
Verifying Linear Time Temporal Logic Properties of
Concurrent Ada Programs with Quasar

Evangelista S.
evangeli@cnam.fr

Kaiser C.
kaiser@cnam.fr

Pradat-Peyre J.F.
peyre@cnam.fr

Rousseau P.
rousseau@cnam.fr

CEDRIC - CNAM Paris
292, rue St Martin, 75003 Paris

ABSTRACT
In this paper we present an original and useful way for spec-
ifying and verifying temporal properties of concurrent pro-
grams with our tool named Quasar. Quasar is based on
ASIS and uses formal methods (model checking). Proper-
ties that can be checked are either general, like deadlock or
fairness, or more context specific, referring to tasks states
or to value of variables; properties are then expressed in
temporal logic. In order to simplify the expression of these
properties, we define some templates that can be instanti-
ated with specific items of the programs. We demonstrate
the usefulness of these templates by verifying subtle varia-
tions of the Peterson algorithm. Thus, although Quasar
uses up-to-date formal methods it remains accessible to a
large class of practitioners.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Model checking, Formal methods

General Terms
Verification, Reliability

Keywords
Software verification, Concurrency, Temporal logic, Petri
nets

1. INTRODUCTION
In many applications, concurrency provides programmer

with the ability to design and to organize its applications in

Copyright 2003 by Daniel D. Flies. Permission is granted to make copies
of this document for personal or classroom use. Copies are not to be made
or distributed for profit or commercial purposes. To copy otherwise, or in
any way publish this material, requires written permission.
SIGAda’03, December 7–11, 2003, San Diego, California, USA.
.

an elegant and efficient way. Indeed, the possibility to de-
fine concurrent activities that can collaborate according to
predefined synchronization mechanisms gives a lot of flexi-
bility for mimicking the structure of the application domain
that contains natural parallelism and cooperation. The ap-
plication is often more simple, it gains in scalability, it is
less error-prone and it is easier to prove its correctness than
without the use of concurrency.
However, while providing many advantages, concurrency

introduces specific difficulties due to the non determinism
and to the many possible interactions between activities.
One can quote the deadlock or the fairness problem.
Classical test methods are not sufficient to detect this kind

of problems, in particular because of the difficulty to repro-
duce an error when it has occurred. So specific technologies
have to be employed to enforce confidence in concurrent soft-
ware.
We have developed a tool, named Quasar [3], that ad-

dresses this problem. It is based on formal methods (model
checking) but it remains accessible to a large class of prac-
titioners because the formal part of its work is automated :
the concurrent program (up to now a Ada program) is au-
tomatically translated into a formal model (a colored Petri
net) and is analyzed through this formal model. Report of
the analysis is made by giving references to the original pro-
gram. Note that from a theoretical point of view, checking
program properties is undecidable. So we do not always ob-
tain a response to a query. But in most practical cases, it
works fine.
If general properties, like deadlock or fairness, can be uni-

versally and simply defined, specific properties must be ex-
pressed with formal specification languages like temporal
logics [19]. These formalisms are theoretically well suited
for expressing this kind of properties but are often very dif-
ficult to use in concrete cases. Indeed, expressing temporal
logic properties needs a particular cast of mind and a lot of
experience in this theoretical domain.
In order to simplify the expression of these properties we

propose in Quasar a specific interface. This interface fo-
cuses on the most useful kind of properties and proposes
four distinct templates that can be easily instantiated by
designing parts of the code (by naming tasks, variables or

17



entries or by selecting graphically part of the code). We
present here these templates and we show on an example
how they can be efficiently used to track down errors in
concurrent programs.
The paper is organized as follow; we first present the use of

ASIS in Quasar. Then we recall briefly the LTL definition
and we present our property templates. We show through
an example their usefulness and we conclude after reporting
related works.

2. ASIS - GETTING INFORMATION FROM
SOURCE CODE

When analyzing a program, Quasar proceeds in four steps :

• first, it slices the program by suppressing all the non
relevant parts with respect to the studied property;

• second, it translates it into a formal model (a colored
Petri net);

• third, structural or model checking techniques are ap-
plied on the formal model in order to determine if the
checked property is verified or not;

• at last, it makes a report referring to the original pro-
gram and the checked property.

