

AdaSlicer: An Ada Program Slicer
Ricky E. Sward

Department of Computer Science
U.S. Air Force Academy, CO

719-333-7664

ricky.sward@usafa.af.mil

A.T. Chamillard
Computer Science Department

University of Colorado at Colorado Springs
Colorado Springs, CO 80933

719-262-3150

chamillard@cs.uccs.edu

ABSTRACT
The ability to slice a program or parts of a program is useful in a
variety of domains, including re-engineering, dependency analysis,
test case generation, test coverage evaluation and debugging.
Although a variety of static analysis tools are available to support
these activities for Ada programs, none of these tools provide a
program slicing capability. Fortuitously, the Ada Semantic Interface
Specification (ASIS) provides access to the Ada program
information required to slice the program. This paper describes our
use of ASIS to implement an Ada program slicer, called AdaSlicer.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments –
programmer workbench.

General Terms: Languages, Verification.

Keywords: Program slicing, ASIS.

1. INTRODUCTION
When we slice a program, we extract the components of the
program that can affect the value of a particular variable. Program
slicing is a well defined process (see [16]) that projects the behavior
from the original program that is required to produce the value of a
variable. The resulting behavior is collected into a new program that
is a slice of the original program.
Program slices can be used in a variety of ways. For example, a
maintainer considering a change to a particular statement in the
program can generate program slices to identify the other
components of the program that could be affected by the change. A
tester generating or examining test cases, particularly those using
dataflow coverage criteria [11], can more easily consider the
components of the program affected by the test cases that address a
particular variable by examining the appropriate program slices. A
programmer trying to debug a program could identify the variables

with erroneous values and use program slices to isolate the program
statements that affect those variables.
Because program slices can be generated using information
available at compile time, program slicing is classified as a static
analysis technique. Numerous static analysis tools have been
developed for Ada programs, but none of the tools that we know of
provide the capability to generate program slices for the program
under analysis. A tool providing a program slicing capability for
Ada programs would therefore be useful for those who maintain or
test Ada programs.
The Ada Semantic Interface Specification (ASIS) can be used to
examine compile-time information about an Ada program. Since
program slicing is a static analysis technique, the information
provided by ASIS is sufficient for generating program slices.
Although ASIS has been standardized for some time [8], tool
implementation using ASIS is still of interest to the Ada community.
We implemented the program slicer, called AdaSlicer, described in
this paper using the information provided by ASIS.
In this paper, we discuss related work, program slicing in general,
how we used ASIS as the foundation of our program slicing tool,
our progress to date, and future efforts that will use AdaSlicer.

2. RELATED WORK
Program slicing was originally described by Weiser [16]. Program
slicing tools have been implemented for a variety of programming
languages including C [15, 17], Java [7], Oberon-2 [10], and others.
Program slicing tools for Ada, however, do not appear to be
available.
Dependency analysis for Ada programs is provided in the ProDAG
system [13], which has also been integrated with the TAOS system
[12] to support test case generation and coverage analysis. The tool
described in this paper uses ASIS to generate program slices, while
the ProDAG system does not use ASIS and does not provide
explicit program slicing capabilities. Other researchers have also
developed methodologies to support dependency analysis of Ada
programs (see [9] for example), though we have not discovered any
that provide program slicing capabilities using the ASIS.
Several Ada program analysis tools have been developed using the
ASIS. The ASIS Working Group [5] provides links to ASIS-based
products. Examples include static analysis tools that collect program
metrics and identify coding standards violations [3] and other tools
that collect information about program characteristics to support
quality assessments [1]. Another tool extracts object information
and UML diagrams from Ada code [2].

Copyright 2003 Association for Computing Machinery. ACM
acknow-ledges that this contribution was authored or co-authored by a
contractor or affiliate of the U.S. Government. As such, the
Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government
purposes only.
SIGAda’03, December 7–11, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-476-2/03/0012…$5.00.

