
European Air Traffic Flow Management:
Porting a Large Application to GNU/Linux

Gaetan Allaert
Thales IS sa/nv

Chaussée de la Hulpe, 177
B-1170 Watermael-Boitsfort

Brussels, Belgium

gaetan.allaert@
thales-is.com

Dirk Craeynest
Aubay Belgium

Gatti de Gamondstraat, 145
B-1180 Ukkel

Brussels, Belgium

dirk.craeynest@
aubay.be

Philippe Waroquiers
Eurocontrol

Rue de la Fusée, 96
B-1130 Haren

Brussels, Belgium

philippe.waroquiers@
eurocontrol.int

ABSTRACT
Computer hardware evolves very quickly. To benefit from
cheaper and more powerful systems, big applications have
to be ported to new environments. The Ada language has
been designed for portability, making such migrations eas-
ier. However, today’s applications often complement their
main implementation language by various extra technolo-
gies: shell scripts, direct usage of OS primitives, different
programming languages to access some libraries e.g. for
graphical user interfaces, etc. These technologies are not
always standardized or as portable as Ada so it is impor-
tant to have indications about the portability of the various
languages, libraries and tools.

ETFMS, the Enhanced Tactical Flow Management Sys-
tem, is a large Eurocontrol/CFMU application written main-
ly in Ada. This paper reports the findings of an exploratory
port of ETFMS from HP-UX PA-RISC to GNU/Linux In-
tel. The performance figures obtained on both platforms
are compared and several conclusions about portability are
given.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Portability ; D.3.0 [Programming Lan-
guages]: General—Standards

General Terms
Standardization, Languages, Performance, Economics

Keywords
Ada, C, C++, Korn shell, COTS, GNAT, POSIX, GNU,
Linux, HP-UX, Intel 80x86, HP-PA RISC, Air Traffic Man-
agement, Eurocontrol, CFMU, ETFMS, Portability, Perfor-
mance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGAda’03, December 7–11, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-476-2/03/0012 ...$5.00.

1. INTRODUCTION
Eurocontrol, the European Organization for the Safety of

Air Navigation 1, was tasked in the late 1980’s by its control
body - the ministers of transport of its member states - to
establish a Central Flow Management Unit. The CFMU is
responsible for the following activities:

• Flight Plan Processing: receiving flight plans filed by
aircraft operators, validating and if necessary correct-
ing those flight plans - automatically or manually -
then redistributing the flight plans to the aircraft op-
erators and the overflown airspace control centers.

• Air Traffic Flow Management: when the planned traf-
fic load exceeds the capacity of Air Traffic Control
(ATC), the CFMU is responsible for balancing the
number of flights with the available ATC capacity, the
objective being the optimum use of European airspace
and the prevention of air traffic congestion.

To support these activities, the CFMU has developed
IFPS (Integrated initial Flight Plan processing System) and
ETFMS (Enhanced Tactical Flow Management System) 2.
Both were developed with common tools and techniques:
HP-UX PA-RISC servers and workstations, Ada [14], Mo-
tif, Oracle, . . . A large proportion of the code is common
between the two systems.

In response to rising Air Traffic load and new requirements
these two systems are continuously being improved. They
have been described in more detail in [15, 16, 5, 3].

1.1 ETFMS architecture
ETFMS is a distributed multi-process application. The

human-machine interface (HMI) runs on workstations and
communicates using middleware (UNAS) with multiple pro-
cesses running on a server. The hardware is PA-RISC work-
stations and multi-processor servers, all running HP-UX 11i.
The server side is multi-process for performance and relia-
bility reasons (critical and non-critical activities are taken
in charge by different processes).

Ada is widely used [6], among others in space [4, 9], aero-
nautics [7, 11, 1, 12, 13] and air traffic management applica-
tions [10]. ETFMS is written mainly in Ada with some Korn
1For more information about Eurocontrol and CFMU, see
http://www.eurocontrol.int.
2ETFMS is the successor of the TACT tactical system.

29

shell and a few low-level parts in C. The ETFMS code has
already been migrated from Ada 83 to Ada 95 [16]. Table 1
shows the number of source lines (including comments and
blank lines).

Language Lines Percentage
Ada 1180K 91%
C 45K 3%

Korn shell 78K 6%
Total 1303K 100%

Table 1: Language proportions

The software is decomposed into subsystems varying be-
tween 10K and 200K lines. The high level subsystems are
providing the end-user functionality and are implemented
using lower level subsystems. An extensive suite of auto-
matic tests are used to validate the software after each build.
Some tests are checking a specific subsystem while others are
full system tests.

1.2 Goal of the exploratory port
In the last years, Intel based PCs have evolved very quick-

ly, providing now powerful systems with an outstanding per-
formance price ratio. GNU/Linux [17] is an attractive oper-
ating system: it is open source, allows a choice of supplier,
etc. All this provides an opportunity to consider replacing
the ETFMS servers and/or workstations by cheaper and/or
more performant systems.

To evaluate the possibility and interest of switching to
a new platform, an exploratory port of ETFMS has been
launched. By investing a limited effort of maximum 10 per-
son weeks, the objective was to obtain indications about the
difficulty of porting and running parts or all of ETFMS on
a GNU/Linux Intel based system. Although the initial goal
was only to produce a list of porting issues, due to the high
portability of the ETFMS Ada code, the end result was a
tested and running system.

