
A Technical PresentationA Technical Presentation

7
and Global Data Checking

7
and Global Data Checking

Presented by

Ian Gilchrist
Software Products Consultant

ian.gilchrist@iplbath.com

7

� In the next 30 minutes you will see:
z Short statement on what AdaTEST 95 is and does.
z Use of AdaTEST 95 to create and run a simple unit

test
¾ Without Global Data checking
¾ With Global Data checking
¾ Adding coverage analysis

z Conclusion and questions

77

�6(for Ada 83), first released in 1992
�7followed in 1996
zCurrent version is 2.0

�7is a unit/integration testing tool
z Dynamic Testing – see below
z Coverage Analysis – many types
z Static Analysis – code/complexity metrics
z Many Host and Target platforms supported
z Certified (many times) to Safety-Crit std (DO-178B Level A)

77

� Testing techniques supported include:
zBlack and White Box testing
zException monitoring
zProgrammable ‘stubs’
zAutomated build and run
z Timing Analysis
z Full support for tasking, elaboration code,

Ravenscar…

Dynamic TestingDynamic Testing

Dynamic Testing When Dynamic Testing When
� Dynamic Testing

¾Executing the software, under known conditions
¾Predict what should happen
¾Verifying results against expected outcomes

zUnit Test
¾All software testing should start at the unit or module

level isolation test.
¾For Ada the most convenient unit is a file containing

one or more packages/classes.
z Integration Test
¾Clusters of packages/classes
¾Tasks
¾Sub-systems…

How 7Dynamic Testing worksHow 7Dynamic Testing works

Compile
Link Execute

Source
Code

Ada
Test

Script

Other
Libraries

Full
Results

File

Results
Summary

Pass/Fail
Code

External
Objects

7
Test Script Wizard

7
Libraries

Stubs

HTML
Results

View

Test
Exe

Input Test data and
create Stubs

Demo - Software under TestDemo - Software under Test

� Class STACK specification
z A Stack object shall be created in a Null state.

z ‘Push’ shall insert integer input onto top of Stack;
¾ ‘Memory_Fault’ exception shall be raised if a new node

cannot be created due to memory failure.

z ‘Pop’ shall return an integer from the top of the Stack;
¾ Popping the last integer shall return the Stack to a Null State.

¾ Popping from an empty stack shall raise the ‘Empty_Pop’
exception.

z ‘Reset’ shall pop all items from the stack.

z Global data item ‘Memory_Status’ shall not be affected by
any of the above calls.

Demo - Software under Test Demo - Software under Test
Package Stack is

type Object is tagged private;
procedure Push (The: in out Object;

Value: in Integer);
procedure Pop (The: in out Object;

Value : out Integer);
procedure Reset (The: in out Object);
Empty_Pop: exception; -- can be raised by Pop
Memory_Fault: exception; -- can be raised by Push
-- Global data
type Status is (Corrupt, Valid);
Memory_Status:Status := Valid;

Private
type Node;
type Access_Node;
type Object is tagged record

Head : Access_Node;
end record;

type Node is …

Test Preliminaries for ‘Stack’Test Preliminaries for ‘Stack’

� White Box Testing
¾Test script is written as ‘child’ procedure, thus

giving direct access to Stack Head.
¾ Easy to check Null state of Stack

� Design for Testability
¾A package body function ‘New_Node’ will be

used to allocate memory for new nodes.
¾ This can be stubbed, making it easy to simulate ‘out of

memory’ situation.

Test Plan for ‘Stack’Test Plan for ‘Stack’
� Three test cases initially:

1. ‘New Stack’
¾ Check Head is null
¾ Pop, and check Empty_Pop is raised

2. ‘Push and Pop – nominal usage’
¾ Push and Pop three numbers
¾ Check returns are as expected
¾ Check Head is null

3. ‘Reset’
¾ Push three numbers
¾ Reset
¾ Check Head is null

7- Demo7- Demo

� Dynamic Test for package Stack

Laptop computer

7
Demo

Demo - Software under TestDemo - Software under Test

� Class STACK specification
z A Stack object shall be created in a Null state.

z ‘Push’ shall insert integer input onto top of Stack;
¾ ‘Memory_Fault’ exception shall be raised if a new node

cannot be created due to memory failure.

z ‘Pop’ shall return an integer from the top of the Stack;
¾ Popping the last integer shall return the Stack to a Null State.