10

3. PROGRAM SLICING
In general, program slicing is a projection of behavior from an
original program into a new program called a program slice [16].
Program slicing is a static analysis process that relies on information
about which variables and, consequently, program statements are
required to produce a single variable called the slice variable. For
each statement, the variables that are defined by that statement are
collected into a DEF set and the variables referenced in the
statement are collected into a REF set. A variable is defined in a
statement if the variable can be assigned a new value in that
statement. For example, variables on the left-hand-side of an
assignment statement are defined by the statement. Any variables on
the right-hand-side of an assignment statement are referenced in that
statement and, by definition, appear in the REF set for the statement.
The program slices produced by AdaSlicer are considered to be
conservative slices because they may include more than the minimal
statements required to produce the slice variable. More extensive
data flow analysis could be used to remove statements that are
overshadowed by later statements that redefine variables in the
relevant set. For simplicity, the data flow analysis in AdaSlicer is not
this extensive, but the slices are guaranteed to produce the correct
value of the slice variable as required by the definition of a program
slice.
To produce a program slice, analysis begins at the last statement in
the program and proceeds up to the first statement. The slice
variable is placed in a relevant set that includes all variables relevant
to the program slice. Any statement that defines a variable in the
relevant set is included in the program slice. Any variables
referenced in statements included in the slice are added to the
relevant set since they can affect the definition of the slice variable.
This process continues until all statements are analyzed. A more
complete, formal algorithm is provided by Weiser [16].

3.1 Processing Statements
When processing assignment statements, a variable is defined if it
appears on the left-hand-side of the statement. Programs with
assignment statements can easily be sliced using AdaSlicer. For
example, consider the program shown in Figure 1.

procedure Assignscalar is
 A : Integer := 0;
 B : Integer := 1;
 C : Integer := 2;
 D : Integer := 3;
 E : Integer := 4;
begin
 C := A + B; -- statement #1
 D := B * 2; -- statement #2
 E := D * 3; -- statement #3
end Assignscalar;

Figure 1. Original program

This program includes several assignments statements and variables
that depend on the value of other variables. As an example, consider
the processing required for a slice on variable C. Initially, the
relevant set includes only the variable C. Processing begins with
statement #3 and continues up through statement #1. Since variable
C is defined by statement #1, this statement is needed in the slice.
The variables A and B are added to the relevant set since now any

statements that define A and B will affect the value of C. Since
statement #1 is the last statement to be processed in the procedure,
processing is complete. The program slice produced for the variable
C is shown in Figure 2.

procedure Assignscalar_C is
 A : Integer := 0;
 B : Integer := 1;
 C : Integer := 2;
begin
 C := A + B;
end Assignscalar_C;

Figure 2. Slice produced for variable C

Notice in the slice, the variables A, B, and C have been properly
declared. As a final step of building a program slice, we include the
original declarations of any variables in the relevant set. The
program slice produced for variable E is shown in Figure 3.

procedure Assignscalar_E is
 B : Integer := 1;
 D : Integer := 3;
 E : Integer := 4;
begin
 D := B * 2;
 E := D * 3;
end Assignscalar_E;

Figure 3. Slice produced for variable E

Here, the value of E is dependent on the value of variable D. The
value of variable D is dependent on the value of variable B. The two
assignment statements are included in the slice and the variables B,
D, and E are also included in the slice. Figure 3 shows how the
dependencies between assignment statements are captured by
AdaSlicer.
When processing if-then statements, each path of the statement is
recursively analyzed to determine if any statements in the path affect
the value of variables in the relevant set. If any such statements are
found in any of the paths, the if-then statement is included in the
slice. The conditional expression of the if-then statement is included
intact and the variables from the conditional expression are added to
the relevant set. For example, Figure 4 shows an Ada program with
a simple if-then-else statement.

procedure Ifthenelsescalar is
 C : Integer;
 D : Integer;
 E : Integer;
begin
 C := 0;
 D := 0;
 E := 0;
 if C = 2 then
 D := D + 1;
 else
 E := E + 1;
 end if;
end Ifthenelsescalar;

Figure 4. If then else statement

Figure 5 shows the slice produced for the variable D. Note that in
Figure 5, the else clause is not included in the slice.

