
Experiences in Developing a Typical  
Web/Database Application 

 J-P. Rosen 
Adalog 

19-21 rue du 8 mai 1945 
94110 ARCUEIL 

FRANCE 
+33 -1 41 24 31 40 

rosen@adalog.fr 

 
 

ABSTRACT 
This paper describes Gesem, an application developed internally 
by Adalog for managing the registration to its training sessions. 
The application features a Web interface that uses AWS, an 
interface to the MySQL DBMS (over ODBC), and a local 
interface that uses GTK. The project explored various solutions, 
and identified a number of design patterns that made the 
development of new functionalities very straightforward. The 
experience gained in this project can be reused for any 
development in a similar environment.  

Categories and Subject Descriptors 
D.2.3 [Software Engineering]: Coding Tools and Techniques  – 
Object-oriented programming. 

General Terms 
Design, Reliability, Languages. 

Keywords 
Ada, AWS, Data-base, GTK, web server, design patterns. 

1. THE CONTEXT OF THE GESEM 
PROJECT 
1.1 The need 
Adalog (http://www.adalog.fr) provides a number of in-house 
trainings. This requires usual services, like managing the 
registration, maintaining the state of seminars (open, full, 
cancelled…). A special need is that several people, located in 
different offices, answer phone calls. It is important that when a 
client calls to register, the person who gets the call knows 
immediately about the state of the seminar. 
The need was therefore to maintain a centralized database of 
seminars and registrations, which could be queried from many 
computers on the internal network. Given these constraints, 
developing the application as a web application seemed 
appropriate. 
In addition, there are a number of things that need be done for the 

preparation of a session: prepare slides, coffee breaks, reserve the 
room, etc. It would be nice for the software to remind the persons 
in charge at an appropriate time. 
Finally, Adalog makes on occasions bulk mailings to all the 
persons who attended a seminar in the past. A function to extract 
the information of all participants was therefore needed. 

1.2 Constraints 
In the past, the management of seminars was performed by a 
much older program, written in Dbase IV. There was a huge 
backlog of former attendees as “.dbf” files. 
Although important for Adalog, the management of the seminars 
did not deserve the high cost of many commercial tools, notably 
DBMS. We wanted therefore the application to use free software 
components. 
Finally, it was highly desirable for the application to be fully 
portable between GNU/Linux and Windows. Although the 
application was intended to run on a GNU/Linux machine, it was 
expected that the maintenance would be performed by the author; 
and given the availabilities of the said author, this meant that a lot 
of the work would be performed while on a train or being stuck in 
an airport due to delayed planes… i.e., it had to work on the 
author’s laptop, which ran under Windows/XP. To be honest, it is 
generally a desirable goal in any application to be OS-
independent. 
In addition, we didn’t want the application to be strongly tied to 
any particular DBMS. We felt that there were several sensible 
candidates, and that it would be preferable to be able to switch 
DBMS at any time, during the development process as well as 
later. Ideally, switching to a different DBMS should not require 
more than rewriting the body of one package. 

2. A SHORT INTRODUCTION TO AWS  
AWS  [1] is an Ada Web Server, written by Pascal Obry. It is not 
actually a server in itself, but a set of packages that allow an 
application to act as a web (HTTP and HTTPS) server. Although 
it has many sophisticated features, the main principle is quite 
simple. We’ll give here a rough overview; please refer to the 
extensive documentation that comes with AWS for more details. 

2.1 Basic behavior 
All it takes to make a web server is declare a variable of type 
AWS.Server.HTTP, and call the Start procedure on it: 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
SIGAda’03, December 7–11, 2003, San Diego, California, USA. 
Copyright 2003 ACM 1-58113-476-2/03/0012…$5.00. 

