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� In the next 30 minutes you will see:
z Short statement on what AdaTEST 95 is and does.
z Use of AdaTEST 95 to create and run a simple unit 

test
¾ Without Global Data checking
¾ With Global Data checking
¾ Adding coverage analysis

z Conclusion and questions
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�6(for Ada 83), first released in 1992
�7followed in 1996
zCurrent version is 2.0

�7is a unit/integration testing tool
z Dynamic Testing – see below
z Coverage Analysis – many types
z Static Analysis – code/complexity metrics
z Many Host and Target platforms supported
z Certified (many times) to Safety-Crit std (DO-178B Level A)
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� Testing techniques supported include:
zBlack and White Box testing
zException monitoring
zProgrammable ‘stubs’
zAutomated build and run
z Timing Analysis
z Full support for tasking, elaboration code,

Ravenscar…



Dynamic TestingDynamic Testing



Dynamic Testing When Dynamic Testing When 
� Dynamic Testing

¾Executing the software, under known conditions
¾Predict what should happen
¾Verifying results against expected outcomes

zUnit Test
¾All software testing should start at the unit or module 

level isolation test. 
¾For Ada the most convenient unit is a file containing 

one or more packages/classes.
z Integration Test
¾Clusters of packages/classes
¾Tasks
¾Sub-systems…



How 7Dynamic Testing worksHow 7Dynamic Testing works
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Demo - Software under TestDemo - Software under Test

� Class STACK specification
z A Stack object shall be created in a Null state.

z ‘Push’ shall insert integer input onto top of Stack;
¾ ‘Memory_Fault’ exception shall be raised if a new node 

cannot be created due to memory failure.

z ‘Pop’ shall return an integer from the top of the Stack;
¾ Popping the last integer shall return the Stack to a Null State.

¾ Popping from an empty stack shall raise the ‘Empty_Pop’ 
exception.

z ‘Reset’ shall pop all items from the stack.

z Global data item ‘Memory_Status’ shall not be affected by 
any of the above calls.



Demo - Software under Test Demo - Software under Test 
Package Stack is

type Object is tagged private;
procedure Push (The: in out Object; 

Value: in  Integer);
procedure Pop (The: in out Object; 

Value : out Integer);
procedure Reset (The: in out Object);
Empty_Pop: exception;    -- can be raised by Pop
Memory_Fault: exception; -- can be raised by Push
-- Global data
type Status is (Corrupt, Valid);
Memory_Status:Status := Valid;  

Private
type Node;
type Access_Node;
type Object is tagged record

Head : Access_Node;
end record;

type Node is …



Test Preliminaries for ‘Stack’Test Preliminaries for ‘Stack’

� White Box Testing
¾Test script is written as ‘child’ procedure, thus 

giving direct access to Stack Head.
¾ Easy to check Null state of Stack

� Design for Testability
¾A package body function ‘New_Node’ will be 

used to allocate memory for new nodes.
¾ This can be stubbed, making it easy to simulate ‘out of 

memory’ situation.



Test Plan for ‘Stack’Test Plan for ‘Stack’
� Three test cases initially:

1. ‘New Stack’
¾ Check Head  is null
¾ Pop, and check Empty_Pop is raised

2. ‘Push and Pop – nominal usage’
¾ Push and Pop three numbers
¾ Check returns are as expected
¾ Check Head is null

3. ‘Reset’
¾ Push three numbers
¾ Reset
¾ Check Head is null



7- Demo7- Demo

� Dynamic Test for package Stack
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Demo - Software under TestDemo - Software under Test

� Class STACK specification
z A Stack object shall be created in a Null state.

z ‘Push’ shall insert integer input onto top of Stack;
¾ ‘Memory_Fault’ exception shall be raised if a new node 

cannot be created due to memory failure.

z ‘Pop’ shall return an integer from the top of the Stack;
¾ Popping the last integer shall return the Stack to a Null State.

¾ Popping from an empty stack shall raise the ‘Empty_Pop’ 
exception.

z ‘Reset’ shall pop all items from the stack.

z Global data item ‘Memory_Status’ shall not be affected by 
any of the above calls.



Positive and Negative TestingPositive and Negative Testing
� One definition of Testing is:

z “(The verification) that software performs its 
intended function and does not perform any 
unintended function” (IEC 61508)

z These can be called ‘positive testing’ and ‘negative 
testing’ respectively

� In the context of Ada unit testing here are some 
aspects of ‘negative testing’:
z Checking unwanted external calls are not made
z Checking unwanted exceptions are not raised
z Checking unwanted memory accesses, including 

global data, are not made
� My aim is to demonstrate the latter point, using new 

AdaTEST ‘Test Support Packages’



7 Test Support Packages7 Test Support Packages
� Test Support Packages (TSPs) provide an option 

for:
zAutomating Global Data corruption detection
¾All data in Package Specs 

zAutomatic instantiation of Checks for user-defined 
types

� Method of use:
zGenerate TSPs
¾<Package>.TSP or TSP_<Package>

zCompile in the test lib
zUse Test Script Generation wizard to incorporate 

named TSPs in current script



7 - Demo7 - Demo

� Dynamic Test for Stack
� With Global Data checking
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Coverage AnalysisCoverage Analysis



Coverage AnalysisCoverage Analysis

�7provides
zCode coverage at levels of
¾Entry Points
¾Statements (Line)
¾Decisions (Branch)
¾Conditions (Boolean Expression)
¾MC/DC (Masking and Unique-Cause types)
¾Exceptions (handlers & statements)
¾Path Checking

zData Value Coverage
¾via Assertions



How Coverage fits inHow Coverage fits in
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7 Analysis 7 Analysis 
�7 ‘Rule-sets’ are user-defined.
� Examples:
z ‘Half of all Statements’
¾Statement_Coverage >= 50%

z ‘All Branches’
¾Decision_Coverage = 100%

z ‘DO-178B Level A’
¾Statement_Coverage = 100%
¾Decision_Coverage = 100%
¾Boolean_Operand_Effectiveness = 100%



7 Coverage - Demo7 Coverage - Demo

� Dynamic Test for package STACK
� With Coverage Analysis

z 100% Statement Coverage
z 100% Decision Coverage
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� Conclusions
zStandard ‘positive’ testing is always a good thing
¾Find (and remove) bugs
¾ Improve reliability etc of code

z ‘Negative’ testing is enhanced testing
¾External calls NOT made if not wanted
¾Exceptions NOT raised if not wanted
¾Global data NOT corrupted

zAll of these points supported by 7
¾Standard usage
¾Test Support Packages
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�Want to know more?
zAsk me
¾ Ian.gilchrist@iplbath.com
¾Tel: +44-1225-475000

zSpeak to our US agents:
¾Mr Scott Thomas, QCS, Portland OR
¾cst@qcsltd.com
¾Tel: 503/646-9991

zVisit IPL website
¾www.iplbath.com
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Any questions?
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