11

procedure Ifthenelsescalar_D is
 C : Integer;
 D : Integer;
begin
 C := 0;
 D := 0;
 if C = 2 then
 D := D + 1;
 end if;
end Ifthenelsescalar_D;

Figure 5. Slice produced for variable D

This is a design decision built into AdaSlicer that removes the else
clause from the if-then statement if there are no statements in the
else path to be included in the slice. Figure 6 shows the slice
produced for the variable E.

procedure Ifthenelsescalar_E is
 C : Integer;
 E : Integer;
begin
 C := 0;
 E := 0;
 if C = 2 then
 null;
 else
 E := E + 1;
 end if;
end Ifthenelsescalar_E;

Figure 6. Slice produced for the variable E

In this slice, none of the statements from the if-path of the original
if-then statement need to be included in the slice. Our design
decision was to include a null statement in the then-clause of the
slice in this situation. It is not trivial to remove the then-clause in
this case because it would require the Boolean expression of the
original if-then statement to be negated. With our solution, the
original Boolean expression is used and the null statement is
included in the then-clause.
When processing if-then statements with elsif paths, special care is
taken to include a minimal set of clauses. For example, Figure 7
shows an Ada program that includes an if-then statement with three
elsif paths.
Since an if-then statement with elsif paths can be converted to a
functionally equivalent if-then statement with nested if-then-else
statements, our approach was to process elsif paths in the same way
we processed if-then statements, as described above. By starting
with the statement that is most deeply nested, we treat the else-path
if the entire if-then-else statement as the else clause of the last elsif-
path. We work up through the nesting, processing each nested if-
then-else statement as described above. In Figure 7, for example,
processing begins with the else clause, which is part of the nested if-
then statement #4. If there are statements in the else clause that are
required in the slice, then the entire if-then statement #4 is required
in the slice. Since this if-then is nested inside the else clause of if-
then #3, the else clause for if-then #3 is also needed in the slice. If-
then #3 is nested in if-then #2, so if-then #2 is needed, and, of
course, if-then #2 is nested in if-then #1, so if-then #1 is needed.
This, in effect, cascades up the nested if-then statements resulting in
all the if-then statements being included. This would be the case if
we slice on variable “J”, for example, and the resulting slice is
shown in Figure 8.

procedure Elsiftest is
 F : Integer := 0;
 G : Integer := 0;
 H : Integer := 0;
 I : Integer := 0;
 J : Integer := 0;
 T : Integer := 0;
 W : Integer := 0;
 Z : Integer := 0;
begin
 W := W - 5;
 if F = 3 then -- if #1
 G := G + 1;
 elsif H = 4 then -- if #2, nested
 I := I + 2;
 elsif T = 7 then -- if #3, nested
 T := T + 1;
 elsif W = 1 then -- if #4, nested
 Z := -3;
 else -- else clause
 J := J + 3;
 end if;
 W := W + 1;
end Elsiftest;

Figure 7. Elsif program

procedure Elsiftest_J is
 F : Integer := 0;
 H : Integer := 0;
 J : Integer := 0;
 T : Integer := 0;
 W : Integer := 0;
begin
 W := W - 5;
 if F = 3 then
 null;
 elsif W = 1 then
 null;
 elsif T = 7 then
 null;
 elsif H = 4 then
 null;
 else
 J := J + 3;
 end if;
end Elsiftest_J;

Figure 8. The slice produced for variable J

Note that we could have built a single if statement for the above
example by manipulating the conditions appropriately. In our
example, the condition for the new if statement would be
((F /= 3) and (W /= 1) and (T /= 7) and (H /= 4))

Instead, we decided that it would be more effective to retain the
same structure as that contained in the original code. We believe this
will make it easier for programmers, maintainers, and testers to see
the relationships between the program slices and the original code.
If there are no statements from the original else clause (as shown in
Figure 7) that are needed in the slice, then the else clause is not
needed in the slice. It can be removed from if-then #4. If there are
statements in the then clause of if-then #4 that are required in the
slice, then if-then #4 will be included in the slice minus the else
clause. This cascades up the nested if-then statements including all
the nested statements above #4. The interesting case is when there
are no statements in the else clause of #4 or in the then clause of #4.
In this case, if-then #4 does not need to be included in the slice. This
means the else clause for #3 does not need to be included in the
slice. If there are no statements in the then clause of #3, then #3 does
not need to be included in the slice, and so on. As an example,

12

consider slicing on variable “I”. Figure 9 shows the slice produced
from slicing on variable “I”.

procedure Elsiftest_I is
 F : Integer := 0;
 H : Integer := 0;
 I : Integer := 0;
begin
 if F = 3 then
 null;
 elsif H = 4 then
 I := I + 2;
 end if;
end Elsiftest_I;

