
 A DSA Model For Data Access in Self-Organizing Systems
 Dhavy Gantsou

University of Valenciennes
F - 59313 Valenciennes Cedex 9

Phone : +33 327 511 944
Dhavy.gantsou@univ-valenciennes.fr

ABSTRACT
Data availability is an important issue for self-organizing
systems, which include both Peer-to-Peer (P2P) systems and
mobile ad hoc networks (MANETs). In P2P systems, the problem
of data availability is solved by replicating data across the
network. However, this approach wastes resources, and so is not
appropriate for MANETs where resource frugality is essential.
Unlike P2P systems, MANETs routing protocols require real-time
features to cope with a highly dynamic environment, and efficient
synchronization mechanisms to guarantee consistent updates of
routing information. Unfortunately, due to the semantics of the
languages that are most used in network programming, such
mechanisms are extremely hard or even impossible to implement
in efficient way. To build an application capable of meeting
almost all of these requirements, while providing a framework
capable of evolving over time, we propose an approach that is
based on DSA.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]. C.2.4 [Distributed
Systems]. D.1 [Programming Techniques]. D.3.3 [Language
Constructs and Features]

General Terms
Languages, Design .

Keywords
Distributed System Annex , Distributed Synchronization, Real-
time Data Access, Mobile Data Access, Self-organizing Systems.

1. INTRODUCTION
Self-organizing systems offer an alternative to traditional
distributed systems in cases where central coordination or central
databases, pre-existing fixed network infrastructure and
centralized services are precluded. In self-organized systems,
every node (peer) of the system acts as both client and server, and
no node has a global view of the system. Given that nodes

connect and disconnect from the network frequently, efficient
data access mechanisms must be provided.
The need to provide efficient data access mechanisms in self-
organizing systems is highly dependent on the targeted
application domain. For instance, in peer-to-peer systems like
Gnutella [1], Freenet [2], and Chord [3], which are the most
widely used implementations of self-organizing systems, this
issue is not of primary importance. The primary goal is to
guarantee both efficient searches and permanent data availability.
To this end, the required data are replicated across the network.
Replication, however, wastes resources that are critically needed
by mobile ad hoc networks[4], and so is not suitable in MANETs
environments. Moreover, MANETs involve protocols whose
behavior is highly dependent both on real-time access to data and
the data's coherency. For instance, updating the link state
databases (LSD) in optimized link state routing (OLSR) protocols
entails updating the LSD of each individual node, which means
immediately propagating the update to each of the node's
neighbors in order to assure consistency. Situations such as these
require real-time supports and synchronization mechanisms that
are better able to cope with the highly dynamic MANETs
environment.

From the design perspective, this implies representing the overall
system, its component parts, the behavior of these components,
and their interactions. Such challenges are the reality of critical
self-organizing systems like MANETs. The details of how we
created a DSA based prototype that allowed us to test our
approach are described in this paper

The rest of the paper is organized as follows: section 2 presents
the conceptual foundations of the system, the issues raised by
each of these concepts, and the way these issues were addressed.
Section 3 describes the use of the proposed strategy for
prototyping a subset of the OLSR protocol that involves
considerable interaction and, consequently, much related data
access. Section 4 presents the Ada implementation of our
approach. Section 5 concludes the paper.

2. CONCEPTUAL FOUNDATIONS
As stated above, the architecture of the self-organizing system we
propose aims to favor real-time access and reliable data access in
constantly evolving environments.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGAda’03, December 7–11, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-476-2/03/0012..$5.00.

25

To achieve this goal, we must consider these two characteristics
within the several dimensions that generally must be taken into
account when designing distributed systems:

• Distribution

 Communication

 Centralized or decentralized control

Distribution is crucial for attaining reliability. It consists of
splitting a software component into sub- components, and
subsequently spreading it over the system. Our architecture must,
then, be implemented as a network of distributed objects
performing the functions of the nodes.
Having decided to organize the system as a network of distributed
objects, the next issue in designing our system involves ensuring
real-time data access and consistent data management. Real-time
access to data requires both low communication latencies and
efficient synchronization mechanisms. The first goal can be
achieved by implementing the system in such a way that
interactions rely on asynchronous communications. However,
there are cases that cannot make effective use of asynchronous
communication. In such cases, third-party involvement must be
eliminated in the communication between two nodes by using a
fully decentralized design approach.

