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ABSTRACT 
The ability to slice a program or parts of a program is useful in a 
variety of domains, including re-engineering, dependency analysis, 
test case generation, test coverage evaluation and debugging. 
Although a variety of static analysis tools are available to support 
these activities for Ada programs, none of these tools provide a 
program slicing capability. Fortuitously, the Ada Semantic Interface 
Specification (ASIS) provides access to the Ada program 
information required to slice the program. This paper describes our 
use of ASIS to implement an Ada program slicer, called AdaSlicer.  

Categories and Subject Descriptors 
D.2.6 [Software Engineering]: Programming Environments –  
programmer workbench. 

General Terms: Languages, Verification. 

Keywords: Program slicing, ASIS. 

1. INTRODUCTION 
When we slice a program, we extract the components of the 
program that can affect the value of a particular variable. Program 
slicing is a well defined process (see [16]) that projects the behavior 
from the original program that is required to produce the value of a 
variable. The resulting behavior is collected into a new program that 
is a slice of the original program. 
Program slices can be used in a variety of ways. For example, a 
maintainer considering a change to a particular statement in the 
program can generate program slices to identify the other 
components of the program that could be affected by the change. A 
tester generating or examining test cases, particularly those using 
dataflow coverage criteria [11], can more easily consider the 
components of the program affected by the test cases that address a 
particular variable by examining the appropriate program slices. A 
programmer trying to debug a program could identify the variables 

with erroneous values and use program slices to isolate the program 
statements that affect those variables. 
Because program slices can be generated using information 
available at compile time, program slicing is classified as a static 
analysis technique. Numerous static analysis tools have been 
developed for Ada programs, but none of the tools that we know of 
provide the capability to generate program slices for the program 
under analysis. A tool providing a program slicing capability for 
Ada programs would therefore be useful for those who maintain or 
test Ada programs. 
The Ada Semantic Interface Specification (ASIS) can be used to 
examine compile-time information about an Ada program. Since 
program slicing is a static analysis technique, the information 
provided by ASIS is sufficient for generating program slices. 
Although ASIS has been standardized for some time [8], tool 
implementation using ASIS is still of interest to the Ada community. 
We implemented the program slicer, called AdaSlicer, described in 
this paper using the information provided by ASIS. 
In this paper, we discuss related work, program slicing in general, 
how we used ASIS as the foundation of our program slicing tool, 
our progress to date, and future efforts that will use AdaSlicer.  

2. RELATED WORK 
Program slicing was originally described by Weiser [16]. Program 
slicing tools have been implemented for a variety of programming 
languages including C [15, 17], Java [7], Oberon-2 [10], and others. 
Program slicing tools for Ada, however, do not appear to be 
available. 
Dependency analysis for Ada programs is provided in the ProDAG 
system [13], which has also been integrated with the TAOS system 
[12] to support test case generation and coverage analysis. The tool 
described in this paper uses ASIS to generate program slices, while 
the ProDAG system does not use ASIS and does not provide 
explicit program slicing capabilities. Other researchers have also 
developed methodologies to support dependency analysis of Ada 
programs (see [9] for example), though we have not discovered any 
that provide program slicing capabilities using the ASIS. 
Several Ada program analysis tools have been developed using the 
ASIS. The ASIS Working Group [5] provides links to ASIS-based 
products. Examples include static analysis tools that collect program 
metrics and identify coding standards violations [3] and other tools 
that collect information about program characteristics to support 
quality assessments [1]. Another tool extracts object information 
and UML diagrams from Ada code [2]. 
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3. PROGRAM SLICING 
In general, program slicing is a projection of behavior from an 
original program into a new program called a program slice [16]. 
Program slicing is a static analysis process that relies on information 
about which variables and, consequently, program statements are 
required to produce a single variable called the slice variable. For 
each statement, the variables that are defined by that statement are 
collected into a DEF set and the variables referenced in the 
statement are collected into a REF set. A variable is defined in a 
statement if the variable can be assigned a new value in that 
statement. For example, variables on the left-hand-side of an 
assignment statement are defined by the statement. Any variables on 
the right-hand-side of an assignment statement are referenced in that 
statement and, by definition, appear in the REF set for the statement.  
The program slices produced by AdaSlicer are considered to be 
conservative slices because they may include more than the minimal 
statements required to produce the slice variable. More extensive 
data flow analysis could be used to remove statements that are 
overshadowed by later statements that redefine variables in the 
relevant set. For simplicity, the data flow analysis in AdaSlicer is not 
this extensive, but the slices are guaranteed to produce the correct 
value of the slice variable as required by the definition of a program 
slice.  
To produce a program slice, analysis begins at the last statement in 
the program and proceeds up to the first statement. The slice 
variable is placed in a relevant set that includes all variables relevant 
to the program slice. Any statement that defines a variable in the 
relevant set is included in the program slice. Any variables 
referenced in statements included in the slice are added to the 
relevant set since they can affect the definition of the slice variable. 
This process continues until all statements are analyzed. A more 
complete, formal algorithm is provided by Weiser [16].  