Figure 9. The slice produced for variable I

As shown in Figure 9, only if-then statements #1 and #2 are
included in the resulting slice since if-then statements #3 and #4 do
not affect the value of the variable I.
When processing CASE statements, a different approach is needed
than the one used for if-then statements with elsif-paths. A CASE
statement is functionally equivalent to an if-then statement with
elsif-paths; however, the Boolean expression used in the CASE
statement’s when-clauses is based on a single variable. Because of
this, we were not able to remove any of the branches of the CASE
statements, but instead included null statements in branches that did
not have any statements to be included in the slice. If none of the
branches of the CASE statement included any statements required
for the slice, then the CASE statement was not included in the slice.
Figure 10 shows an example of an Ada CASE statement.

procedure Casescalar is
 K : Integer := 0;
 L : Integer := 0;
 N : Integer := 0;
 O : Integer := 0;
 Q : Integer := 0;
begin
 case K is
 when 5 =>
 L := L + 1;
 when 6 =>
 N := N + 1;
 when 7 =>
 O := O + 1;
 when 8 =>
 Q := Q + 1;
 when others =>
 Q := Q + 2;
 end case;
end Casescalar;

Figure 10. A CASE statement

In this statement, the CASE expression is based on the variable K
and each of the when-clauses is for the different values of K. To
illustrate why all the when-clauses must be included, consider the
slice on variable Q in Figure 11.
In this slice, the variable Q is defined in the “when 8” clause and
also in the “when others” clause. If the “when 7” clause had been
removed, and the value of K was 7 when this slice was executed, Q
would actually be changed and incremented by 2. This is not correct
because in the original CASE statement, the value of Q was not
changed when the value of K equals 7. Therefore, all CASE when-
clauses are included in the slice and null statements are included in

when-clause that do not included any statements required for the
slice.

procedure Casescalar_Q is
 K : Integer := 0;
 Q : Integer := 0;
begin
 case K is
 when 5 =>
 null;
 when 6 =>
 null;
 when 7 =>
 null;
 when 8 =>
 Q := Q + 1;
 when others =>
 Q := Q + 2;
 end case;
end Casescalar_Q;

Figure 11. The slice produced for variable Q

When processing loop statements, special care is taken to extract the
correct statements required to produce the value of the slice variable.
Consider, for example, the while loop shown in Figure 12.

procedure Looptest is
 C : Integer := 0;
 D : Integer := 0;
 E : Integer := 0;
begin
 C := 0;
 while C <= 10 loop
 D := D + E; -- loop statement #1
 E := E + C; -- loop statement #2
 C := C + 1; -- loop statement #3
 end loop;
end Looptest;

Figure 12. An Ada while loop

In this loop when we slice on the variable C, processing begins with
statement #3 and proceeds up through statement #1. In this case, the
only statement that affects the value of C is loop statement #3. It is
the only statement that is needed inside the loop when we slice on
the variable C. Figure 13 shows the slice generated for variable C.
When we slice on the variable D, however, the processing is not as
straightforward. Again, processing will start with statement #3 and
work up through statement #1. When we process statements #3 and
#2, the relevant set will include only variable D. These statements
do not affect the value of the variable D, so at this point they do not
appear to be needed in the slice. When we process statement #1
which defines D, we include this statement in the slice and add the
variable E to the relevant set as required when processing an
assignment statement. However, now that E

procedure Looptest_C is
 C : Integer := 0;
begin
 C := 0;
 while C <= 10 loop
 C := C + 1;
 end loop;
end Looptest_C;

Figure 13. The slice produced for variable C

13

is in the relevant set and the loop might possibly repeat the
statements inside the loop, we need to include statement #2 in the
slice because it affects the value of E. So far, our statement
processing has been from bottom up, but for loops we need a
different approach. Whenever we process statements inside a loop,
we repeatedly process the statements until we are sure that we have
included all the statements that affect variables in the relevant set.
As we identify statements that are needed in the slice, we add
variables to the relevant set. We can use this fact to detect when
processing of the statements in a loop is complete.
Our algorithm for processing statements inside a loop is as follows.
We process statements in the loop from the bottom up. If a statement
is to be included in the slice we add variables to the relevant set as
needed. When we are done with the statements inside the loop, we
compare the relevant set at the end of the processing of the loop to
what it was at the beginning of the processing of the loop. If
variables have been added to the relevant set, i.e. the relevant set is
different at the end than it was at the start, then we process the
statements in the loop again from bottom to top. We continue to
process the statements until the relevant set remains unchanged from
start to finish of processing.
For example, in Figure 12 when we slice on the variable D,
processing begins at statement #3 and continues up to statement #1.
The relevant set at the start of processing includes only the variable
D, but at the end of processing it includes both D and E. We then
process the statements again from statement #3 to statement #1. In
this pass, we see that statement #2 affects the value of E, so we
include it in the slice along with statement #1.