3. THE ARCHITECTURE MODEL
Our design methodology was guided by the need for software that
would allow data access and distribution to be represented under
accurate conditions in self-organizing systems, such as MANETs
routing protocols. We needed a realistic model that would be able
to express the behavior of system components and the
relationships among them.
We focused on the distributed access to mobile data involved in
the computation of a multi-point relay (MPR) [5]. MPR is a key
concept in the MANETs optimized link state routing protocol
(OLSR)[6] designed at INRIA [7]. MPRs are nodes selected by
their counterparts to forward the information needed for route
calculation; this process is called link state advertisement (LSA).
An important element of OLSR is the absence of a dedicated
node for the LSA database because this database is truly
distributed over the nodes. Given that these nodes are mobile, a
fairly complex system of self-organizing supports must be
provided to maintain the MPR neighborhood and to allow mobile
nodes to access the LSA databases maintained by other nodes.
Since nodes are highly mobile, an MPR can leave the network
without warning, making it necessary for all neighboring nodes to
quickly select another MPR. To this end, nodes must
communicate periodically with their neighbors in order to
detecting topology changes and begin the timely selection of a
new MPR.
4. SOFTWARE IMPLEMENTATION
This section provides a brief description of the various kinds of
software components used in our software model. The
architecture is composed of two major kinds of components. The
first one implements classes that are used to create objects that
will perform application-specific functions. The salient classes
include :

• the class All_Node: All_Node is a virtual class acting as base
class that specifies the interface of the distributed objects
implementing a MANET node. The code fragment below shows
the specification of the package that implements the class.
 …..
 with Shared_Entities ;
 Package All_Node is
 Pragma Remote_Types;
 Type All_Node is abstract tagged limited private ;

…
 end All_Node ;
All_Node defines both a tagged type and the series of abstract
methods that will be inherited by the objects (Node_Obj) called
on to implement the functions determining the node’s behavior.
 Examples of these functions include, but are not limited to,
neighbor address retrieval and sending/receiving messages. The
remote type categorization was chosen to ensure that derived
objects act as distributed objects, which amounts to implementing
the distribution concept described in section 2.

• the class Node_Obj: Node_Obj is designed so that in addition to
methods inherited from All_Node, it can also be used to
implement several application-specific functions. Like All_Node
from which it is derived, Node_Obj has the remote type
categorization, as shown by the code fragment below :
 .. .
with All_Node ;
Package Node_Obj is
 Pragma Remote_Types;
 Type LS_Data_Base is new All_Node.All_Node
 with private ;

…
 private
 Type LS_Data_Base is new All_Node.All_Node
 with
 Record

 -- OLSR-specific database
 end record ;
 end Node_Obj ;
Besides methods inherited from the base class, each node
performs several protocol-specific functions, some of which
require time management and concurrent data access:

 time management: Like other link state protocols, OLSR uses
timers extensively for a variety of reasons. These include, but are
not limited to, ensuring the reliable delivery of packets and LSAs
to neighbors via periodic transmissions, the continued
retransmission of database description packets to neighbors
pending acknowledgement of reception, the rate-limiting of
certain functions in order to bound resource demands, and the
transition of neighbor states in the absence of a response. Timers
require the implementation of fairly complex supports. C and
C++, the de facto programming languages for network designers,

26

do not provide time services. To overcome this lack, several time
services have been proposed [8], [9]. However, these
implementations have two major drawbacks in addition to their
complexity and their inefficiency. They are operating-system
dependent, and as such, are not portable. More importantly, they
don’t provide monotonic time. Ada, on the other hand, provides
constructs that easily meet all these requirements.

 concurrent data access: Many functions performed in OLSR
require the synchronization of data access in a fully distributed
environment. As shown in the following code fragment, we used
the protected object feature to implement the necessary
operations.
….
Protected Synchro_Neighborhood_Update ;
Procedure Write_LS_Table(Nodes : Shared_Entities.LS_List) ;
Function Retrieve_LS_Table return Shared_Entities.LS_List ;
Private
 …
end Synchro_Neighborhood_Update ;
For information exchanges with its neighbors, an instance of
Node_Obj uses the packet created by another object, called
Packet_Processor. Packet_Processor uses the data provided by
other objects to create these packets. The following code shows
how the abstract tagged type Message, declared in
Shared_Entities, is derived by Packet_Processor to create a
protocol specific packet:
…
With Shared_Entities ;
Package Packet_Processor is
Pragma remote types ;
 Type OLSR_Packet is new Shared_Entities.Root_Message
 with private ;
 …
 private
 Type OLSR_Packet is new Shared_Entities.Root_Message
 with
 Record
 … -- Application specific data
 end record ;
end Packet_Processor ;
Like Node_Obj, Packet_Processor is also a remote types
categorized package. It implements functions that can be used to
implement packet creation in a given MANETs routing protocol.
This is accomplished through derivation of the tagged type
Root_Message, provided in the Shared_Entities package, which
encapsulates the entity declarations common to MANETs
protocol software.
Our application also includes software components that are not
directly concerned with routing. One of them is the proxy. The
proxy’s responsibilities include registering joining nodes, giving