3.1 Processing Statements 
When processing assignment statements, a variable is defined if it 
appears on the left-hand-side of the statement. Programs with 
assignment statements can easily be sliced using AdaSlicer. For 
example, consider the program shown in Figure 1.  
 
procedure Assignscalar is  
   A : Integer := 0;   
   B : Integer := 1;   
   C : Integer := 2;   
   D : Integer := 3;   
   E : Integer := 4;   
begin 
   C := A + B;  -- statement #1 
   D := B * 2;  -- statement #2 
   E := D * 3;  -- statement #3 
end Assignscalar; 

Figure 1. Original program 
 
This program includes several assignments statements and variables 
that depend on the value of other variables. As an example, consider 
the processing required for a slice on variable C. Initially, the 
relevant set includes only the variable C. Processing begins with 
statement #3 and continues up through statement #1. Since variable 
C is defined by statement #1, this statement is needed in the slice. 
The variables A and B are added to the relevant set since now any 

statements that define A and B will affect the value of C. Since 
statement #1 is the last statement to be processed in the procedure, 
processing is complete. The program slice produced for the variable 
C is shown in Figure 2. 
   
procedure Assignscalar_C is  
   A : Integer := 0;   
   B : Integer := 1;   
   C : Integer := 2;   
begin 
   C := A + B; 
end Assignscalar_C; 

Figure 2. Slice produced for variable C 
 
Notice in the slice, the variables A, B, and C have been properly 
declared. As a final step of building a program slice, we include the 
original declarations of any variables in the relevant set. The 
program slice produced for variable E is shown in Figure 3. 
   
procedure Assignscalar_E is  
   B : Integer := 1;   
   D : Integer := 3;   
   E : Integer := 4;   
begin 
   D := B * 2; 
   E := D * 3; 
end Assignscalar_E; 

Figure 3. Slice produced for variable E 
 
Here, the value of E is dependent on the value of variable D. The 
value of variable D is dependent on the value of variable B. The two 
assignment statements are included in the slice and the variables B, 
D, and E are also included in the slice. Figure 3 shows how the 
dependencies between assignment statements are captured by 
AdaSlicer. 
When processing if-then statements, each path of the statement is 
recursively analyzed to determine if any statements in the path affect 
the value of variables in the relevant set. If any such statements are 
found in any of the paths, the if-then statement is included in the 
slice. The conditional expression of the if-then statement is included 
intact and the variables from the conditional expression are added to 
the relevant set. For example, Figure 4 shows an Ada program with 
a simple if-then-else statement. 
 
procedure Ifthenelsescalar is  
   C : Integer;   
   D : Integer;   
   E : Integer;   
begin 
   C := 0; 
   D := 0;  
   E := 0;  
   if C = 2  then 
      D := D + 1; 
   else 
      E := E + 1; 
   end if; 
end Ifthenelsescalar; 

Figure 4. If then else statement 
 

Figure 5 shows the slice produced for the variable D. Note that in 
Figure 5, the else clause is not included in the slice.  
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procedure Ifthenelsescalar_D is  
   C : Integer;   
   D : Integer;   
begin 
   C := 0; 
   D := 0; 
   if C = 2 then 
      D := D + 1; 
   end if; 
end Ifthenelsescalar_D; 