Three of these actions (slicing, translation and report) ma-
nipulate directly the source code and it may be a very diffi-
cult task, in particular for high level language such as Ada.
Fortunately, the use of the ASIS library [12] (Ada Seman-

tic Interface Specification) gives us an elegant and efficient
way to perform these tasks using ASIS iterators and ASIS
queries.

2.1 ASIS general use
ASIS is an Interface which provides means to navigate

through the syntax tree of any Ada program. Each node of
this tree is an ASIS Element defined by its Kind (declara-
tion, statement, expression, ...).
The kinds of an element are defined hierarchically : for ex-

ample, the kind of the element : type M5 is mod 5 is at the
same time a declaration, an ordinary type declaration and a
modular type declaration. This hierarchy enables different
levels of analysis. For example, one can choose to apply a
treatment on all type declarations or only on modular type
declarations.
ASIS provides two powerful mechanisms for navigating

through the syntax tree. The first one is an iterator which al-
lows to traverse the syntax tree by using depth-first method.
During the traversal of each element, it permits to apply a
pre and a post procedure. The pre procedure is applied
when reaching the node, the post procedure is applied when
the sub-tree of the node has been traversed. Figure 1 shows
an example of syntax tree traversal and pre and post proce-
dure executions order. The number near each arrow is the
call order number, for instance, the arrow 1 correspond to
the first call to a pre or a post procedure. As it is a black
arrow, it is a pre procedure, as it points to the complete
”while loop”, it is the pre procedure performed before the
node while ... end loop. Arrow 21 is the post procedure
called at exit of the assignment node I := I + 1;.

The second method consists in using a set of queries.
These queries give information about a node of the syntax

while I < 10 loop
   I := I + 1;
end loop;

I < 10 I := I + 1;

I I + 1

Post−procedure
Pre−procedure

Call order

Syntax tree node

10I<

1+ I

1

2

3

4

5

6
8

7

9

10

11

12

13

14 16
15 17

18

19

20

21

22

3

Figure 1: Iterator

tree (i.e. an ASIS element). But more than simple queries,
these functions give the possibility to navigate through the
syntax tree by the semantic correspondence between ele-
ments without using an iterator. For instance, in Figure
2, we see how to decompose the assignment I := Inc(I);.
First, we have an ASIS query to get the declaration of
the identifier (Corresponding_Name_Declaration), then an-
other one to get the declaration of the called function
(Corresponding_Called_Function), and if we search infor-
mation about the code of this function, we can easily get its
body with a third ASIS query (Corresponding_Body).

function Inc(I : Integer);

I : Integer := 0;

function Inc(I : Integer) is

begin

   return I + 1;

end Inc;

I := Inc(I);

Corresponding_Body(function ... ;)

Corresponding_Called_Function(Inc)

Corresponding_Name_Declaration(I)

Figure 2: Queries

With these tools, ASIS allows to get information on a
source code in a much more simple and efficient way than
with classical methods (grammar definition, syntax tree gen-
eration and parsing, ...).

2.2 Quasar specific use
The first two steps of the analysis requires information

from the source code. According to the property to be
checked, the slicing step decides which parts of the source
code have to be kept. In the second step, each collected ele-
ment requests some particular information to be translated
into a colored Petri net. For instance, in order to translate a
procedure declaration we need its name, its parameters and
their types, and, the Petri net patterns.
ASIS allows us to collect all these information, but as a

general library, it is not specific enough for our use. For
instance, we have to collect all declaration by kind (tasks,

18



variables, ...). In an other hand, using ASIS implies some
complex sequences of queries which are reused several times.
Some functions have to be specialized to simplify the code
translation process.
All these requirements are met by writing a specific li-

brary based on ASIS iterator and ASIS queries. We use
the iterators to collect lists of declarations (ordinary types
declaration list, task declaration list, protected object dec-
laration list, variable declaration list, ...). Queries are used
and specialized to be more specific to our needs. For ex-
ample, when a ”for loop” statement is analyzed we need to
know the bounds of the loop control parameter. Therefore,
we made a simple function which uses the appropriate se-
quence of queries according to the way the range has been
written (for I in 1..4 loop / for I in T’Range loop /
for I in ...).
As we said earlier, we only translate the relevant part of

