

Multilanguage Programming with Ada in the .Net
Environment

Jeffrey W. Humphries, Martin C. Carlisle and Terry A. Wilson
Department of Computer Science

2354 Fairchild Dr, Ste 6G101
USAFA, CO 80840-6234

1-719-333-3590
Jeffrey.Humphries,Martin.Carlisle@usafa.edu

ABSTRACT
This paper describes our experiences in using Ada with other
programming languages in the .NET environment. This paper
explains our approach and presents lessons learned during our
development of a real-world software project using .NET. We
compare and contrast the languages used, justify our language
choices, and present details of our efforts.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifications –
object-oriented languages.

D.1.5 [Programming Techniques]: Object-oriented
Programming.

General Terms: Languages

Keywords: Microsoft .NET environment, Multilanguage
programming, Ada 95, A#

1. INTRODUCTION
Microsoft’s .NET environment provides a large set of object-
oriented libraries for application development. [5,6] It is a
relatively new framework for programming under the Windows
operating system. One of the central goals of .NET was to
provide language interoperability. This paper describes our use of
Ada with other programming languages in the .NET environment
and explains our approach in using multiple languages in the
development of a real-world software project. We evaluate each
language used, justify our language choices, and describe our
overall experience.

2. MICROSOFT’S .NET ENVIRONMENT
Through its .NET environment, Microsoft provides language
independent development coupled with the potential of platform
independent execution. Their Common Language Runtime (CLR)
is the central component of .NET in that it provides the
environment in which programs are executed [3]. The CLR also

provides developers with a variety of several different
programming languages such as C++, C#, Jscript, Visual Basic,
and Perl [4,5]. Other languages are continually being added, such
as support for Ada (also known as A#) [1].

Each language that runs under .NET must be compiled into the
Microsoft Intermediate Language (MSIL) in order to execute on
different platforms. The MSIL files produced by one language are
identical to the MSIL files produced by other .NET languages –
the CLR does not differentiate between them [3]. The MSIL is
then compiled using the Just-In-Time (JIT) compiler specific to
each runtime platform [4]. The resulting machine code is then
executed by the machine’s processor.

The main advantage of using the .NET is language independence.
Microsoft also seeks to provide platform independence with
.NET, but this has not fully developed. In addition, .NET
supports language integration – meaning that classes, exceptions,
and polymorphism, for example, function correctly across
different languages [3]. Because of this language integration, any
language that supports the CLR can support the same set of
features [3,4,5]. These advantages make the .NET platform an
appealing target for many applications where multiple languages
are used.

3. DESCRIPTION OF PROJECT: RAPTOR
3.1 What is RAPTOR?
RAPTOR is a simple-to-use problem solving tool that enables the
user to generate executable flowcharts (see Figure 1). RAPTOR
was written for students being introduced to the computing
discipline in order to develop problem solving skills and improve
algorithmic thinking. RAPTOR introduces students to
programming concepts and constructs without the burden of
learning a detailed language syntax and development
environment.

RAPTOR presents the student with a graphical user interface with
four major areas. The Symbols area in the upper left presents the
six primary graphical symbols that can be used when building a
flowchart. The area immediately below the Symbols area is the
Watch Window. This area allows the user to view the current
contents of any variables and arrays as the flowchart is executing.
The large, white area to the right is the primary Workspace. Users
can build their flowcharts in this area and watch them update as
they execute. The final area is the menu and toolbar. This area
allows the user to change settings and control the view and
execution of individual flowcharts.

1 Work performed while this author was a member of the faculty at the
US Air Force Academy

This paper is authored by an employee(s) of the United States
Government and is in the public domain.
SIGAda’03, December 7–11, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-476-2/03/0012…$5.00.

1

Figure 1 – RAPTOR Main Window

The GUI provides the full functionality expected of any graphical
application, including context sensitive menus, tooltips, and user
customization. In addition, the GUI provides feedback to the user
as their flowcharts execute, allowing them to watch, slow, pause,
and reset their “programs”.