procedure Looptest_D is
 C : Integer := 0;
 D : Integer := 0;
 E : Integer := 0;
begin
 C := 0;
 while C <= 10 loop
 D := D + E;
 E := E + C;
 C := C + 1;
 end loop;
end Looptest_D;

Figure 14. Slice produced for variable D.

We add C to the relevant set as required for an assignment
statement. The relevant set at the start of processing included D and
E, but at the end of processing it includes C, D, and E. We processin
the statements again from bottom to top. In this pass, we see that
statement #3 affects the value of C, so we include it in the slice
along with statements #1 and #2. There are no additional variables
to add to the relevant set in this pass, so now the relevant set is the
same at the end of processing the loop as it was at the start of
processing the loop. We now stop processing the statements in the
loop and return statements #1, #2, and #3 as the statements needed
inside the loop statement that will be included in the slice for
variable D. Figure 14 shows the slice for variable D.

3.2 Inter-procedural Slicing
So far we have dealt with procedures that do not call other
procedures. Weiser [16] defines two forms of program slicing: intra-
procedural and inter-procedural. As the name suggests, intra-
procedural slicing produces program slices by considering
statements within the procedure. Inter-procedural slicing considers

calls to other sub-programs and may project those sub-programs into
their own program slices. Inter-procedural slicing is used in
AdaSlicer when processing procedure call statements. If the
procedure call statement defines a variable in the relevant set
(through an out or in out parameter), the called procedure must be
sliced to collect the statements that affect that variable. For example,
consider the two procedures shown in Figure 15.

package body Proc_Scalar is
 procedure Casescalar (
 A : in out Integer;
 M : in Integer;
 D : in out Integer) is
 begin
 A := 0;
 D := 0; -- slice var
 case M is
 when 1 =>
 D := D + 1;
 when 2 =>
 A := A + 1;
 when others =>
 null;
 end case;
 end Casescalar;

 procedure Loopscalar (
 B : in out Integer) is
 D : Integer := 0;
 begin
 B := 0; -- slice var
 Casescalar(
 A => B,
 M => 18,
 D => D);
 end Loopscalar;
end Proc_Scalar;

Figure 15. Procedure call statements

As shown in the figure, procedure Loopscalar calls procedure
Casescalar passing in the variable B and the value 18 as actual
parameters. If we are slicing the Loopscalar procedure on the
variable B, we need to consider the call to Casescalar. By looking at
the declaration of the procedure Casescalar, we see that the formal
parameter A is an in out parameter. In the call to Casescalar,
variable B is passed as the actual parameter corresponding to the
formal parameter A. Since A is an in out parameter, the variable B is
defined by the procedure call to Casescalar. When slicing on B in
Loopscalar, we must use inter-procedural slicing to extract the
statements from Casescalar that affect the value of the variable B.
The algorithm we use for inter-procedural slicing is to first find
which variables are defined by a procedure call statement. If the
procedure call statement does not define any of the variables in the
relevant set, it is not included in the program slice. If it does define a
variable in the relevant set, such as the variable B, a new program
slice must be built that includes statements from the called
procedure that affect the value of the defined variable and a new
procedure call statement must be built to call the new program slice.
In order to slice the called procedure, we must find the correct
variable to slice on in the called procedure. For example, as shown
in Figure 15, the variable B is defined by the call to Casescalar.
However, we do not slice Casescalar on the variable B. We need to
find the formal parameter in Casescalar that corresponds to the
defined variable in the procedure call statement. As shown in Figure
15, the variable A is the formal parameter in Casescalar that
corresponds to the actual parameter B in the procedure call

14

statement. Once the formal parameter is determined, we slice on that
formal parameter in the called procedure. Figure 16 shows the slice
produced by slicing on the variable A in Casescalar.

procedure Casescalar_A (
 A : in out Integer;
 M : in Integer) is
begin
 A := 0;
 case M is
 when 1 =>
 null;
 when 2 =>
 A := A + 1;
 when others =>
 null;
 end case;
end Casescalar_A;