Some aspects were excluded from the scope of the ex-
ploratory port e.g. hardware redundancy support, supervi-
sion, development environment, . . .

1.3 Overview of the porting activities
Porting an application implies more than just compiling

the code. A lot of various activities have been done:

• Install the OS (GNU/Linux).

• Install the various Commercial Of The Shelf (COTS)
software packages and tools needed by the application
(Oracle, Motif, GNAT, . . .).

• A big application (millions of lines) requires structured
and controlled build and test procedures. These tools
and procedures give a specific development environ-
ment that has to be ported as well.

• Port each subsystem one at a time, solving the non-
portable aspects and verifying the subsystem with its
automatic tests. As the low level subsystems are ported
and tested first, problems are detected in a simpler
context than if they would be revealed in the complete
application.

• Compare the performance important for development
(compile time) and operations (application execution
time).

The above activities are discussed in the next sections,
mainly focusing on the difficulties encountered.

2. GNU/LINUX CONFIGURATION
The platform used for the port is an HP Compaq PC with

a clock speed of 2 GHz and 1 GB of memory.
A standard RedHat 8.0 configuration was initially instal-

led. The configuration was adapted afterwards to solve var-
ious problems:

• The original kernel provided with the RedHat 8.0 dis-
tribution made Oracle loop. The installation of a newer
kernel version (2.4.19) solved this problem.

• The default setup of the X server, the GNOME en-
vironment and the NVIDIA Quadro graphic card en-
tered into conflict with the usage of colors by the HMI.
The ETFMS HMI was developed using pseudo-color
(i.e. an indirect color map indexed using 8 bits). The
HMI consumes a high number of the color map entries
(either to draw the needed colors or indirectly by us-
ing bit planes to implement fast highlighting). On HP,
the graphical card can display at the same time one
pseudo-color application (the HMI) and other applica-
tions using 16 bit colors (e.g. the HP CDE Common
Desktop Environment). On the PC, this was not pos-
sible. It would have been possible to start the HMI
using a private color map but this made the screen
flash when the mouse moved over or off the HMI. To
solve the problem, the PC was configured to start two
X servers, simulating two different hardware screens,
switchable via keyboard. One X server is running
GNOME (used for development), the other is running
the Motif Window Manager which is less color hungry.
In addition to that, it was needed to install a specific
version of the NVIDIA driver in order to disable the X
server render extension as this also uses a lot of colors.

Note that this triggered a memory leak in the GNOME
terminal, preventing its use on the second X server.
The leak was so large that various processes were killed
by the kernel, as explained in [8].

• By default, the RedHat distribution sets LANG=en US.-

UTF-8. Amongst other effects this modifies behavior of
the sort command compared to HP where LANG=C. So
LANG=C was also set on Linux.

3. COTS
ETFMS uses COTS software that needs to be installed on

Linux.

• The Ada compiler. The compiler used on Linux is
the same as on HP-UX: GNAT 5.00a with the POSIX
pthreads based runtime. The GNAT compiler was in-
stalled in a different directory than the standard Red-
Hat gcc. If needed, this makes it possible to use differ-
ent gcc versions for Ada and for other languages (e.g.
C++) using the PATH environment variable.

30

• The Oracle database. ETFMS on HP is currently
based on Oracle version 8, which is no longer avail-
able on Linux. Hence, the Oracle 9i client and server
were installed on the PC. The client can be used to
either access a local PC Oracle 9 database or an HP
Oracle 8 database. Note that the performance mea-
sures on Linux (see section 6.3) were done by accessing
the Oracle 8 database on HP. ETFMS accesses Ora-
cle through a specific Ada binding, providing a higher
level interface than the standard Oracle C based ac-
cess. Switching between Oracle 8 and 9 required no
change in this binding.

• The GTK graphical toolkit, the GtkAda binding, the
BOOCH components and the XML/Ada library. All
compiled without problems on Linux.

• On HP, we use several GNU tools (e.g. awk, sed,
grep, . . .) as they have more features than the cor-
responding HP tools. These tools were grouped in a
special subsystem and built using similar procedures
as the application subsystems. As most of these tools
are standard on RedHat, it was not needed to build
them on Linux.

• The HMI is based on GTK and Motif. On HP, we use
the provided Motif 2.1 library. On Linux, we use Open-
Motif, the open source version of the Motif toolkit.

• The UNAS middleware implements a communication
layer used by ETFMS to connect all the processes to-
gether. The UNAS Ada code compiled in a straight-
forward way but the C code had to be adapted.

4. DEVELOPMENT ENVIRONMENT

4.1 Compiler configuration
The ETFMS development environment supports the use

of multiple compilers or configurations of the same com-
piler. These different configurations are used for develop-
ment builds (non-optimized code, many optional checks en-
abled) and for operational builds (optimized code, only the
standard Ada checks enabled). This flexibility is also very
useful for evaluation of new compiler releases, alternatives
switch settings, . . .

