage Analysis
	How Coverage fits in
	T Analysis
	T Coverage - Demo
	T
	T
	T