Figure 5. Slice produced for variable D 
 
This is a design decision built into AdaSlicer that removes the else 
clause from the if-then statement if there are no statements in the 
else path to be included in the slice. Figure 6 shows the slice 
produced for the variable E.  
 
procedure Ifthenelsescalar_E is  
   C : Integer;   
   E : Integer;   
begin 
   C := 0; 
   E := 0; 
   if C = 2 then 
      null; 
   else 
      E := E + 1; 
   end if; 
end Ifthenelsescalar_E; 

Figure 6. Slice produced for the variable E 
 
In this slice, none of the statements from the if-path of the original 
if-then statement need to be included in the slice. Our design 
decision was to include a null statement in the then-clause of the 
slice in this situation. It is not trivial to remove the then-clause in 
this case because it would require the Boolean expression of the 
original if-then statement to be negated. With our solution, the 
original Boolean expression is used and the null statement is 
included in the then-clause.  
When processing if-then statements with elsif paths, special care is 
taken to include a minimal set of clauses. For example, Figure 7 
shows an Ada program that includes an if-then statement with three 
elsif paths. 
Since an if-then statement with elsif paths can be converted to a 
functionally equivalent if-then statement with nested if-then-else 
statements, our approach was to process elsif paths in the same way 
we processed if-then statements, as described above. By starting 
with the statement that is most deeply nested, we treat the else-path 
if the entire if-then-else statement as the else clause of the last elsif-
path. We work up through the nesting, processing each nested if-
then-else statement as described above. In Figure 7, for example, 
processing begins with the else clause, which is part of the nested if-
then statement #4. If there are statements in the else clause that are 
required in the slice, then the entire if-then statement #4 is required 
in the slice. Since this if-then is nested inside the else clause of if-
then #3, the else clause for if-then #3 is also needed in the slice. If-
then #3 is nested in if-then #2, so if-then #2 is needed, and, of 
course, if-then #2 is nested in if-then #1, so if-then #1 is needed. 
This, in effect, cascades up the nested if-then statements resulting in 
all the if-then statements being included. This would be the case if 
we slice on variable “J”, for example, and the resulting slice is 
shown in Figure 8. 
 

procedure Elsiftest is  
    F : Integer := 0;   
   G : Integer := 0;   
   H : Integer := 0;   
   I : Integer := 0;   
    J : Integer := 0;   
    T : Integer := 0;   
    W : Integer := 0;   
    Z : Integer := 0;   
begin 
   W := W - 5; 
   if F = 3 then -- if #1 
       G := G + 1; 
   elsif H = 4 then -- if #2, nested 
       I := I + 2; 
   elsif T = 7 then -- if #3, nested 
       T := T + 1; 
   elsif W = 1 then -- if #4, nested 
       Z := -3; 
   else   -- else clause 
       J := J + 3; 
   end if; 
   W := W + 1; 
end Elsiftest; 

Figure 7. Elsif program 
 

procedure Elsiftest_J is  
   F : Integer := 0;   
   H : Integer := 0;   
   J : Integer := 0;   
   T : Integer := 0;   
   W : Integer := 0;   
begin 
   W := W - 5; 
   if F = 3 then 
      null; 
   elsif W = 1 then 
      null; 
   elsif T = 7 then 
      null; 
   elsif H = 4 then 
      null; 
   else 
      J := J + 3; 
   end if; 
end Elsiftest_J; 

Figure 8. The slice produced for variable J 
 
Note that we could have built a single if statement for the above 
example by manipulating the conditions appropriately. In our 
example, the condition for the new if statement would be  
((F /= 3) and (W /= 1) and (T /= 7) and (H /= 4)) 