the program with respect to the studied property (deadlock
or user defined property). To do this, we have to be able
to decide which parts of the program have to be kept. For
instance, in the Peterson example (given is section 3.3), we
first look for concurrent statements and possibly blocking
actions (for example, infinite loops or statements defined
by the user). In the tasks (T_One and T_Two) and in the
main program, we go through non protected calls to de-
termine if they use statements related to concurrency. In
Peterson.Enter, we can’t determine if the ”while loop” will
finish or not : if the loop condition remains true, tasks will
never go out the loop statement. So we have to keep this
loop. Keeping this statement implies to keep variables used
in the loop condition : Candidate, Priority and the pa-
rameter X. As we keep local variables we have to keep theirs
declaration and as we keep a parameter, we have to keep all
variables that are used in a call to Peterson.Enter. This
leads to keep local variable My_Id of tasks T_One and T_Two

(and then to keep the declarations of these local variables).
We pursue this process in Peterson.Quit to determine all
the elements that we have to keep.
The user can also decide to keep some specific declara-

tions or statements (when it considers that they are in-
volved in possible blocking situation). Also, we must keep
all parts of the code that are related to these declarations
or statements. This code is retrieved using ASIS queries
(Asis.Expressions.References).

2.3 Translation step
High-level Petri nets with inhibitor arcs [13, 6] have the

same expressiveness as the Ada language. So, the trans-
lation of an Ada program to a high-level Petri net doesn’t
raise any theoretical problem. In fact, translating an Ada
program to a high-level Petri net is similar to a compila-
tion process. In both cases, the aim is to map a program
semantic from a particular formalism to another one. The
real difficulty is to produce Petri nets which can be easily
analyzed. In particular, we have to tackle the combinatory
explosion which is an inherent problem to concurrent pro-
grams analysis. Therefore, in some very particular cases,
we choose to replace the exact Ada behavior by an abstract
one (we perform a “weak simulation” of the program). For
instance, the elaboration part of a sub-program or of a task
is considered to be atomic.
The translation mechanism proceeds in two steps:

1. Each Ada construction (statement, expression, decla-

ration) of the program is translated into a predefined
generic pattern. Thus the translation of the whole
Ada program produces a set of small Petri nets com-
ponents.

2. The produced components are elaborated with two
simple operations : the merging operation, which com-
bines two Petri nets by merging places having the same
name, and the substitution operation, which replaces
an abstract transition by a given sub net. By this
way, we obtain a standard colored Petri net that can
be directly analyzed with usual structural and model
checking techniques.

This modular approach has numerous advantages. In par-
ticular, it allows us (1) to easily prove the correctness of the
translated Petri net, and (2) to have a relatively language
independent translation process : as many high-level lan-
guages have the same basic features (if-then-else statements,
loop statements, variable assignment, ...), a great part of the
work is generic. It is thus re-usable for doing the same work
for another concurrent programming language such as Java.
As an example, let us examine how Quasar proceeds

when constructing the whole Petri net given figures 3 and
4 that corresponds to the following simple concurrent pro-
gram :

task body Client is task body Server is
begin begin

loop loop
Server.Service ; accept Service;

end loop; end loop;
end Customer; end Server;

When translating a loop statement, the enclosing statement
is ignored. It is considered as an abstract transition. As it is
translated the abstract transition of the loop ... end loop;

net is replaced by the translated one. This is a substitution
operation.
By applying successively two substitutions (≺ operator)

we obtain two independent Petri nets that we merge (∞
operator) around the E.RETURN and E.CALL places to obtain
the Petri net corresponding to the two loop statements.
This example illustrates some features of the translation

process :

• To each task of the program is attributed an identifier
which is used for instance during an entry call. For
performance issues, theses identifiers are given stati-
cally (as initial tokens in places).

• Naming places allows to merge dependant parts of the
program (e.g. an entry call and an accept statement
on the same entry).

• Compound elements of programs (e.g. task bodies or
loop statements) are composed of abstract transitions
which are replaced with the substitution operation by
the correct sub net.

3. LTL PROPERTIES IN QUASAR

Linear time Temporal Logic [19] (LTL for short) is recog-
nized as being a powerful tool for expressing properties of
concurrent systems. Its minimal syntax combined with its
great expressiveness allows designers to define and to prove
a large set of temporal related properties.