38



procedure Start  
  (Web_Server : in out HTTP; 
   Callback   : in     Response.Callback; 
   Config     : in     AWS.Config.Object); 
The Response.Callback type is a pointer to a callback function 
with the following profile: 

function Service  (Request : in Status.Data) 
  return AWS.Response.Data; 
This function is called anytime a request is received, and returns 
the response. The type AWS.Status.Data includes the information 
from the request, like the URI, the parameters if any, etc. The 
type AWS.Response.Data has constructors like “Build” to build a 
response from a String, or “File” to return the content of a file as 
the response. 
Note that at that point, the callback procedure may interpret the 
incoming URI any way it pleases, there is no connection to files, 
CGI scripts, or whatever. Of course, it can interpret the URI as a 
file name (as a conventional Web server would do), but this is just 
a special case. 

2.2 Dispatchers 
While the callback function allows any behaviour in response to a 
request, it is quite basic. AWS allows higher level binding of 
actions to URI through dispatchers. 
A dispatcher is basically a tagged type, which includes a primitive 
operation with the following profile: 

function Dispatch 
  (Dispatcher : in Handler; 
   Request    : in Status.Data) 
return Response.Data; 
Another Start procedure allows binding a dispatcher to an HTTP 
object: 

procedure Start 
  (Web_Server : in out HTTP; 
   Dispatcher : in Dispatchers.Handler'Class; 
   Config     : in AWS.Config.Object); 
In this case, when a request comes in, the Dispatch function of the 
associated dispatcher is called. 
It is of course possible to write one’s own dispatcher, but to serve 
the most common cases, AWS offers a number of predefined 
dispatchers. Depending on the dispatcher, it is possible to 
associate treatments with URI patterns. Standard dispatchers 
provided with AWS include: 

• The URI dispatcher. This dispatcher allows associating a call 
back function (or a dispatcher object) to URIs matching a 
given pattern. This is the basic dispatcher used to associate 
Ada functions to specific URIs. If an incoming URI matches 
several registered patterns, it will be dispatched to the one 
that registered first. Therefore it is possible to register a 
function last with the pattern “.*”, which will serve as a 
default if no registered function matches the pattern. 

• The page dispatcher. This dispatcher (actually a call-back 
function) looks for a file (from a definable directory) with a 
name matching the URI. It is possible to specify a specific 
page to return whenever there is no file corresponding to the 

URI, in order to display something more user-friendly than 
“ERROR 404”. 

• The Method dispatcher. This allows registering different 
dispatchers according to the method (i.e. GET, HEAD, 
POST or PUT) used by the URI. 

• The virtual host dispatcher. This allows registering different 
dispatchers according to the host name used in the request. 
This is useful for making virtual hosts, where different 
logical servers, with different names, correspond to the same 
physical machine.  

2.3 The templates parser 
In addition, AWS comes with a template parser. This component 
takes a template file, which can include variable names, 
conditional parts, and tables. A tag associates an Ada string to a 
name. A “Parse” function will read a file, replace all variables 
with the associated values, and return the result as a String. 
The template parse features conditional statements (@@IF@@ 
… @@ELSE@@ … @@END_IF@@) that allow including only 
parts of a template depending on the value of some variables. An 
@@INCLUDE@@ feature allows including common parts (like 
headers) to be shared between several pages. 
Vector tags allow associating several strings to a single tag. Parts 
of a template can be repeated (between @@TABLE@@ and 
@@END_TABLE@@). When a variable name that corresponds 
to a vector tag appears in such a construct, the associated strings 
will be picked in order, one for each iteration. This is very useful 
for building tables. 
Below is an example of (a part of) a template that displays a pull-
down list, allowing the user to chose information for a given year: 

@@INCLUDE@@ head.thtml 
 
<form method="GET" action="chrono.btns"> 
 <table align=center cellpadding=4> 
  <tr> 
   <td>Chrono de l'année</td> 
   <td align="center"> 
    <select name="Year" size="1"> 
@@TABLE@@ 
     <option 
@@IF@@ @_YEAR_SELECT_@ = @_YEAR_SELECTED_@ 
      selected 
@@END_IF@@ 
     >@_YEAR_SELECT_@ 
     </option> 
@@END_TABLE@@ 
    </select> 
   </td> 
   <td align="center"> 
    <input type="submit" name="Btn" 
     value="Visualiser"> 
   </td> 
  </tr> 
 </table> 
</form> 