Three sets of compiler switches were used on the Linux-
PC:

IP Initialize Scalars. This is the default CFMU setup
for development [5]. It ensures fast compilation and
detects as many problems as possible by enabling a
wide range of runtime checks. Among others, each
scalar variable is initialized, if possible to an invalid
value. In the latter case, this will raise a Constraint -
Error if the variable is used before it is assigned.

O2P Optimized. The -O2 option is used to generate more
efficient code. Only the standard Ada checks are kept.

OP Operational. This further optimizes the code by us-
ing the backend inlining option -gnatn.

4.2 Build tools
To support the development process, a set of Korn shell

scripts were developed inside CFMU. These scripts enforce
a standard way to develop. They also isolate the developers
from the complexity of some tools such as ClearCase. These
scripts support:

• automatic build and non-regression testing of a full
system: either for a private developer build or an in-
tegration build; these can be done using the various
compiler configurations (e.g. IP, OP, . . .);

• modification of the source code: this allows a modi-
fication to be developed and tested without affecting
other developers;

• packaging and deployment of the operational ETFMS;

• source code control: parallel development, maintenan-
ce branches, . . .

To be able to compile, run and test ETFMS on Linux,
two approaches were envisaged:

• develop a new minimal set of bash (the default Linux
shell) scripts,

• or re-use the set of existing ksh scripts.

It was decided to re-use and adapt the needed ksh scripts
on Linux. To limit the work, only the scripts needed for
automatic build and test were adapted. This was sufficient
to reach the objective of the exploratory port.

5. PORTING EXPERIENCES
This section summarizes the encountered portability prob-

lems by domain. These problems were preferably solved by
avoiding the non-portable construction. Only when this was
not possible, both HP and Linux specific code fragments had
to be kept. This way of working also increases the portabil-
ity of the code to other operating systems.

5.1 Korn shell scripts
The encountered shell script problems fall into two cate-

gories. The first relates to the Korn shell itself: language
syntax, statement execution, use of system calls, . . . The sec-
ond relates to the commands started by the shell: some are
only available on one platform, some have different names
and some have different options or behavior.

• The language syntax is handled differently by the HP-
UX and Linux ksh. For example the command substi-
tution without a trailing backquote is accepted on HP
but not on Linux: if ["‘basename $0" != "Ccon-

text"]. Another example is the use of the continue

instruction outside a loop.

• The pipe | is executed differently on HP-UX and Li-
nux. The Korn shell on Linux forks a new Korn Shell
for the command on the right side of the pipe (POSIX
shell compliant). On HP-UX, the new Korn Shell is
forked for the command on the left side of the pipe.
This can lead to different results during the execution.
For example, the next command is interpreted dif-
ferently on HP and Linux: export A="Empty"; echo

31

"Full" | read A; echo $A. The output is Empty on
Linux but Full on HP because, on Linux, A is modi-
fied in a sub-shell and then the modification becomes
invisible in the current shell.

• For security reasons, Linux accepts a set-user-id bit
only for compiled programs, not for scripts. Hence, a
script that needs to run with a specific user id can-
not be called directly. Instead, we used a small com-
piled wrapper program having the set-user-id bit set
to launch the script.

• The typeset -L builtin command is not implemented
on Linux.

• The behavior of the builtin command echo is not the
same on Linux and HP-UX when the string contains
\n.

• The mktemp command has different arguments. A triv-
ial cfmu mktemp script encapsulates mktemp to isolate
our scripts from these differences.

• The test command on Linux only accepts one file ar-
gument. The command test -f *.adb fails on Linux
when *.adb expands to more than one file. HP silently
ignores extra file arguments.

• On Linux, the rm symlink command will prompt for
confirmation if the symbolic link references a read-only
file; on HP-UX it does not. Hence on Linux the com-
mand needs to be replaced by rm -f symlink.

• Some missing or non equivalent commands, different
names, arguments or output: chatr is replaced by ldd,
model is replaced by cat /proc/cpuinfo, ar and as

use different options, cc is replaced by gcc and the
compiler options need to be adapted, Linux outputs
an extra leading blank before the value returned by
the command wc -l, differences in the output format
of ipcs, . . .

• The ps command arguments and output varies widely
between operating systems. This was already noticed
between between two HP-UX releases. For this reason,
the use of the ps command was already isolated in a
few higher level commands. These were easily adapted
for Linux.

5.2 C++ code
ETFMS contains a limited amount of C++ code to inter-

face to a C++ COTS library used to generate static geomet-
rical data in binary format. This data is also represented in
Ada types that support both ASCII and binary I/O. Linux
binary files were generated by converting these files to ASCII
on HP and converting back from ASCII to binary on Intel.
It was thus not necessary to acquire the C++ library for
Linux and port our C++ code.

5.3 C code
Many bugs in C code are not detected at compile time or

cause an implementation dependent behavior at run-time.
Hence, such bugs can easily stay hidden until something
in the environment changes e.g. compiler, operating sys-
tem, . . .

Some aspects of the C language are not rigorously defined
or easily lead to non-portable code. In particular, the C
environment is a jungle of standards as illustrated by the
“obeyed” standards for strlen. On Linux: SVID 3, POSIX,
BSD 4.3, ISO 9899. On HP: AES, SVID2, SVID3, XPG2,
XPG3, XPG4, FIPS 151-2, POSIX.1, ANSI C.