3.2 Our Approach
We used three different languages in the development of
RAPTOR. Ada was used primarily for the lexer, parser, and
interpreter of the simple syntax used in RAPTOR. C# was used
for building the graphical user interface, using .NET’s standard
GUI elements, such as forms, dialog boxes, menus, etc. C# was
also used for monitoring and executing the runtime system which
allows flowcharts to execute. Finally, a legacy C++ library was
used for providing a set of graphics routines that allows students
to build flowcharts that perform graphical operations (e.g. draw
circles, boxes, lines, etc). Figure 2 illustrates how the different
languages interoperate. The interoperability DLL is automatically
generated by Visual Studio .NET from the C++ COM DLL.

All development was done using Microsoft’s Visual Studio .NET
and AdaGIDE [2]. Visual Studio provides a full-featured
graphical user interface for program design. Particularly useful
are the automatic packing of widgets (widgets grow and shrink
automatically with the window) and the treeview widget (watch
window). These features are not available in other Ada GUI
developments environments, such as RAPID.

3.3 Comparison of .NET Languages Used
3.3.1 Ada in .NET (A#)
Ada was the first language to include mixed-language pragmas as
part of its specification, allowing it to easily interface with other
programming languages. A# is a modification of Ada that sought
to create a fully-interoperable environment for an Ada
programmer using .NET [1]. Ada programmers can use libraries
written by other .NET programmers programming in other
languages, and also share their libraries with programmers using
other languages [1].

C# GUI
(.exe)

Ada code
(.dll)

Interoperability
DLL

C++ COM
(.dll)

 Figure 2 – Code Interoperability

Ada was the only language that allowed calling a routine in a
separate executable (C# only allowed DLLs to be referenced).
Ada has real enumeration types, which are compiled-time
enforced for case statements. Because Ada offers real
enumeration types, it made it easy to enumerate all of the tokens
for the simplified RAPTOR language and catch missing tokens in
each case statement at compile time. These strengths persuaded
us to use Ada for all of the lexer, parser, and interpreter
components of RAPTOR.

The primary weakness of Ada for this project was in the graphical
user interface (GUI) design. The only .NET GUI builder tool for
Ada, RAPID, is not full-featured and lacks many of the
convenient components that are needed for RAPTOR. For
example, RAPID does not include a complete set of design
widgets, such as tree views and paneling that make the RAPTOR
interface easier to use for students. Other features, such as panel
resizing would have been very hard to do with current Ada GUI
tools. Although this is not specifically a lacking in the design of
the Ada language, language decisions must be made for projects
based on not only the features of the language, but also available
libraries and tools [8].

Another weakness of Ada was its awkward syntax for creating an
object that implements an interface. This is particular was
noticeable when attempting to create a child class of a .NET class.
Each interface that the parent implements must be specified as a
discriminant of the child tagged record. Other issues, such as type
circularities, and mixing .NET and Ada strings, are handled more
cleanly. In these cases, A# has inherited the design decisions
from JGNAT [1,7].

A# does support the object.method syntax common to other
object-oriented languages [1]. The authors strongly hope this
proposal makes it into Ada 2005. Even though it is a syntactic
sugar, it makes it much easier to call methods without requiring
either long package names, or use clauses.

All Ada programming for RAPTOR was done using AdaGIDE.
AdaGIDE has a simple target button for selecting a .NET target
which makes it simple to create a DLL (instructions on the A#
web site detail how to create a DLL for the .NET environment).
AdaGIDE does not currently support autocompletion in the A#

2

object.method syntax. In addition, the A# compiler is
somewhat immature and does not cover the complete Ada
language (e.g. representation clauses, controlled objects as
components of other objects). While some of these limitations
come from the A# implementation, many are inherited from its
ancestor, JGNAT [7].

3.3.2 C# in .NET
C# is an excellent language for program development under .NET
because it is robust, versatile, and well-designed [3]. Currently, it
is the language most often used to develop for .NET. Although it
is a relatively new language, its designers used lessons learned
from previous languages such as Java, C++, and others, to build a
simple, safe, object-oriented language that is ideal for .NET
programming [3].
C# works well under Visual Studio .NET because it is so well
integrated into the development environment. One strength of C#
was the extensive GUI building capability available in Visual
Studio .NET. Another strength of using C# in Visual Studio
.NET for the RAPTOR project was that it provided
autocompletion for both .NET libraries and also Ada methods in
an AdaGIDE-produced DLL. This made it easy to “see inside”
various DLLs to integrate their functionality into the rest of the
project.
The major downside to C# was that it was very difficult to change
a design decision in Visual Studio after making it. For example, it
was extremely tedious to add a panel after the fact to contain a set
of already existing GUI objects. It was also cumbersome to make
what should be easy changes to the project and its files (e.g.
change the name of the executable). This is a tool issue rather
than a language issue, but as it is unlikely for a project to use C#
without Visual Studio .NET, it is worth noting.