¾ Popping from an empty stack shall raise the ‘Empty_Pop’
exception.

z ‘Reset’ shall pop all items from the stack.

z Global data item ‘Memory_Status’ shall not be affected by
any of the above calls.

Positive and Negative TestingPositive and Negative Testing
� One definition of Testing is:

z “(The verification) that software performs its
intended function and does not perform any
unintended function” (IEC 61508)

z These can be called ‘positive testing’ and ‘negative
testing’ respectively

� In the context of Ada unit testing here are some
aspects of ‘negative testing’:
z Checking unwanted external calls are not made
z Checking unwanted exceptions are not raised
z Checking unwanted memory accesses, including

global data, are not made
� My aim is to demonstrate the latter point, using new

AdaTEST ‘Test Support Packages’

7 Test Support Packages7 Test Support Packages
� Test Support Packages (TSPs) provide an option

for:
zAutomating Global Data corruption detection
¾All data in Package Specs

zAutomatic instantiation of Checks for user-defined
types

� Method of use:
zGenerate TSPs
¾<Package>.TSP or TSP_<Package>

zCompile in the test lib
zUse Test Script Generation wizard to incorporate

named TSPs in current script

7 - Demo7 - Demo

� Dynamic Test for Stack
� With Global Data checking

Laptop computer

6
Demo

Coverage AnalysisCoverage Analysis

Coverage AnalysisCoverage Analysis

�7provides
zCode coverage at levels of
¾Entry Points
¾Statements (Line)
¾Decisions (Branch)
¾Conditions (Boolean Expression)
¾MC/DC (Masking and Unique-Cause types)
¾Exceptions (handlers & statements)
¾Path Checking

zData Value Coverage
¾via Assertions

How Coverage fits inHow Coverage fits in

Compile
Link Execute

Source
Code

Ada
Test

Script

Other
Libraries

Full
Results

File

Results
Summary

Pass/Fail
Code

External
Objects

Stubs

7
Libraries

7
Analysis Wizard

HTML
Results

View

Ada
Test
Exe

Coverage
Rule
Set

Wizard selection
of RuleSet and

Coverage options

Copy of
Source
Code

Copy of the source
code is instrumented

for Coverage

7 Analysis 7 Analysis
�7 ‘Rule-sets’ are user-defined.
� Examples:
z ‘Half of all Statements’
¾Statement_Coverage >= 50%

z ‘All Branches’
¾Decision_Coverage = 100%

z ‘DO-178B Level A’
¾Statement_Coverage = 100%
¾Decision_Coverage = 100%
¾Boolean_Operand_Effectiveness = 100%

7 Coverage - Demo7 Coverage - Demo

� Dynamic Test for package STACK
� With Coverage Analysis

z 100% Statement Coverage
z 100% Decision Coverage

Laptop computer

7
Demo

77

� Conclusions
zStandard ‘positive’ testing is always a good thing
¾Find (and remove) bugs
¾ Improve reliability etc of code

z ‘Negative’ testing is enhanced testing
¾External calls NOT made if not wanted
¾Exceptions NOT raised if not wanted
¾Global data NOT corrupted

zAll of these points supported by 7
¾Standard usage
¾Test Support Packages

77

�Want to know more?
zAsk me
¾ Ian.gilchrist@iplbath.com
¾Tel: +44-1225-475000

zSpeak to our US agents:
¾Mr Scott Thomas, QCS, Portland OR
¾cst@qcsltd.com
¾Tel: 503/646-9991

zVisit IPL website
¾www.iplbath.com

77

Any questions?

	Tand Global Data Checking
	
	T
	T
	Dynamic Testing
	Dynamic Testing When
	How TDynamic Testing works
	Demo - Software under Test
	Demo - Software under Test
	
	Test Plan for ‘Stack’
	T- Demo
	Demo - Software under Test
	Positive and Negative Testing
	T Test Support Packages
	T - Demo
	Coverage Analysis
	Coverage Analysis
	How Coverage fits in
	T Analysis
	T Coverage - Demo
	T
	T
	T