• On HP, calling strlen with NULL char* returns 0.
Similarly, HP strcpy interprets NULL as a valid pointer
to a zero byte. On Linux, both result in a memory
fault.

• Some code was directly accessing argv without check-
ing the number of arguments with argc. When going
out of range, this gave a NULL pointer on HP and a
core dump on Linux.

• A \0 must explicitly be added at the end of the result
of the readlink system call. This was working by
chance on HP.

• The way the header files provided by the operating
system are included may vary. Some #include need
to be added, others need to be removed. In the worst
cases, the includes need to be ordered differently to
prevent conflicts (for example between varargs and
stdarg).

• abort () is a more portable way to generate a core
dump than raise (SIGSYS).

• stderr is defined under Linux as a macro; it is a call
to a C function that returns the address of the stan-
dard error FILE. Under HP-UX, stderr is a static
address. In C, a function cannot be called to initialize
a global variable, preventing our C code from compil-
ing on Linux. Initializing the global variable is now
done dynamically.

5.4 Ada interfacing with C
A large number of problems were triggered by some C code

directly called from Ada (e.g. when the Ada code makes use
of services provided by the operating system libraries).

• Differences between the C system constants under HP-
UX and Linux. A C program was written to generate
an Ada spec (os constants.ads) containing system
constants. This program only has to treat constants
that are not already present in the POSIX Ada binding
[2].

• In an Ada 83 package, not yet converted to Ada 95,
replace the name of the linker symbols that count and
contain the arguments given to a program (argc -

value and argv value) with the less platform spe-
cific names provided by GNAT (gnat argc and gnat -

argv).

• The name of the linker symbol (used for profiling) for
the beginning of the text segment of an executable
is not the same on HP-UX (text start) and Linux
(start). The start symbol can be used under Linux
because the text segment is in fact the first segment of
the executable. This is not the case with HP.

32

• To isolate the Ada code from non standardized C struc-
tures, whenever possible, the Ada interface code was
defined using opaque types, e.g. we represent the C
type regex t defined in regex.h by an array of bytes.

• Some regular expressions have a different meaning on
HP and Linux. For example, the regular expression a|

is refused on HP but matches any string on Linux as
the empty expression after | matches everything.

• The tm structure in times.h contains more fields on
Linux than on HP-UX. They have been added to the
Ada interface record type. Those unused fields are not
set when the code is running on HP-UX.

• To test if a socket is connected, a read of zero bytes
was performed. On HP-UX, this returns an error if
the socket is not connected. On Linux, it is a no-op.
The Ada code has been made more portable using the
getsockopt function after a select on the socket.

• Explicitly add ASCII.Nul at the end of strings to get a
valid C string. Although some were missing, this was
working by luck on HP.

5.5 Ada code
The only problems encountered in the Ada code were due

to differences in the processor architecture - HP-PA RISC
vs Intel.

• A type T needed to have a specific layout. This was
implemented using a representation clause. By default
the bit order is the same as the byte order, hence this
order is different on HP-PA RISC (big endian) and
Intel (little endian). So, to be portable, it was needed
to add for T’Bit Order use High Order First;.

• Little/big endian problems when mapping a structure
on an 4 bytes integer with a representation clause.
Some code interfacing to UNAS depends on the fact
that specific fields are located in the least significant
bits of the corresponding integer. The representation
clause was parameterized with the endianess to ensure
that each structure value was interpreted as the same
integer value on both architectures.

• Generating a bit mask from an integer value must
take into account the difference in the representation
of an integer between Intel and HP-PA RISC; also a
little/big endian problem.

Once the above problems were corrected, some tests were
still failing on Linux. The reason was related to the differ-
ence in arithmetic accuracy between the HP-PA RISC and
the Intel architectures:

• On Intel processors the intermediate results are com-
puted with 80 bits accuracy and the final result is
stored with 64 bits accuracy. On HP-PA RISC archi-
tecture, the intermediate results and the final result
are computed with 64 bits accuracy.

With A, B, C, D, E, F floats,

A := B/C × D

E := B/C

F := E × D

On HP-PA RISC, A and F will be always the same.
On Intel, A and F will be the same if and only if E is
the exact value of B/C.

• The above has an effect on the comparison of floating
point numbers.

Given variables A, B, C, and A := B/C, the following
statement is non-deterministic: if A < B / C then

...else ...end if;. The result depends on the com-
piler and the compilation optimization level. Hence,
for portability, such code must be rewritten.

Some regression tests were impacted by this difference in
arithmetic accuracy. For each flight plan, ETFMS calcu-
lates a profile providing the time at each en-route position
(latitude, longitude and altitude) rounded to 5 seconds. To
validate the result, a textual print-out of the profile is com-
pared using a “simple” diff to a reference file containing
the expected result. When this test was run on Linux, a dif-
ference of 5 seconds was detected for one flight plan. This
was initially considered a failure until detailed investigation
showed it was caused by differences in arithmetic accuracy.
Hence, for this test, the workaround could be to provide an
HP and a Linux reference file.