them the IP address of already-connected nodes, as well as
creating and maintaining the object references.
A node joins the network by contacting the proxy, which gives
that node the IP address of one or more already-connected nodes.
Each object joining the network is thus registered. Once
registered, the proxy creates that object’s reference and extracts
the required data about the object from its neighboring nodes.
These data are then stored in the remote reference list used for
tracking registered objects and for maintaining the neighborhood
database.
…
with Shared_Entities, All_Node ;
Package Proxy is
Pragma Remote_Call_Interface;
Type Node_Ref is access all All_Node.All_Node’Class ;
Type Remote_Node_Data is ….
Type Node_Ref_List is ….
…
end Proxy ;
A joining node must establish a connection with some other node
in the network. Each node in the network knows only about those
neighboring nodes with which it is directly connected. Node
interaction is completely ad hoc and reliable, in that each node
may decide when and how to talk to neighboring nodes. Such
communication can be synchronous or asynchronous, depending
on the operation involved. Providing efficient asynchronous
communication is easier said than done, however. For instance,
Sun’s remote method invocation (RMI)[9], the most prominent
example of object-oriented middleware that extends the Java
programming language (Java), does not provide asynchronous
object requests. To build asynchronous communications,
Java/RMI programmers must use threads and synchronous
method invocations. We did not have to worry about this,
however, since asynchronous communication is a built-in feature
of GLADE [10], the distributed object-based middleware we used
as part of our framework's implementation. Experienced software
designers will agree that built-in constructs are easier to use and
execute more efficiently than those superimposed on a
middleware.
GLADE is an open source implementation of a distributed system
annex (DSA), which extends the Ada95 programming language
[11]. It is based on GNAT [12], which is also an open source
implementation of Ada95. As such, GLADE inherits Ada95’s
principal properties, including strong typing, native
multithreading, and real-time distributed object-based supports.
These properties permit our implementation to easily meet the
design challenges of reliability and performance in self-
organizing systems like MANETs and the diverse applications
that run on these infrastructures. We tested our model
successfully on a network of PCs running under Linux.

5. CONCLUSION
This paper presented a new approach to the way that self-
organizing systems are implemented and applied, by taking the
important characteristics of these systems into consideration. This
paper focused on the use of Ada features for implementing a

27

framework capable of evolving over time and able to provide
efficient data access and distribution in highly dynamic self-
organizing systems. A subset of a MANET routing protocol was
used as a test example. We are currently seeking to extend the
framework’s capabilities in order to investigate Ada's impact both
on the design and implementation phases and on the performance
evaluation of highly dynamic self-organizing systems,
particularly MANETs.

6. REFERENCES
[1] http://gnutella.wego.com

[2] Ian Clark, Oskar Landberg, Brandon Wiley, Theodore W.
Hong : Freenet : A Distributed Information Storage and
Retrieval System. Proceedings of International Workshop on
Design Issues in Anonymity and Unobservability. Lecture
Notes in Computer science 2009, Springer Verlag Berlin
2001.

[3] Franck Dabek, Emma Brunskill & all. : Building Peer-to-
Peer Systems With Chord, A distributed Lookup Service. In
Proc. of the 8th Workshop on Hot Topics in Operating
Systems (HOTOS_VIII), 2001

[4] Zygmunt J.Hass, Jing Deng, Ben Liang, Panogiotis
Papadimitraros, and S. Sajama : Wireless Ad Hoc
Networks.In Encyclopedia of Telecommunications, John
Proakis editor, John Wiley 2002.

[5] A.Qayyum, L. Viennot, A. Laouti : Multipoint Relaying: An
Efficient Technique For Flooding in Mobile Wireless

Networks. 35th Annual Hawaii Conference on System
Sciences (HICSS’2001)

[6] OLSR Optimized Link State Routing Protocol
http://hipercom.inria.fr/olsr

[7] P. Jacquet, T. Clausen, & all. Internet-draft, draft-ietf-manet-
olsr-11.txt, work in progress, July 2003

[8] Douglas E. Comer , David L. Stevens : Internetworking with
TCP/IP, Vol. II: Design, Implementation, and Internals.
Prentice Hall, 1999

[9] John T. Moy : OSPF Complete Implementation. Addison-
Wesley, 2001

[10] Java/RMI : http://java.sun.com/j2se/1.4.1/docs/api

[11] Laurent Pautet, Samuel Tardieu : Glade User's Guide. Glade
version 3.15p, September 2002. http://libre.act-
europe.fr/GNAT

[12] ISO Information Technology: Programming Language Ada
ISO/IEC/ANSI 8652:1995.

[13] GNAT http://www.act.com

[14] Laurent Pautet, Samuel Tardieu: GLADE : a Framework for
Building Large Object-Oriented Real-time Distributed
System. Proc. Of the 3rd IEEE International symposium on
Object-Oriented Real-time Distributed Computing
(ISORC’00), Newport Beach, California, USA, June 2000.

28