3.3.3 C++ in .NET
In order to integrate the ability to use graphics within RAPTOR,
we decided to use a legacy COM object that provided the graphics
routines. This COM object was written in C++ and compiled
under Visual Studio 7.0. The advantage to using this COM object
is that it allowed direct use of the Win32 API.
Working with C++ and COM objects in general presented several
problems. First, the code is hard to read. In addition, COM has a
steep learning curve and is difficult to integrate under .NET.
Passing strings to a COM object is awkward because it forced a
fixed maximum size. It was difficult to debug this as originally
passing the char * worked sometimes and sometimes not
depending on whether the system decided to marshal the
arguments. This was resolved by using fixed length strings which
has obvious disadvantages.

3.4 Mixed-Language Issues
Adding the Ada DLL to the Visual Studio .NET project was very
simple, involving only adding a reference to the DLL. There were
two other issues that needed to be addressed.
First, A# generates elaboration code for packages. If the main
program is also compiled with A#, then calls to these routines are

automatically inserted. Since the main program in RAPTOR was
written in C#, it was necessary to explicitly call the Ada
initialization routine, adainit.
Second, the default string type in C# more closely resembles the
Ada data type Unbounded_String (from the package
Ada.Strings.Unbounded) instead of the Ada string type. When
the Ada DLL returned a string to the C# code, it was necessary to
add an explicit conversion. A# provides a convenient “+”
operator to convert back and forth between Ada and .NET strings.

4. CONCLUSION
This paper described our experiences in using Ada with other
programming languages in the .NET environment and explained
our approach in using multiple languages in the development of a
real-world software project. Through its .NET environment,
Microsoft provides language independent development coupled
with the future promise of platform independent execution.
The main advantage of using the .NET environment for this
project was the ability to easily combine the strengths of multiple
programming languages and leverage legacy code. Also, the
availability of a .NET runtime for Linux provides some amount of
immediate platform independence.
Ada fit well into this environment of language independence, and
allowed us to gain the advantages of strong-typing for portions of
our project, while also leveraging the extensive GUI capabilities
of Visual Studio .NET. If broader tool support for Ada in the
.NET Framework becomes available, and certain OO extensions
(resolving circular types, supporting interfaces and object.method
notation) make it into the Ada 2005 standard, then Ada will be a
strong contender for projects wishing to use the .NET Framework.

5. REFERENCES
[1] Carlisle, Martin C., Sward, Ricky E., Humphries, Jeffrey W.,

Weaving Ada 95 into the .Net Environment, SIGAda 2002,
December 8-12, 2002, Houston, TX.

[2] Carlisle, Martin, et al, AdaGIDE. See
http://www.usafa.af.mil/dfcs/bios/mcc_html/adagide.html.

[3] Liberty, Jesse, Programming C#, 2nd Edition, O’Reilly &
Associates, 2002.

[4] Platt, David S. Introducing Microsoft .NET, c2001, Microsoft
Press, Redmond, WA 98052-6399.

[5] The .NET Runtime Environment. See
http://www.microsoft.com/net/

[6] Weiss, Aaron, Microsoft’s .NET: Platform in the Clouds,
ACM White Paper, Dec 2001.

[7] Comar, Cyrille, Gary Dismukes, and Franco Gasperoni,
Targeting GNAT to the Java Virtual Machine, Proceedings of
the Tri-Ada 97 Conference, St Louis MO, Nov 9-13, 1997,
pp. 149-161.

[8] Lawlis, Patricia, Is the Answer Always Ada?, Proceedings of
the Tri-Ada 97 Conference, St Louis MO, Nov 9-13, 1997,
pp. 297-301

3