When testing the optimized builds on Linux, similar dif-
ferences were noticed: in the optimized code, the compiler
directly uses the intermediate results without copying it
from the 80 bits register to the stack using 64 bits. This
again leads to differences in profile calculation results. A
possible workaround could be to have reference files that
depend on the configuration (Linux/HP, IP/O2P/OP), but
this quickly becomes unmaintainable: each time the opti-
mization algorithms of the compiler are improved, the ref-
erence files might have to be adapted. We have seen such
differences between GNAT 3.15a, GNAT 5.00a and GNAT
5.01w. A better solution would be to implement a “clever”
diff that takes time tolerances into account.

Note that this float accuracy problem on Intel has an im-
pact on all languages that are compiled so that the result-
ing object code directly uses the Intel CPU floating point
unit. Typically, similar problems are encountered for C,
C++, . . . Such direct usage of the floating point unit is re-
quired in order to obtain efficient numerical computations.

6. RESOURCES AND PERFORMANCE
The characteristics of the machines used are given in Ta-

ble 2. Performance measurements are given for the three
different compiler configurations described in section 4.1:
Initialize Scalars (IP), Optimized (O2P) and Operational
(OP). The compiler used was GNAT 5.00a. However, a bug
in that release slowed down the compilations quite a lot, so
we re-measured the compilation times with the just released
GNAT 5.01a.

Machine type Operating system Processor(s)
HP Workstation HP-UX 11i 400MHz

HP Server HP-UX 11i 875MHz
Linux-PC Linux RedHat 8.0 2000MHz

Table 2: Machine types

33

6.1 Size of the executables
ETFMS can run in two different modes: as various OS

processes that communicate together (called an ETFMS net-
work) or all the code in one process (called the mono process).
Both modes have been compiled and run on Linux.

Here, as an example, we compare the size of the mono -

process using the Unix size command (text + data + bss).

• Comparison of the size of the executables on HP-UX
using the IP configuration as reference (Table 3).

Build Size Relative
IP 89 MB 100%

O2P 56 MB 63%
OP 60 MB 67%

Table 3: Size on HP-UX

• Comparison of the size of the executables on Linux
using the IP build as reference (Table 4).

Build Size Relative
IP 65 MB 100%

O2P 50 MB 77%
OP 54 MB 83%

Table 4: Size on Linux

• Comparison of the size of the executables on HP-UX
and Linux using the IP build on HP-UX as reference
(Table 5).

Build HP-UX Linux
IP 100% 73%

O2P 63% 56%
OP 67% 61%

Table 5: Size comparison

The Linux executables are smaller than the HP-UX ex-
ecutables. One factor explaining this difference is the
zero-cost exception mechanism available on HP: exe-
cutables contain pre-computed tables to improve the
run-time performance when few exceptions are raised.
The sizes should be remeasured with GNAT 5.01a which
now supports zero-cost exception on Linux as well.

6.2 Compilation performance
To get an idea of the relative compilation speed, a num-

ber of significant files were compiled for different builds (IP,
O2P, OP) on different platforms (HP-UX, Linux). Note that
GNAT 5.01a was used for this section.

Table 6 gives the compilation times (user + system cpu)
for different builds.

In Table 7, each IP build is used as reference to give rel-
ative times for each machine.

On both HP and Linux, the compilation time for an O2P
build is roughly 50% more than for the IP build. Due to the
back-end inlining, the OP build requires significantly more
time: about 3 times as much as the IP build and 2 times as
much as the O2P build.

Build HP Workstation HP Server Linux-PC
IP 3m50s 2m16s 0m46s

O2P 5m53s 3m01s 1m18s
OP 12m47s 6m26s 2m48s

Table 6: Compilation times

Build HP Workstation HP Server Linux-PC
IP 100% 100% 100%

O2P 153% 133% 170%
OP 333% 284% 365%

Table 7: Relative compilation time per machine

The IP compilation on HP Workstation is used as refer-
ence in Table 8.

Build HP Workstation HP Server Linux-PC
IP 100% 59% 20%

O2P 153% 79% 34%
OP 333% 168% 73%

Table 8: Relative compilation time

The tables 6 and 8 show that compiling on a regular PC
is significantly faster than on HP workstations and even on
HP servers.

The last table (Table 9) is adapted to take into account
the machine’s CPU speed, i.e. the figures have been adjusted
by CPU clock frequency to indicate what might be expected
at equal processor MHz.

Build HP Workstation HP Server Linux-PC
IP 100% 129% 100%

O2P 153% 173% 170%
OP 333% 367% 365%

Table 9: Relative compilation time per MHz

For compilations, we see that 1 Intel MHz on a Linux PC
is roughly equivalent to 1 PA RISC MHz on an HP-UX ma-
chine. In other words, the difference in the instruction set
and operating system has no significant impact on the com-
pilation speed. The main factor influencing the compilation
speed is the raw processor speed (of course if the machines
have enough memory to avoid paging).

As GNAT supports parallel compilations, it is thus inter-
esting to see if a multi-CPU server can be used to compile
a big application faster. Experiments done on a 4 CPU HP
server have shown that parallel compilation scales very well.
From our experience, a good guideline is to launch N+1 par-
allel compilations on a N CPU system; this is valid even for
a single CPU system.