Instead, we decided that it would be more effective to retain the 
same structure as that contained in the original code. We believe this 
will make it easier for programmers, maintainers, and testers to see 
the relationships between the program slices and the original code.  
If there are no statements from the original else clause (as shown in 
Figure 7) that are needed in the slice, then the else clause is not 
needed in the slice. It can be removed from if-then #4. If there are 
statements in the then clause of if-then #4 that are required in the 
slice, then if-then #4 will be included in the slice minus the else 
clause. This cascades up the nested if-then statements including all 
the nested statements above #4. The interesting case is when there 
are no statements in the else clause of #4 or in the then clause of #4. 
In this case, if-then #4 does not need to be included in the slice. This 
means the else clause for #3 does not need to be included in the 
slice. If there are no statements in the then clause of #3, then #3 does 
not need to be included in the slice, and so on. As an example, 
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consider slicing on variable “I”. Figure 9 shows the slice produced 
from slicing on variable “I”.  
 
procedure Elsiftest_I is  
   F : Integer := 0;   
   H : Integer := 0;   
   I : Integer := 0;   
begin 
   if F = 3 then 
      null; 
   elsif H = 4 then 
      I := I + 2; 
   end if; 
end Elsiftest_I; 

Figure 9. The slice produced for variable I 
 
As shown in Figure 9, only if-then statements #1 and #2 are 
included in the resulting slice since if-then statements #3 and #4 do 
not affect the value of the variable I. 
When processing CASE statements, a different approach is needed 
than the one used for if-then statements with elsif-paths. A CASE 
statement is functionally equivalent to an if-then statement with 
elsif-paths; however, the Boolean expression used in the CASE 
statement’s when-clauses is based on a single variable. Because of 
this, we were not able to remove any of the branches of the CASE 
statements, but instead included null statements in branches that did 
not have any statements to be included in the slice. If none of the 
branches of the CASE statement included any statements required 
for the slice, then the CASE statement was not included in the slice. 
Figure 10 shows an example of an Ada CASE statement. 
 
procedure Casescalar is  
   K : Integer := 0; 
   L : Integer := 0;   
   N : Integer := 0;   
   O : Integer := 0;   
   Q : Integer := 0;   
begin 
   case K is 
      when 5 => 
         L := L + 1; 
      when 6 => 
         N := N + 1; 
      when 7 => 
         O := O + 1; 
      when 8 => 
         Q := Q + 1; 
      when others => 
         Q := Q + 2; 
   end case; 
end Casescalar; 
 

Figure 10. A CASE statement 

In this statement, the CASE expression is based on the variable K 
and each of the when-clauses is for the different values of K. To 
illustrate why all the when-clauses must be included, consider the 
slice on variable Q in Figure 11. 
In this slice, the variable Q is defined in the “when 8” clause and 
also in the “when others” clause. If the “when 7” clause had been 
removed, and the value of K was 7 when this slice was executed, Q 
would actually be changed and incremented by 2. This is not correct 
because in the original CASE statement, the value of Q was not 
changed when the value of K equals 7. Therefore, all CASE when-
clauses are included in the slice and null statements are included in 

when-clause that do not included any statements required for the 
slice. 
 
procedure Casescalar_Q is  
   K : Integer := 0;   
   Q : Integer := 0;   
begin 
   case K is 
      when 5 => 
         null; 
      when 6 => 
         null; 
      when 7 => 
         null; 
      when 8 => 
         Q := Q + 1; 
      when others => 
         Q := Q + 2; 
   end case; 
end Casescalar_Q; 

Figure 11. The slice produced for variable Q 
 
When processing loop statements, special care is taken to extract the 
correct statements required to produce the value of the slice variable. 
Consider, for example, the while loop shown in Figure 12. 
   
procedure Looptest is  
   C : Integer := 0;   
   D : Integer := 0;   
   E : Integer := 0;   
begin 
   C := 0; 
   while C <= 10 loop 
      D := D + E;     -- loop statement #1 
      E := E + C;     -- loop statement #2 
      C := C + 1;     -- loop statement #3 
   end loop; 
end Looptest; 