Figure 16. The slice produced for variable A

As shown in Figure 16, only the statements that affect the value of A
have been included in the slice. Since the variable D is not included
in the slice, it is not included as a formal parameter for the slice
Casescalar_A. Now that the called procedure has been sliced on the
variable A, we can build the new procedure call statement to be
included in the procedure Loopscalar. Figure 17 shows the
completed slice for the procedure Loopscalar with the new
procedure call statement produced by inter-procedural slicing.

procedure Loopscalar_B (
 B : in out Integer) is
begin
 B := 0;
 Casescalar_A(
 A => B,
 M => 18);
end Loopscalar_B;

Figure 17. The slice produced for variable B

Notice in Figure 17, that the call to Casescalar has been replaced by
a call to the new slice procedure Casescalar_A. The parameters in
the call to Casescalar_A are matched with the new definition of the
sliced procedure, which means B is passed to the formal parameter
A and 18 is passed to the formal parameter M. The parameter D is
not included in the new procedure call statement.
The inter-procedural slicing algorithm that we have implemented is
a recursive algorithm that slices each called procedure if the
procedure call statement defines a variable in the relevant set. This
algorithm is guaranteed to terminate only if there is no recursion or
mutual recursion in the procedures being sliced. Each called
procedure is sliced using the same algorithms for the statements
already discussed above. If there is not a procedure call statement in
the called procedure, the recursion reaches the base case, returns the
sliced procedure, and builds the new procedure call statement for the
sliced procedure.

4. USING ASIS
As explained by the ASIS Working Group:

“ASIS is an interface between an Ada environment as
defined by ISO/IEC 8652:1995 (the Ada Reference
Manual) and any tool requiring information from this
environment.” [4]

ASIS is distributed in public versions and also by private vendors.
There are particular versions of ASIS that correspond to versions of
the GNAT Ada compiler. As the authors quickly discovered, the
version number for ASIS much exactly match the version number
for the GNAT compiler. This is due to the tight coupling of ASIS to
the Abstract Syntax Tree (AST) produced using the -gnatt compiler
option. The AdaSlicer tool was built using version 3.15a1 of ASIS
and the version 3.15a1 of the GNAT compiler. The ASIS
distribution comes with documentation, tutorials, source files and
templates for building applications. Once unzipped, the ASIS files
must be compiled using the correct version of the compiler and
installed as an Ada library on the development machine.
We have observed that, for novice ASIS programmers, the
relationships between the ASIS source code files is somewhat
difficult to initially understand. The examples provided in the ASIS
distribution are good initial starting points for developing an
application, and the most useful part of the distribution was the
template provided for traversing the AST produced by GNAT. This
template demonstrated how to peel back the layers of ASIS all the
way down to the statements and their components stored in the
AST.
In ASIS, the outermost layer consists of a context. Any ASIS
application must associate the application with a context in order to
access the ASTs. Each context contains any number of compilation
units. Compilation units model the procedures, functions, and
packages from the program being analyzed by the application. Each
compilation unit includes a model of the declaration of the unit and
these declarations include elements of the program. An element is
the basic unit of ASIS and includes such things as statements,
expressions, and exception handlers. It also includes more compiler
oriented items such as statement paths, clauses, definitions and
declarations. Once the ASIS application has reached the level of
element, the application can access the statements from the program
being analyzed and accomplish static analysis of the program.
In the AdaSlicer tool, we tunnel down to the element level in which
we reach the procedure body declaration of the original procedure.
From that point we apply the program slicing algorithm to the
statements in the procedure body to produce the program slice.
Because we require DEF and REF information for each statement,
we use the queries provided by ASIS to build the DEF and REF sets
for each statement. These queries are very powerful. For example,
ASIS provides a link to the declaration of the called subprogram
given a procedure call statement. ASIS also provides associations
between the actual parameters in procedure calls and the
corresponding formal parameters in the procedure declaration. To
determine DEF and REF sets for procedure calls, we also need
access to the modes of the parameters; we use ASIS queries to
identify those modes.
To produce a slice using the AdaSlicer tool, the original program
must first be compiled using the -gnatt option of the GNAT
complier to produce the AST for the program. The ADT file is then
input to the AdaSlicer application along with the slice variable in
order to analyze the statements and produce a slice. AdaSlicer
outputs the program slice using “put” statements that print the
statements needed for the slice and the enclosing procedure body.
The new procedure is named using the following convention:

<original program name>_<slice variable>.adb.
The output from AdaSlicer is captured and stored in a text file with a
corresponding name.