6.3 Execution performance
A heavy test reprocessing a significant set of ETFMS in-

put flight and radar data was used to get an idea of the rela-
tive execution speed. This was done with the mono process

and hence does not depend on the number of processors

34

on the machine. The execution time for different kinds of
build (IP, O2P, OP) on different platforms (HP-UX, Linux)
is given in Table 10.

Build HP Workstation HP Server Linux-PC
IP 29m18s 14m26s 6m03s

O2P 12m03s 6m07s 3m07s
OP 11m09s 6m00s 3m00s

Table 10: Execution times

In Table 11, each IP build is used as reference to give
relative times for each machine.

Build HP Workstation HP Server Linux-PC
IP 100% 100% 100%

O2P 41% 42% 52%
OP 38% 42% 50%

Table 11: Relative execution time per machine

On both HP and Linux, an optimized executable runs
roughly twice as fast as the IP version. This is explained
partially by the overhead for additional checks in the IP
configuration.

The back-end inlining appears to only improve perfor-
mance marginally. Similar comparisons done a few years
ago with an earlier GNAT version were giving a difference
of around 15% between O2P and OP. Based on that, we then
selected OP builds for operational use. However, as seen in
the previous section, OP takes significantly longer to compile
than O2P. It is also more difficult to debug. The above ob-
servation may lead us to revisit this decision, though more
study is required: we need to check more closely how ef-
fective back-end inlining is and whether front-end inlining
might give better results.

Table 12 uses the IP build on HP Workstation as refer-
ence.

Build HP Workstation HP Server Linux-PC
IP 100% 49% 21%

O2P 41% 21% 11%
OP 38% 20% 10%

Table 12: Relative execution time

The final table (Table 13) takes into account the CPU
clock speed.

Build HP Workstation HP Server Linux-PC
IP 100% 107% 105%

O2P 41% 46% 55%
OP 38% 44% 50%

Table 13: Relative execution time per MHz

Here again, we can conclude that the execution time is
proportional to the CPU speed: 1 Intel MHz on a Linux
PC is roughly equivalent to 1 PA RISC MHz on an HP-UX
machine.

7. FUTURE OPTIONS
The exploratory port has shown the feasibility and inter-

est to have part or all of ETFMS running on a GNU/Linux
Intel platform. This opens a range of possibilities. This sec-
tion examines some options to consider and the remaining
work for each of them.

7.1 Maintain code portability
To maintain code portability during the evolution of the

ETFMS project, the following steps could be taken regu-
larly:

1. Install new versions of the compiler on Linux to keep
in sync with the GNAT version on HP.

2. Rebuild the complete ETFMS in IP, O2P and OP
mode to check the code still compiles under Linux and
no incompatibilities have been introduced during new
development.

3. Regenerate the binary data to run ETFMS on Linux,
when changes to that data structure have been made
in the code.

4. Run all tests to validate ETFMS on Linux. If neces-
sary, adapt the tests to Linux/Intel specific aspects.

5. Run a replay of a day’s traffic in the current ATM
environment 3. It is required to validate ETFMS in
operational-like conditions, e.g. with 25000 flights and
realistic generated delays.

The effort needed to maintain code portability is esti-
mated to be quite low (in the order of 1 person-day per
month). It consists mainly of the administrative work nee-
ded for building and testing ETFMS on Linux (cleanup of
old builds, check the results, . . .).

7.2 Hardware replacement strategy
The exploratory port has shown that a Linux Intel PC

might be a cost-effective alternative to the currently used
platform. A wide range of strategies are possible regard-
ing the evolution of the current ETFMS hardware and need
further study:

• Keep HP servers, replace workstations by Linux PCs.

• Replace both servers and workstations by Linux PCs.

• Use Linux PCs for non-critical instances of ETFMS.
Non-critical instances are full ETFMS systems that
are used e.g. for off-line activities such as evaluation
of new airspace structures, studies of alternative op-
erational parameters, demonstration of ETFMS at in-
ternational conferences and exhibitions, . . . These non-
critical instances have a lower availability requirement
than the instance handling the on-line data.

7.3 Additional work
Depending on the hardware strategy chosen, some addi-

tional work is needed to ensure a smooth usage of the new
platform. Fully transitioning ETFMS to a new environment
implies more activities than just porting the application. A

3Environment: geographical information, route network,
airspace sectorization and similar, all updated regularly.

35

lot of these activities are implied by the criticality of the
ETFMS system that has a very high availability require-
ment. Some of the remaining work for this is:

• An operational center is using more than just the “busi-
ness” application. A lot of other support tools are
used e.g. for backup, capacity planning, . . . These tools
must be searched for, evaluated and installed on the
new server platform.

• The critical instance of ETFMS is monitored 24h on
24 by a technical operator team. This team is us-
ing a supervision application implemented using HP
OpenView. If the critical instance of ETFMS runs
on GNU/Linux, then it could imply the need to port
this supervision application on Linux (maybe using a
product similar to OpenView). An alternate approach
would be to ensure that the HP OpenView based su-
pervision application can supervise ETFMS running
on GNU/Linux. This supervision application is not
mandatory for non-critical ETFMS instances, though.