The variable YEAR_SELECT is a vector tag containing all the 
years, and the variable YEAR_SELECTED is a variable 
containing the current year. Note that the @@TABLE@@ 
statement will create an <option> tag for each year, but that the 
“selected” keyword will be included only for the chosen year. 
Below is how it appears on the screen: 

39



Note that although the template parser is very useful for building 
parametric web pages, there is nothing in it which is specific to 
HTML. It can be used to process any kind of file, and we used it 
for example to build mail messages. 

2.4 E-mail interface 
AWS provides a package for sending E-mail messages. Once 
again, the interface is very straightforward. You declare and 
initialize a server object: 

SMTP_Server : SMTP.Receiver 
 := SMTP.Client.Intitalize(“smtp.hostname”); 

This object can then be used from various “Send” procedures. 
AWS can also send MIME attachments from disk files or base64 
encoded binary data. 

2.5 Other services 
AWS features many other services, that we did not use for 
Gesem. It would exceed the scope of this paper to detail them 
here, please refer to [1] for details. These services include: 

• Session management (using cookies). 

• A web client, allowing to retrieve pages from other sites. 

• Server push 

• SOAP server and client 

• LDAP support 

• JABBER support 
 
Finally, AWS includes a tool for embedding resources like 
templates, HTML pages, images, etc. into the executable. This 
makes it possible to distribute an application as a single self-
contained executable. 

3. GESEM’S WEB INTERFACE 
3.1 Gesem Filters and dispatchers 
This part describes how we took advantage of dispatchers to 
separate the issues of controlling access to the application, 
providing pages as Ada code, and providing regular pages. 
All the management of  the Web interface is hidden into a single 
package called “Engine”. The interface of this package only 
offers high-level services, like registering a page (see 3.2 below), 
locking the data base, or gaining write access (see 3.3 below). 

3.1.1 The access control filter 
For obvious reasons, we didn’t want anybody on our intranet to 
be able to connect to the system. Forcing a login seemed overkill 
(the system is not connected to the Internet, so we don’t need a 
high level of security), and would have made the system slower to 
get at. Since the IP address of the client is included in the request 
provided by AWS, we decided to allow access to the system 
according to the IP address. 
This was done very simply, by writing a dispatcher which checks 
the IP address of the client. If it is not an authorized one, it returns 
a minimal page stating only “you are not allowed to connect to 
this server”. Otherwise, the request is passed to the default 
dispatcher. This dispatcher is therefore really a filter. 
Another function performed by this filter is the ability to lock the 
database. This is useful when maintenance is performed directly 
on the data base; we don’t want users to be able to modify the 
data at the same time. When the data base is locked, any request 
will return a page saying that the data base is currently 
unavailable. We could of course stop the server, but it is more 
user-friendly to return a page explaining what is happening than 
leaving the user with a message telling that the server was not 
found. 
Once all validity checks have been performed, the request is 
passed to another dispatcher, which must register itself to the 
access control filter. In Gesem, we used the standard AWS URI 
dispatcher. 

3.1.2 The URI dispatcher 
All pages implemented as Ada code register themselves to the 
URI dispatcher. 
As explained above, the URI dispatcher allows a default call-back 
for URIs not matching any registered pattern. We used the page 
dispatcher (below) as the default. 

3.1.3 The page dispatcher 
The page dispatcher will handle all pages not implemented as 
code, and therefore assumed to correspond to regular HTML files.  
The default page when the URI is not recognized offers the 
possibility to send a mail message to the maintainer to signal the 
missing page (see 6.3 below, Error management). Note that this 
seems like overkill, since user display pages by clicking on 
buttons from the interface, there is therefore no reason why an 
unknown page would be requested. There is however no way to 
prevent the user from typing any inconsistent URI in the browser, 
so it is better to handle this case cleanly. 