19



loop
   ...
end loop;

accept e;
loop
   accept e;
end loop;

<id>

<id>

<id>

<id>

E.RETURN

E.CALL
<idC, id>

<idC>

<id>

<id>

<id>

<id>

<id>

<idC, id>

<idC>

loop
   ...
end loop;

server.e;
loop
   server.e;
end loop;

<id>

<id>

<id>

<id>

E.CALL

E.RETURN

<id>

<id> <id>

<id,1>

<id>

<id>

<id>

E.CALL

E.RETURN

<id>

<id> <id>

<id,1>

<id>

Server side

Client side

Figure 3: Translation patterns : applying the substitution
operator

3.1 Some useful formal definitions
If f is a LTL formula then ¬f (not f) is also a formula.

If f1 and f2 are two formulae, then f1

V
f2 (f1 AND f2),

f1

W
f2 (f1 OR f2), and f1 =⇒ f2 (f1 implies f2) are also

formulae. If we define AP as a set of atomic propositions
then any p ∈ AP is a LTL formula. Furthermore, a LTL
formula can be defined with temporal operators using the
following syntax :

f ::= f1Uf2 (Until operator)
::= Gf1 (Always operator)
::= Ff1 (Finally operator)
::= Xf1 (Next operator)

Let us explain the semantic of these four operators 1. Let
σ be an infinite execution of the system. We note σ(i) the
execution beginning at the ith state of σ (thus σ = σ(0))
and σi the ith state of σ (thus σ = σ0.σ1 . . . σi . . .). The
infinite sequence σ satisfies :

• an atomic formula p iff p is satisfied at σ0.

We consider here that an atomic proposition is ex-
pressed as a condition on markings of Petri nets (atomic
state properties) 2.

• the formula f1Uf2 iff there exists an index i such that
f2 holds for σ(i) and f1 holds at σ(j) for each j in [0, i−
1]. Intuitively, “f1 is true until f2 becomes true” means

1One can notice that the operators F and G are redundant
with the operator U but they are often given in order to
simplify property expression.
2It is also possible to define an action based logic by express-
ing atomic propositions as conditions on transitions occur-
rences.

loop
   accept e;
end loop;

loop
   server.e;
end loop;

<id>

<id>

<id>

<id>

<id>

<idC, id>

<idC>

<id>

<id>

<id>

E.CALL

E.RETURN

<id>

<id> <id>

<id,1>

<id>

loop
   server.e;
end loop;

loop
   accept e;
end loop;

<id>

<idC>

<idC, id>

<id>

<id>

<id>

<id>

<id>

<id>

<id>

E.CALL

E.RETURN

<id>

<id> <id>

<id,1>

<id>

Figure 4: Translation patterns : applying the merging op-
erator

that f2 must necessarily be satisfied in the future and
that f1 holds as long as f2 does not.

• the formula Gf1 iff for each i, σ(i) satisfies f1. In-
tuitively, “always f1” means that the property f1 re-
mains always true during the execution.

• the formula Ff1 iff there exists i such that σ(i) satisfies
f1. Intuitively, “eventually f1” means that a state σi

verifying f1 will be necessarily reached in the future.

• the formula Xf1 iff σ(1) satisfies f1. Intuitively, “next
f1” means that f1 will be verified in the next state of
σ.

Finally a LTL property is satisfied by the system if all infi-
nite executions of the system that begin at the initial state
satisfy the property (when a sequence is not infinite we con-
sider that it loops on the last state of the sequence).
Checking a property φ can be done in three steps (re-

member that from a theoretical point of view the problem
to test if a Petri net satisfies a state base LTL property is
undecidable) :

1. Construct a Büchi automaton corresponding to the
negation of φ3.

2. Synchronize the automaton with the reachability graph
(that defines all possible reachable states) of the Petri
net model in order to obtain another Büchi automaton.

3. Check if there is an infinite execution accepted by the
synchronized product (note that this check may not
end due to the possible infinite size of the reachability
graph).

If such an execution exists then it means that at least one
execution verifies the negation of the property, and thus the
property is not verified. If no execution is accepted then the
property holds.
This process can also be done “on-the-fly” during the

reachability graph generation. This has the advantage to

3A Büchi automaton is an automaton that recognizes infi-
nite words. The rule for accepting a word is not “end in
an accepting state” but “traverse infinitely often accepting
states”

20



not generate the whole reachability graph if the property
doesn’t hold. More details on this process can be found in
[21].