15

5. FUTURE DIRECTIONS
Our initial motivation for developing a program slicing capability
for Ada programs was to support re-engineering efforts for those
programs. Because current re-engineering activities often include
conversion of legacy imperative code to object-oriented
implementations, we wanted to facilitate the automated extraction of
objects from imperative code. One automated technique for doing
this kind of object extraction is called the Parameter-Based Object
Identification (PBOI) methodology [14], which requires program
slicing. Our next step is to apply the PBOI methodology to a legacy
Ada system that consists of 13 files, 6,196 lines of code, of which
1,305 end with a semi-colon.
The current incarnation of the tool is invoked from the command
line. While this serves our immediate needs, it is clear that a more
reasonable user interface is required to improve ease of use. In fact,
we plan to incorporate use of this tool in both an undergraduate
software engineering course at the U.S. Air Force Academy and a
graduate software engineering course at UCCS. To effectively do so,
we will need to add a Graphical User Interface to the tool, either by
converting it to a Windows application or by using the RAPID [6]
GUI design tool.

6. REFERENCES
[1] Ada Analyzer. Retrieved June 4, 2003, from

www.littletree.com/analyzerdata.html.

[2] Ada Reverse Engineering for Rational APEX. Retrieved June
4, 2003, from www.markv.com/markv.com/pr01.htm, 2002.

[3] AdaStat Product Info. Retrieved June 4, 2003, from
www.adastat.com/productinfo.htm.

[4] ASIS Basic Concepts. Retrieved June 3, 2003, from
www.acm.org/sigada/wg/asiswg/basics.html, 1998.

[5] ASIS Implementation, Products, and Services. Retrieved June
3, 2003, from
www.acm.org/sigada/wg/asiswg/products.html#Products ,
1998.

[6] Carlisle, M.C. and Maes, P. RAPID: a free, portable GUI
design tool. In Proceedings of the 1998 Annual ACM SIGAda

International Conference on Ada, Washington D.C.,
November 1998, pp. 158-164.

[7] Dwyer, M. B., Corbett, J.C., Hatcliff, J., Sokolowski, S., and
Zheng, H. Slicing Multi-Threaded Java Programs: A Case
Study. Tech Report KSU CIS TR 99-7.

[8] ISO/IEC 15291:1999. Information technology -- Programming
languages -- Ada Semantic Interface Specification, 1999.

[9] Moser, L.E. Data dependency graphs for Ada programs. IEEE
Transactions on Software Engineering, SE-16(5):498-509,
May 1990.

[10] Program Slicing. Retrieved June 4, 2003 from www.ssw.uni-
linz.ac.at/Research/Projects/ProgramSlicing.

[11] Rapps, S. and Weyuker, E.J. Data flow analysis techniques for
program test data selection. In Proceedings of the Sixth
International Conference on Software Engineering, Tokyo,
Japan, September 1982, pp. 272-278.

[12] Richardson, D.J. TAOS: testing with analysis and oracle
support. In Proceedings of the 1994 International Symposium
on Software Testing and Analysis, Seattle, Washington, 1994,
pp. 138-153.

[13] Richardson, D.J., O'Malley, T.O., Moore, C.T., and Aha, S.L.
Developing and integrating ProDAG in the Arcadia
environment. In Proceedings of the Fifth ACM SIGSOFT
Symposium on Software Development Environments, Tyson's
Corner, Virginia, 1992, pp. 109-119.

[14] Sward, R.E. and Hartrum, T.C. Extracting objects from legacy
imperative code. In Proceedings of the 12th IEEE
International Conference on Automated Software Engineering,
Incline Village, Nevada, November 1997, pp. 98-106.

[15] The Unravel Project. Retrieved June 4, 2003, from
http://hissa.nist.gov/unravel/, 1998.

[16] Weiser, M. Program slicing. IEEE Transactions on Software
Engineering, SE-10(4):352-357, July 1984.

[17] The Wisconsin Program-Slicing Tool, Version 1.1. Retrieved
June 4, 2003, from www.cs.wisc.edu/wpis/slicing_tool/, 2000.

16