3.1.4 The global picture 
In summary, when a request is submitted to the server, it goes 
through the access control filter, which checks that the client IP is 
authorized, and the base is not locked. It then passes the request to 
the URI dispatchers, which checks if the URI corresponds to a 
page implemented as Ada code. If not, it passes the request to the 
page dispatcher, which checks if the page corresponds to a regular 
(HTML) page. If not, our own “page not found” page is 
displayed. This structure is represented in the following picture: 

40



A great benefit of this structure is that there is no difference 
between a page implemented as Ada code and a regular page. For 
example, we were able to design the home page with all buttons 
for expected functions. Functions that were not yet implemented 
simply lead to a regular page saying “Sorry, function not yet 
implemented”. Later, the page was implemented as an Ada 
function without changing the user interface. 

3.2 The computed page design pattern 
When we started this project, we viewed the HTML as a 
convenient way to provide a user interface. However, as the 
project matured, it became evident that designing an application 
for a web interface was quite different from designing a 
conventional GUI. The main issue is that, with a browser, the user 
can return to a previous page at any time with the “back” button. 
Unlike a regular GUI, it is not possible to guarantee that the user 
will follow a well defined path, or that a page will always be left 
by clicking either a “Cancel” or “OK” button. Another issue 
(discussed below) is that the user can close the browser at any 
time, and that the application has no way of being noticed. 
As a consequence, we decided to have no state variable in the 
program. All states needed to display a page is included in the 
page itself (which can easily be achieved with “hidden” <input> 
tags). This has the benefit that we have no problem if a user 
bookmarks a page, and solves the re-entrancy problem by the 
same token: if two users are connected at the same time, we don’t 
need to maintain per-user information. 

3.2.1 Statement of the problem 
Here is a typical page (the home page for Gesem): 

 

We see here the main elements of a computed page: 

• Some fixed information (title, general layout) 

• Variable information (here, the list of currently open 
seminars) 

• Buttons 
 
Using the template parser, it is easy to produce a page that 
includes variable information into a fixed template. However, 
buttons are an interesting problem. In HTML, a button is put into 
a form, and is associated to a URI that will automatically include 
the name of a page, plus any information in the form where the 
button lies. In short, from an HTML point of view, a button is 
linked to a different page, while from the programmer’s point of 
view, it corresponds generally to actions from the page where it 
resides, although sometimes a button is really a link to another 
page. 
So, to summarize the problem, a page consists of: 

• A fixed pattern 

• Variable data (parameters) to be displayed 

• A set of actions connected to (some) buttons in the page. 

3.2.2 The Page design pattern 
In order to have a uniform way of designing (computed) pages, 
we established the following design pattern. All pages are 
children of the “Pages” package. This package is empty, except 
for some utilities (in the private part) that are useful for building 
pages. 
A page specification looks like this: 

with 
  AWS.Response; 
package Pages.Some_Page is 
  function Build (<parameters>) 
    return AWS.Response.Data; 
end Pages.Some_Page; 
The package provides one or several “Build” functions that return 
the page built according to the parameters. For example, a page 
that displays information about a client will have the client handle 
as the parameter. Any page that needs to return a different page 
(as a result of clicking on a button in the page for example) does 

Access control 
filter 

URI dispatcher 

Page dispatcher 

Access allowed ? 

Associated Ada function ? 

Associated page ? 