3.2 Specific properties definition
LTL is a very powerful formalism for defining properties

on concurrency. However, it does not always provide the
most intuitive manner to describe these properties.
We defined in Quasar a simple and graphical interface al-

lowing the definition of the most usual properties. These
properties refer to atomic propositions involving states of
tasks, values of variables (when defined) and conditions on
entry queues (number of waiting tasks or presence of a par-
ticular task in the queue). Once again, the link between the
code and the formal model (here the LTL formulae) is made
with the help of the ASIS library.
Tasks, variables and entries are defined by their name.

States of tasks are defined by selecting lines in the code or
using states of an automata that is automatically produced
at the first stage of the translation process and that displays
the state evolution of a task.
For defining temporal properties, we propose four tem-

plates that correspond to the most usual properties (an ex-
pert mode is also available in which any LTL property can
be defined). These templates are instantiated with specific
task state, variable or entry queue using the graphical inter-
face. We will see in the next section an example of the use
of these templates. These templates describe :

• State accessibility

This template refers to the accessibility of a state s1

as soon as a state s0 is reached. In many cases, s0

corresponds to a state in which initialization has been
performed (or the beginning of a sequence that must
lead to s1). Both of states are described using task
states, variables, and entry queues and the state s0

may also be defined as the initial state. This tem-
plate is decomposed into three different sub-templates
(in these formulae we use s0 and s1 to denote atomic
propositions defining corresponding states) :

– Inevitable state : s1 is inevitable from s0 if it is
necessarily reached in each execution as soon as
s0 has been reached. This property corresponds
to a formula ¬s0U(s0 ⇒ Fs1).

– Inevitable state with condition : in this case,
we verify also that the state s1 is necessarily reached
from s0 but we impose that from s0 to s1 an
atomic proposition Cond remains true (the propo-
sition Cond is also defined using task state, value
of variable or length of entry queues). This tem-
plates corresponds to a formula
¬s0U(s0 ⇒ (Cond U Fs1))

– Home state : s1 is a home state as soon as s0 has
been reached if it remains always reachable. This
template corresponds to a formula ¬s0U(s0 ⇒
G(Fs1))

• Bounded wait

Each time a task is in a state s1 (for instance waiting
for some resources) then, necessarily, it will access in a
finite future a state s2 (for instance a state in which it
gets its needed resources). It corresponds to a formula
G(s1 ⇒ Fs2)

• Critical section

A non atomic sequence of statements is a critical sec-
tion if it can’t be executed by several tasks at once. It
corresponds to a formula G(¬s) where s denotes the
subset of tasks states in which they perform a state-
ment that is in the critical section.

• Stable property

Once a property holds it holds forever; it corresponds
to a formula ¬fUG(f) where f is the studied property.

Remark 1. Note that LTL formulae describe the behav-
ior of all possible executions. For expressing potential ex-
ecution one must use an other temporal logic (for instance
CTL).

Once a property is specified with one of this template,
it is automatically translated into the corresponding LTL
formula and checked with a model-checker (for the moment
we use Prod [22] or Maria [15]). By default no assumption
is made on the scheduler. In particular, the scheduler is
not necessarily supposed to be fair (it can decide to always
choose the same task). However, it is possible to impose a
verification under weak or strong fairness hypothesis. The
weak fairness hypothesis will exclude all executions in which
an action is continuously possible without being ever per-
formed (for instance a task remains always in the “ready”
state and is never chosen by the scheduler). The strong
fairness hypothesis will exclude all executions in which an
action is infinitely often possible and never performed. This
case is more subtle, and corresponds, for instance, to a task
waiting for a semaphore that is infinitely often taken and
released although the waiting task will never get it. These
fairness assumptions can be imposed to all tasks or to spe-
cific ones. It is important to note that these hypothesis make
the verification of the property more difficult.