Figure 12. An Ada while loop 
 
In this loop when we slice on the variable C, processing begins with 
statement #3 and proceeds up through statement #1. In this case, the 
only statement that affects the value of C is loop statement #3. It is 
the only statement that is needed inside the loop when we slice on 
the variable C. Figure 13 shows the slice generated for variable C. 
When we slice on the variable D, however, the processing is not as 
straightforward. Again, processing will start with statement #3 and 
work up through statement #1. When we process statements #3 and 
#2, the relevant set will include only variable D. These statements 
do not affect the value of the variable D, so at this point they do not 
appear to be needed in the slice. When we process statement #1 
which defines D, we include this statement in the slice and add the 
variable E to the relevant set as required when processing an 
assignment statement. However, now that E 
 
procedure Looptest_C is  
   C : Integer := 0;   
begin 
   C := 0; 
   while C <= 10 loop 
      C := C + 1; 
   end loop; 
end Looptest_C; 

Figure 13. The slice produced for variable C 
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is in the relevant set and the loop might possibly repeat the 
statements inside the loop, we need to include statement #2 in the 
slice because it affects the value of E. So far, our statement 
processing has been from bottom up, but for loops we need a 
different approach. Whenever we process statements inside a loop, 
we repeatedly process the statements until we are sure that we have 
included all the statements that affect variables in the relevant set. 
As we identify statements that are needed in the slice, we add 
variables to the relevant set. We can use this fact to detect when 
processing of the statements in a loop is complete.  
Our algorithm for processing statements inside a loop is as follows. 
We process statements in the loop from the bottom up. If a statement 
is to be included in the slice we add variables to the relevant set as 
needed. When we are done with the statements inside the loop, we 
compare the relevant set at the end of the processing of the loop to 
what it was at the beginning of the processing of the loop. If 
variables have been added to the relevant set, i.e. the relevant set is 
different at the end than it was at the start, then we process the 
statements in the loop again from bottom to top. We continue to 
process the statements until the relevant set remains unchanged from 
start to finish of processing. 
For example, in Figure 12 when we slice on the variable D, 
processing begins at statement #3 and continues up to statement #1. 
The relevant set at the start of processing includes only the variable 
D, but at the end of processing it includes both D and E. We then 
process the statements again from statement #3 to statement #1. In 
this pass, we see that statement #2 affects the value of E, so we 
include it in the slice along with statement #1.  
 
procedure Looptest_D is  
   C : Integer := 0;   
   D : Integer := 0;   
   E : Integer := 0;   
begin 
   C := 0; 
   while C <= 10 loop 
      D := D + E; 
      E := E + C; 
      C := C + 1; 
   end loop; 
end Looptest_D; 

Figure 14. Slice produced for variable D. 
 
We add C to the relevant set as required for an assignment 
statement. The relevant set at the start of processing included D and 
E, but at the end of processing it includes C, D, and E. We processin 
the statements again from bottom to top. In this pass, we see that 
statement #3 affects the value of C, so we include it in the slice 
along with statements #1 and #2. There are no additional variables 
to add to the relevant set in this pass, so now the relevant set is the 
same at the end of processing the loop as it was at the start of 
processing the loop. We now stop processing the statements in the 
loop and return statements #1, #2, and #3 as the statements needed 
inside the loop statement that will be included in the slice for 
variable D. Figure 14 shows the slice for variable D. 

3.2 Inter-procedural Slicing 
So far we have dealt with procedures that do not call other 
procedures. Weiser [16] defines two forms of program slicing: intra-
procedural and inter-procedural. As the name suggests, intra-
procedural slicing produces program slices by considering 
statements within the procedure. Inter-procedural slicing considers 

calls to other sub-programs and may project those sub-programs into 
their own program slices. Inter-procedural slicing is used in 
AdaSlicer when processing procedure call statements. If the 
procedure call statement defines a variable in the relevant set 
(through an out or in out parameter), the called procedure must be 
sliced to collect the statements that affect that variable. For example, 
consider the two procedures shown in Figure 15.  
 
package body Proc_Scalar is 
   procedure Casescalar ( 
         A : in out Integer;  
         M : in     Integer;  
         D : in out Integer  ) is  
   begin 
      A := 0; 
      D := 0;   -- slice var 
      case M is 
         when 1 => 
            D := D + 1; 
         when 2 => 
            A := A + 1; 
         when others => 
            null; 
      end case; 
   end Casescalar; 
 
   procedure Loopscalar ( 
         B : in out Integer ) is  
      D : Integer := 0;   
   begin 
      B := 0;   -- slice var 
      Casescalar( 
         A => B,   
         M => 18,  
         D => D); 
   end Loopscalar; 
end Proc_Scalar; 