• If we choose for a mixed environment (i.e. an HP
server with GNU/Linux workstations), then we must
ensure that all the binary messages exchanged are prop-
erly taking into account the conversion needed between
big and little endian. Most of the messages exchanged
are being encoded/decoded using a central “stream-
ing” package. This means that the conversion to a
standard integer format can be done at a central place.
The messages that are not using this streaming pack-
age must be converted to use them.

• CFMU already has a deployment procedure to install
ETFMS on an operational platform running HP-UX.
The deployment tool needs to be ported to Linux to
be able to install an ETFMS on an operational Linux
platform. In case a mixed environment is chosen, this
tool must support the simultaneous installation of 2
different kinds of build (HP and Linux builds).

• If the decision is taken to completely transition to
GNU/Linux, then it means that the full set of devel-
opment tools has to be ported. During the exploratory
port, only the part that performs the build and test
was ported. The parts to be ported and/or rewritten
provide mainly the link with the source code control
system.

8. CONCLUSIONS

8.1 Portability and languages
This experience confirms that the Ada language provides

a very good basis to obtain portable code. Despite the usage
of sometimes advanced language constructs (multi-tasking,
extensive usage of generics, exceptions, complex data struc-
tures, . . .), we encountered only a very limited number of
portability problems in more than one million lines of Ada
source code. This is even more impressive knowing that the
system was developed exclusively on HP-UX and that no
special guideline was imposed during development to make
the code portable.

This shows that code written using a strongly standardized
language like Ada, which includes a lot of checking during

compilation and execution, leads not only to safer and more
robust programs but also to highly portable code.

In contrast to the above, a lot more portability problems
were encountered in the C code and especially in the Korn
shell code. Due to the little number (or complete absence)
of compile time and run-time checks, code written using
such loosely defined languages contains more non portable
constructs and hidden bugs. The code may be “OK” in
a specific environment, but the hidden bugs are triggered
when surrounding conditions are changed (e.g. a change in
the version of the operating system, a change in the com-
piler version, a port to a new platform, or in the worst case
just a difference between the test and the operational envi-
ronment).

8.2 Portability and COTS
Using COTS software may speed up development as it

brings already developed functionality to the application.
On the other hand, it often enforces a specific way to de-
velop, and implies additional costs (learning curve, adminis-
tration work, license costs, bugs difficult to isolate or fix, . . .).
COTS also introduces additional dependencies, causing po-
tential portability problems: the COTS is not necessarily
available on a new target platform or may behave differ-
ently.

Therefore, before deciding to use COTS software, it is
important to balance the potential benefits, costs and risks.

In our case, ETFMS uses few COTS products, all are
available on Linux and gave few problems.

8.3 Portability and operating systems
Most of the problems encountered in the Ada code were

due to the need to interface to some C libraries, e.g. pro-
viding operating system services.

The best way to further increase the portability of Ada
code is to avoid interfacing C code directly. Such interfac-
ing problems are minimized if various services (e.g. system
calls, regular expressions, time management, sockets, . . .)
are made accessible through standardized high level bind-
ings (“thick” bindings). As an example of portable operat-
ing system access, there was no need to adapt the Ada code
written on top of the POSIX Ada binding.

Implementing portable multi-threaded applications is con-
sidered a difficult challenge due to the difference in the
scheduling, priority handling, non-standardized definition of
threads, interaction between threads and exceptions, . . . Our
experience shows that the isolation provided by the high
level definition of Ada tasks and the seemless integration
between tasks and the other language constructs facilitates
the development of portable multi-task applications. We
encountered no problem in the quite complex Ada tasking
code part of ETFMS.

8.4 GNU/Linux
Due to their high quality, ETFMS was already using many

GNU tools for development on HP-UX, the most noticeable
one being the gcc GNAT compiler. The port to Linux has
confirmed that GNU/Linux is a high quality environment,
both for development and deployment of an operational ap-
plication. An important advantage is the open nature of
GNU/Linux which helps to solve possibly encountered prob-
lems. A wide range of help and information is available on
the Internet.

36

Linux is running on cheap PC hardware, provided by a
wide range of vendors. Similarly, the software services (e.g.
support) can be bought from multiple suppliers. Such a wide
availability decreases the risk and cost which may be implied
by a too strong link between a critical system like ETFMS
and its operational platform. CFMU will now further eval-
uate the possible quality and cost advantages provided by
moving ETFMS partially or completely to a GNU/Linux
environment.

9. ACKNOWLEDGEMENTS
Many thanks to Andrew Hately, currently at Eurocon-

trol, CEATS Research, Development and Simulation Cen-
tre, Ferihegy 1 ’A’ porta, 1185 Budapest, Hungary (an-
drew.hately@eurocontrol.int), for his detailed review of an
earlier version of this paper.

10. REFERENCES
[1] The Boeing 777 flies on 99.9% Ada.

www.adaic.org/atwork/boeing.html - Ada Information
Clearinghouse.

[2] IEEE Std 1003.5b-1996 Standard for Information
Technology - POSIX Ada Language Interfaces - Part
1: Binding for System Applications Program Interface
(API). The Institute of Electrical and Electronics
Engineers, 1996.