3.3 Example
In order to illustrate the use of these property patterns, let

us consider the program given below. This program defines
two tasks, named T_One and T_Two, that access a controller
through a procedure named Set_Controller_Instruction.
In order to avoid hardware malfunction, operations on the
controller must be done in critical section (a sequence of
actions on the controller that has been started by a task
must be ended before a new sequence begins). We also sup-
pose that for obscure reasons, mutual exclusion is not pro-
grammed with a protected object (nor with a server task)
but with busy waiting loops similarly to variations of the
Peterson algorithm for two tasks. This code corresponds to
the package Peterson.
Three different versions of this algorithm are proposed

by the development team. Only one is correct. These three
versions have a common part presented here (they only differ
in the code of the procedure Enter).

21



with Text IO; use Text IO;
with Peterson; use Peterson;

procedure Prog1 is

procedure Set Controller Instruction (X : in Id) is
begin

−− a complicate code that reads and writes registers of a
−− controller in order to give it some instructions ; all
−− these manipulations must be done in critical section ;
−− we do not detail here these statements
Put Line (”Actions on controller for ” & Id’Image (X));
delay (1.0);

end Set Controller Instruction;

task T One;
task T Two;

task body T One is
My Id : Id := 1;

begin
loop

Put Line (”Before actions, task ” & Id’Image (My Id));
Peterson.Enter (My Id);
Set Controller Instruction (My Id);
Peterson.Quit (My Id);
Put Line (”After actions section, task ” &

Id’Image (My Id));
end loop;

end T One;

task body T Two is
My Id : Id := 2;

begin
loop

Put Line (”Before actions, task ” & Id’Image (My Id));
Peterson.Enter (My Id);
Set Controller Instruction (My Id);
Peterson.Quit (My Id);
Put Line (”After actions, task ” & Id’Image (My Id));

end loop;
end T Two;

begin
null;

end Prog1;

package Peterson is

type Id is range 1 .. 2;

procedure Enter (X : in Id);
procedure Quit (X : in Id);

end Peterson;

package body Peterson is

type Tab Candidate is array (Id) of Boolean;

Priority : Id := 1;
Candidate : Tab Candidate := (others => False);

procedure Enter (X : in Id) is
−− depends on version

end Enter;

procedure Quit (X : in Id) is
begin

Candidate (X) := False;
end Quit;

end Peterson;

The code of the procedure Enter is either one of these three
versions :

3.3.1 First version
In the first version, a task X runs for election by updating

the array Candidate; it gives the priority to the other task
in case of conflict (assignment Priority := Other) and it
waits as long as it is not true that it is candidate and it is
its turn.

procedure Enter (X : in Id) is
Other : Id := (X mod 2) + 1;

begin
Candidate (X) := True;
Priority := Other;
while not ( (Candidate (X)) and (Priority = X) ) loop

null;
end loop;

end Enter;

3.3.2 Second version
The second version differs from the previous one by the

waiting condition : in this version, a task waits as long as
the other task is candidate and it’s the turn of the other.

procedure Enter (X : in Id) is
Other : Id := (X mod 2) + 1;

begin
Candidate (X) := True;
Priority := Other;
while (Candidate (Other)) and (Priority = Other) loop

null;
end loop;

end Enter;

3.3.3 Third version
At last, in the third version, condition on barrier is mod-

ified in order to enforce protection of the critical section : a
task can enter in the critical section only if the other is not
candidate nor it is its turn.

procedure Enter (X : in Id) is
Other : Id := (X mod 2) + 1;

begin
Candidate (X) := True;
Priority := Other;
while (Candidate (Other)) or (Priority = Other) loop

null;
end loop;

end Enter;

3.3.4 Properties expression
Given the previous program, several properties can be

checked with Quasar. At first, one can check that there
is no deadlock. For the three versions the response is
No deadlock found that give some confidence on the code.
It’s not surprising since there is no blocking operations in
the program.
However, no deadlock does not mean no problem. Indeed,

if we ask to Quasar “Is the body of procedure
Set_Controller_Instruction a critical region” the response
is Yes for the second and the third version of Enter and No

for the first one (and the tool provides in this case a sequence
that shows the property violation). So, the version1 of pro-
cedure Enter is incorrect with respect to the protection of
the critical section.
At this point, version2 and version3 seem to be correct : no

deadlock and the respect of the critical section is guaranteed.
Nevertheless, it is not the case. Indeed, if we define a state
s1 as “one task (T One or T Two) is in critical region” and
if we ask to Quasar “is s1 a home state from the initial