Figure 15. Procedure call statements 
 
As shown in the figure, procedure Loopscalar calls procedure 
Casescalar passing in the variable B and the value 18 as actual 
parameters. If we are slicing the Loopscalar procedure on the 
variable B, we need to consider the call to Casescalar. By looking at 
the declaration of the procedure Casescalar, we see that the formal 
parameter A is an in out parameter. In the call to Casescalar, 
variable B is passed as the actual parameter corresponding to the 
formal parameter A. Since A is an in out parameter, the variable B is 
defined by the procedure call to Casescalar. When slicing on B in 
Loopscalar, we must use inter-procedural slicing to extract the 
statements from Casescalar that affect the value of the variable B. 
The algorithm we use for inter-procedural slicing is to first find 
which variables are defined by a procedure call statement. If the 
procedure call statement does not define any of the variables in the 
relevant set, it is not included in the program slice. If it does define a 
variable in the relevant set, such as the variable B, a new program 
slice must be built that includes statements from the called 
procedure that affect the value of the defined variable and a new 
procedure call statement must be built to call the new program slice.  
In order to slice the called procedure, we must find the correct 
variable to slice on in the called procedure. For example, as shown 
in Figure 15, the variable B is defined by the call to Casescalar. 
However, we do not slice Casescalar on the variable B. We need to 
find the formal parameter in Casescalar that corresponds to the 
defined variable in the procedure call statement. As shown in Figure 
15, the variable A is the formal parameter in Casescalar that 
corresponds to the actual parameter B in the procedure call 
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statement. Once the formal parameter is determined, we slice on that 
formal parameter in the called procedure. Figure 16 shows the slice 
produced by slicing on the variable A in Casescalar. 
 
procedure Casescalar_A ( 
      A : in out Integer;  
      M : in     Integer) is  
begin 
   A := 0; 
   case M is 
      when 1 => 
         null; 
      when 2 => 
         A := A + 1; 
      when others => 
         null; 
   end case; 
end Casescalar_A; 

Figure 16. The slice produced for variable A 
 
As shown in Figure 16, only the statements that affect the value of A 
have been included in the slice. Since the variable D is not included 
in the slice, it is not included as a formal parameter for the slice 
Casescalar_A. Now that the called procedure has been sliced on the 
variable A, we can build the new procedure call statement to be 
included in  the procedure Loopscalar. Figure 17 shows the 
completed slice for the procedure Loopscalar with the new 
procedure call statement produced by inter-procedural slicing. 
 
procedure Loopscalar_B ( 
      B : in out Integer ) is  
begin 
   B := 0; 
   Casescalar_A( 
      A => B,  
      M => 18); 
end Loopscalar_B; 

Figure 17. The slice produced for variable B 
 
Notice in Figure 17, that the call to Casescalar has been replaced by 
a call to the new slice procedure Casescalar_A. The parameters in 
the call to Casescalar_A are matched with the new definition of the 
sliced procedure, which means B is passed to the formal parameter 
A and 18 is passed to the formal parameter M. The parameter D is 
not included in the new procedure call statement. 
The inter-procedural slicing algorithm that we have implemented is 
a recursive algorithm that slices each called procedure if the 
procedure call statement defines a variable in the relevant set. This 
algorithm is guaranteed to terminate only if there is no recursion or 
mutual recursion in the procedures being sliced. Each called 
procedure is sliced using the same algorithms for the statements 
already discussed above. If there is not a procedure call statement in 
the called procedure, the recursion reaches the base case, returns the 
sliced procedure, and builds the new procedure call statement for the 
sliced procedure.  