[3] E. Briot, F. Gasperoni, R. Dewar, D. Craeynest, and
P. Waroquiers. Exposing memory corruption and
finding leaks: Advanced mechanisms in Ada. In
Proceedings of 8th International Conference on
Reliable Software Technologies - Ada-Europe 2003,
Toulouse, France, June 16-20, 2003, Jean-Pierre
Rosen, Alfred Strohmeier (Eds.), volume 2655 of
Lecture Notes in Computer Science, pages 129–141.
Springer-Verlag, 2003.

[4] R. Dewar. Case study: Space station robot embeds
Ada. COTS Journal, pages 87–91, March 2002.

[5] R. Dewar, O. Hainque, D. Craeynest, and
P. Waroquiers. Exposing uninitialized variables:
Strengthening and extending run-time checks in Ada.
In Proceedings of 7th International Conference on
Reliable Software Technologies - Ada-Europe 2002,
Vienna, Austria, June 17-21, 2002, Johan Blieberger,
Alfred Strohmeier (Eds.), volume 2361 of Lecture
Notes in Computer Science, pages 193–204.
Springer-Verlag, 2002.

[6] M. B. Feldman. Who’s using Ada? Real-world
projects powered by the Ada programming language.
www.seas.gwu.edu/∼mfeldman/ada-project-
summary.html, Washington, DC, USA, SIGAda
Education Working Group, August 2002.

[7] B. Frisberg. Ada in the JAS 39 Gripen flight control
system. In Proceedings of 3rd International Conference
on Reliable Software Technologies - Ada-Europe 98,
Uppsala, Sweden, June 08-12, 1998, Lars Asplund
(Ed.), volume 1411 of Lecture Notes in Computer
Science, pages 288–296. Springer-Verlag, 1998.

[8] M. Gorman. Understanding the Linux virtual memory
manager. www.csn.ul.ie/∼mel/projects/vm/, 2003.

[9] N. Holsti and T. L̊angbacka. Impact of a restricted
tasking profile: The case of the GOCE platform
application software. In Proceedings of 8th
International Conference on Reliable Software
Technologies - Ada-Europe 2003, Toulouse, France,
June 16-20, 2003, Jean-Pierre Rosen, Alfred
Strohmeier (Eds.), volume 2655 of Lecture Notes in
Computer Science, pages 92–101. Springer-Verlag,
2003.

[10] J. Klein. Ada is alive and well in air traffic
management. In Proceedings of the 1998 Annual ACM
SIGAda International Conference, Washington, DC,
USA, November 8-12, 1998, Ed Seidewitz, William
Thomas, Michael Feldman (Eds.). ACM Press, 1998.

[11] B. Lewis, S. Vestal, and D. McConnell. Modern
avionics requirements for the distributed systems
annex. In Proceedings of 3rd International Conference
on Reliable Software Technologies - Ada-Europe 98,
Uppsala, Sweden, June 08-12, 1998, Lars Asplund
(Ed.), volume 1411 of Lecture Notes in Computer
Science, pages 201–212. Springer-Verlag, 1998.

[12] B. Pflug. Ada after 10 years of usage - Is there a
commercial future? In Proceedings of 5th
International Conference on Reliable Software
Technologies - Ada-Europe 2000, Potsdam, Germany,
June 26-30, 2000, Hubert B. Keller, Erhard
Plödereder (Eds.), volume 1845 of Lecture Notes in
Computer Science, page 4. Springer-Verlag, 2000.

[13] V. Santhanam. The anatomy of an FAA-qualifiable
Ada subset compiler. In Proceedings of the 2002
Annual ACM SIGAda International Conference,
Houston, Texas, USA, December 8-12, 2002, Salih
Yurttas, John McCormick (Eds.), pages 40–43. ACM
Press, 2002.

[14] S. T. Taft, R. A. Duff, R. L. Brukardt, and
E. Plödereder. Consolidated Ada Reference Manual.
Language and Standard Libraries, International
Standard ISO/IEC 8652:1995(E) with Technical
Corrigendum 1, volume 2219 of Lecture Notes in
Computer Science. Springer-Verlag, 2001.

[15] P. Waroquiers. Ada tasking and dynamic memory: To
use or not to use, that’s the question! In Proceedings
of International Conference on Reliable Software
Technologies - Ada-Europe 1996, Montreux,
Switzerland, June 10-14, 1996, Alfred Strohmeier
(Ed.), volume 1088 of Lecture Notes in Computer
Science, pages 460–470. Springer-Verlag, 1996.

[16] P. Waroquiers, S. Van Vlierberghe, D. Craeynest,
A. Hately, and E. Duvinage. Migrating large
applications from Ada83 to Ada95. In Proceedings of
6th International Conference on Reliable Software
Technologies - Ada-Europe 2001, Leuven, Belgium,
May 14-18, 2001, Dirk Craeynest, Alfred Strohmeier
(Eds.), volume 2043 of Lecture Notes in Computer
Science, pages 380–391. Springer-Verlag, 2001.

[17] M. Welsh and L. Kauffman. Running Linux. O’Reilly,
1995.

37