22



state” the response is Yes for the second version and No

for the third one. Indeed, in this last version, the counter
example shows that the two task can both enter the while

loop of procedure Enter and never go out the loop (both are
and remain candidate). This is not a deadlock (both tasks
remain active and use CPU time but none can progress) : it
is a livelock.
Some other properties may be checked. For instance, one

can verify that with the Peterson algorithm (the correct ver-
sion) a task that does not want to enter the critical section
does not block a task that wants to enter it. This property
corresponds to the Inevitable state under condition template
in which the condition is “task T Two does not access the
critical section” and the state to reach is “task T One access
the critical section” (from the initial state).
This little (but sometimes subtle) example shows that ver-

ifying concurrent properties is easier with a tool likeQuasar.
Indeed, in this example, simulation does not efficiently re-
veal the problem while manual code analysis is a tedious
task that is often error-prone. Using Quasar, not only can
one efficiently detect possible problem but one can have a
sequence leading to the error state (that gives the opportu-
nity to correct the problem). Furthermore, the templates
proposed in Quasar simplify greatly the expression of the
properties that has to be checked.

4. RELATED WORKS
Many works concern the analysis of concurrent programs

with formal methods. We can cite :

• Ada83 code analysis with Petri net techniques and par-
ticular with structural techniques like invariants or net
reductions has been done by Murata and its team [17],
[20], [18]. The use of ordinary Petri nets seems to us a
major drawback of these works since it’s very difficult
with this formalism to express complex programming
patterns.

• Symbolic data flow analysis framework for detecting
deadlocks in Ada programs with tasks [1].

• Verification of distributed applications described in
Promela or in C with the tool FeaVer or with the Spin
model-checker at Bell Laboratories [11], [9],
[7], or with the tool VeriSoft [5], [4].

• Multi-threaded Java source code verification with model
checking techniques, using an adaptation of the Spin
tool in the Bandera project [2] at Kansas State Uni-
versity.

¿From our experience, all these tools suffer from a interme-
diate language (Promela or internal description language)
less mature and studied than Colored Petri nets. We claim
that using colored Petri nets allows us to model complex
program constructions [14] while limiting the combinatory
explosion by combining easily and efficiently structural tech-
niques (that work directly on the model) and optimized
techniques based on the underlying state graph exploration.
Furthermore, many efficient tools can be used to verify LTL
property of a colored Petri.
At last, at our best knowledge, only few tools aim to sim-

plify the use of formal temporal logic (except the Time-
Line Editor [16] or the graphical version of the Spin model-
checker [8]).

Our approach tries to combine the exactness of the LTL
formalism with an intuitive interface and pre-defined tem-
plates that correspond to the most useful concurrent prop-
erties in the context of program verification.

5. CONCLUSION
We have presented in this paper an original and useful way

for specifying and analyzing temporal properties of concur-
rent programs. This approach is based on the use of pre-
defined property templates that can be instantiated using a
graphical interface. All these new features are available in
the Quasar tool.
Current works include :

• the experimentation of Quasar with other real life
Ada programs (Quasar is a free software and we en-
courage anyone to download it from quasar.cnam.fr

and to use it for validating his concurrent programs);

• the definition of new property patterns using CTL (or
equivalent logic) and referring to potential reachability
(not for all execution but for at least one execution).
Using CTL will require to adapt some techniques for
reducing the cost of the verification process [10];

• extend the scope of analyzable Ada constructions, such
as tagged types or dynamic task creation;

• extending the analysis capacity using stochastic or tem-
poral Petri nets;

• developing specific verification techniques that take
advantage of the way the formal models are produced
(they correspond to program patterns and have thus
particular behavior).

All material used in this paper, as well as an alpha ver-
sion of Quasar and related documentations, are available on
http://quasar.cnam.fr.

6. REFERENCES
[1] J. Blieberger, B. Burgstaller, and B. Scholz.

Symbolic Data Flow Analysis for Detecting
Deadlocks in Ada Tasking Programs. In Proc. of
the Ada-Europe International Conference on
Reliable Software Technologies, Potsdam,
Germany, 2000.

[2] James C. Corbett, Matthew B. Dwyer, John
Hatcliff, Shawn Laubach, Corina S. Pasareanu,
Robby, and Hongjun Zheng. Bandera: extracting
finite-state models from java source code. In
International Conference on Software
Engineering, pages 439–448, 2000.