4. USING ASIS 
As explained by the ASIS Working Group: 

“ASIS is an interface between an Ada environment as 
defined by ISO/IEC 8652:1995 (the Ada Reference 
Manual) and any tool requiring information from this 
environment.”  [4] 

ASIS is distributed in public versions and also by private vendors. 
There are particular versions of ASIS that correspond to versions of 
the GNAT Ada compiler. As the authors quickly discovered, the 
version number for ASIS much exactly match the version number 
for the GNAT compiler. This is due to the tight coupling of ASIS to 
the Abstract Syntax Tree (AST) produced using the -gnatt compiler 
option. The AdaSlicer tool was built using version 3.15a1 of ASIS 
and the version 3.15a1 of the GNAT compiler. The ASIS 
distribution comes with documentation, tutorials, source files and 
templates for building applications. Once unzipped, the ASIS files 
must be compiled using the correct version of the compiler and 
installed as an Ada library on the development machine.  
We have observed that, for novice ASIS programmers, the 
relationships between the ASIS source code files is somewhat 
difficult to initially understand. The examples provided in the ASIS 
distribution are good initial starting points for developing an 
application, and the most useful part of the distribution was the 
template provided for traversing the AST produced by GNAT. This 
template demonstrated how to peel back the layers of ASIS all the 
way down to the statements and their components stored in the 
AST. 
In ASIS, the outermost layer consists of a context.  Any ASIS 
application must associate the application with a context in order to 
access the ASTs. Each context contains any number of compilation 
units.  Compilation units model the procedures, functions, and 
packages from the program being analyzed by the application. Each 
compilation unit includes a model of the declaration of the unit and 
these declarations include elements of the program. An element is 
the basic unit of ASIS and includes such things as statements, 
expressions, and exception handlers. It also includes more compiler 
oriented items such as statement paths, clauses, definitions and 
declarations. Once the ASIS application has reached the level of 
element, the application can access the statements from the program 
being analyzed and accomplish static analysis of the program. 
In the AdaSlicer tool, we tunnel down to the element level in which 
we reach the procedure body declaration of the original procedure. 
From that point we apply the program slicing algorithm to the 
statements in the procedure body to produce the program slice. 
Because we require DEF and REF information for each statement, 
we use the queries provided by ASIS to build the DEF and REF sets 
for each statement. These queries are very powerful. For example, 
ASIS provides a link to the declaration of the called subprogram 
given a procedure call statement. ASIS also provides associations 
between the actual parameters in procedure calls and the 
corresponding formal parameters in the procedure declaration. To 
determine DEF and REF sets for procedure calls, we also need 
access to the modes of the parameters; we use ASIS queries to 
identify those modes. 
To produce a slice using the AdaSlicer tool, the original program 
must first be compiled using the -gnatt option of the GNAT 
complier to produce the AST for the program. The ADT file is then 
input to the AdaSlicer application along with the slice variable in 
order to analyze the statements and produce a slice. AdaSlicer 
outputs the program slice using “put” statements that print the 
statements needed for the slice and the enclosing procedure body. 
The new procedure is named using the following convention:   

<original program name>_<slice variable>.adb.  
The output from AdaSlicer is captured and stored in a text file with a 
corresponding name. 
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5. FUTURE DIRECTIONS 
Our initial motivation for developing a program slicing capability 
for Ada programs was to support re-engineering efforts for those 
programs. Because current re-engineering activities often include 
conversion of legacy imperative code to object-oriented 
implementations, we wanted to facilitate the automated extraction of 
objects from imperative code. One automated technique for doing 
this kind of object extraction is called the Parameter-Based Object 
Identification (PBOI) methodology [14], which requires program 
slicing. Our next step is to apply the PBOI methodology to a legacy 
Ada system that consists of 13 files, 6,196 lines of code, of which 
1,305 end with a semi-colon. 
The current incarnation of the tool is invoked from the command 
line. While this serves our immediate needs, it is clear that a more 
reasonable user interface is required to improve ease of use. In fact, 
we plan to incorporate use of this tool in both an undergraduate 
software engineering course at the U.S. Air Force Academy and a 
graduate software engineering course at UCCS. To effectively do so, 
we will need to add a Graphical User Interface to the tool, either by 
converting it to a Windows application or by using the RAPID [6] 
GUI design tool. 
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