[3] S. Evangelista, C. Kaiser, J. F. Pradat-Peyre, and
P. Rousseau. Quasar: a new tool for analysing
concurrent programs. In Ada-Europe 2003, LNCS.
Springer-Verlag, 2003.

[4] Patrice Godefroid, Robert S. Hanmer, and
Lalita Jategaonkar Jagadeesan. Model checking
without a model: An analysis of the heart-beat
monitor of a telephone switch using verisoft. In
International Symposium on Software Testing and
Analysis, pages 124–133, 1998.

23



[5] Patrice Godefroid. Verisoft: A tool for the
automatic analysis of concurrent reactive
software. In Computer Aided Verification, pages
476–479, 1997.

[6] C. Girault and J.F. Pradat-Peyre. Les réseaux de
Petri de haut-niveau. In M. Diaz, editor, Les
réseaux de Petri: Modèles fondamentaux, number
ISBN 2-7462-0250-6, chapter 7, pages 223–254.
Hermès (French), 2001.

[7] G.J.Holzmann and Margaret H. Smith. An
automated verification method for distributed
systems software based on model extraction.
IEEE Trans. on Software Engineering,
28(4):364–377, April 2002.

[8] Gerard J. Holzmann. The model checker SPIN.
Software Engineering, 23(5):279–295, 1997.

[9] G.J. Holzmann. Logic verification of ansi-c code
with spin. pages 131–147. Springer Verlag / LNCS
1885, Sep. 2000.

[10] S. Haddad and J.F. Pradat-Peyre. New powerfull
Petri nets reductions. Technical report, CEDRIC,
CNAM, Paris, 2003.

[11] G.J. Holzmann and Margaret H. Smith. Software
model checking - extracting verification models
from source code. pages 481–497, Kluwer
Academic Publ., Oct. 1999. also in: Software
Testing, Verification and Reliability, Vol. 11, No.
2, June 2001, pp. 65-79.

[12] ISO/IEC 15291. Ada Semantic Interface
Specification (ASIS), 1999.

[13] K. Jensen. Coloured Petri nets : A high level
language for system design and analysis. In
Jensen and Rozenberg, editors, High-level Petri
Nets, Theory and Application, pages 44–119.
Springer-Verlag, 1991.

[14] C. Kaiser and J.F. Pradat-Peyre. Comparing the
reliability provided by tasks or protected objects
for implementing a resource allocation service : a
case study. In TriAda, St Louis, Missouri,
november 1997. ACM SIGAda.

[15] M. Makela. Maria user’s guide. Technical report,
Helsinki Univ. of Technology, Finland, 2002.

[16] G.J. Holzmann M.H. Smith and K. Etessami.
Events and constraints, a graphical editor for
capturing logic properties of programs. pages
14–22, Toronto, Canada, Aug. 2001.

[17] T. Murata, B. Shenker, and S.M. Shatz. Detection
of Ada static deadlocks using Petri nets
invariants. IEEE Transactions on Software
Engineering, Vol. 15(No. 3):314–326, March 1989.

[18] M. Notomi and T. Murata. Hierarchical
reachability graph of bounded Petri nets for
concurrent-software analysis. IEEE Transactions
on Software Engineering, Vol. 20(No. 5):325–336,
May 1994.

[19] A. Pnueli. The temporal semantics of concurrent
programs. In Theoretical Computer Science,
number 13, pages 45–60, 1981.

[20] S. Tu, S.M. Shatz, and T. Murata. Applying Petri
nets reduction to support Ada-tasking deadlock
detection. In Proceedings of the 10th IEEE Int.
Conf. on Distributed Computing Systems, pages
96–102, Paris, France, June 1990.

[21] M.Y. Vardi. An automata-theoretic approach to
linear temporal logic. In F. Moller and
G. Birtwistle, editors, Logics for Concurrency:
Structure versus Automata, volume 1043 of
Lecture Notes in Computer Science, pages
238–266. Springer-Verlag, Berlin, 1996.

[22] K. Varpaaniemi, Halme J., Hiekanen K., and
Pyssisalo T. prod reference manual. Technical
Report 13, Helsinki Univ. of Technology, Finland,
1995.

24