“Not allowed” 

Ada function 

Regular page 

“Page not 
found” 

yes 

no 

no 

yes 

yes 
no 

Request 

41



so by returning a call to the “Build” function of the appropriate 
page. 
The body of the package follows this general structure: 

package body Pages.Some_Page is 
 
  My_Name : constant String := "some_page"; 
 
  function Build (<Parameters>) 
    return Response.Data is 
  begin 
    ... 
  end Build; 
 
  function Buttons  
   (Request : in AWS.Status.Data) 
  return AWS.Response.Data is 
    ... 
  begin 
    -- Process buttons 
    ... 
  exception 
    when Occur : others => 
      return 
        Pages.Error.Build  
          (Unit       => "pages." & My_Name, 
           Subprogram => "Buttons", 
           Occur      => Occur); 
   end Buttons; 
 
  function Page  
    (Request : in AWS.Status.Data) 
  return AWS.Response.Data is 
    ... 
  begin 
    ... 
  exception 
    when Occur : others => 
      return 
        Pages.Error.Build 
          (Unit       => "pages." & My_Name, 
           Subprogram => "Page", 
           Occur      => Occur); 
  end Page; 
 
begin 
  Engine.Register 
    (My_Name, Page'Access, Buttons'Access); 
end Pages.Some_Page; 
The “Build’ function actually constructs the page from the 
parameters, usually by initializing tags (and vector-tags) with the 
appropriate information, and calling the template parser on the 
page template. 
The “Page” function extracts the parameters from the request and 
calls “Build”. 
The “Buttons” function extracts the button name from the 
parameters and calls a “Build” function, either on the same page 
or on some other page. 
The initialization part of the package calls the “Engine.Register” 
procedure to register the “Page” and “Buttons” functions to the 
URI dispatcher with the given name, and an extension of “.html” 
for the “Page” function, and an extension of “.btns” for the 
“Buttons” function. 
The benefit of this design pattern is that all actions related to a 
page are gathered in a single package. Since all pages follow the 

same scheme, it is very easy to understand what a page does, and 
to add new pages. 

3.3 Mutual exclusion 
Like any application that can be used by several persons at the 
same time, Gesem needs some kind of mutual exclusion 
mechanism. However, the constraints here are quite unusual: 
under normal operation, it is expected that data would be read less 
than once a day, and modified less than once a week. This means 
that conflicts would be extremely rare in practice, but the issue of 
conflicts must still be addressed. 
Our strategy was therefore to have only mutual exclusion for 
modifications. In normal mode, pages display informations, but 
do not allow modifications. There is a “Modify” button that must 
be pressed when the user wants to modify the content; at that 
point, modification right is granted to the user (based on the IP 
address of the user), and any attempt by another user to press a 
“Modify” button (even for unrelated data) will lead to a page 
saying “Sorry, the database is being modified, try again later”. 
When a page is in “modification” mode, it shows “Validate” and 
“Cancel” buttons that will perform commit or rollback on the 
database, and release the lock. 
This mechanism has an interesting property in relation to the web 
interface. We have no way of preventing a user from closing the 
web browser while he/she is holding the lock. In that case, the 
lock will stay associated with the user’s IP address. If the same 
user returns later to the same page, he/she can validate the 
changes and unlock the database. 
As a safety feature, the control panel displays who is the owner of 
the lock (if any). If the database appears to be locked, it is easy to 
give a phone call to the person and kindly remind him/her that 
he/she should not leave an unfinished modification… 

3.4 The e-mail interface 
We took advantage of the mailing facilities offered by AWS to 
provide automatic mailing triggered by events or time. The 
recipients of the mails are stored in the database, and there is an 
administrative page in the program that allows to change them 
easily. 

3.4.1 State triggered mail 
Some mails are sent as a result of changes in the state of the 
application. For example, when a new registration is entered, or a 
seminar is cancelled, all interested parties are notified. 
These notifications are hard-coded in the program; however the 
text of the mail is not. It is actually a template, and the result of 
parsing it with the template parser constitutes the body of the 
mail. It is therefore easy to change the content of the message, 
without modifying the application. 

3.4.2 Time triggered mail 
Other mails are to be sent a few days before a seminar starts, for 
example to remind the secretary to reserve the room, the presenter 
to prepare the slides, etc.  
This was very easy to do, by having a local task in our mailer 
package that wakes up once a day, and checks if any mail is to be 
sent. As before, the text of the message is built by parsing a 
template. 

42



4. THE LOCAL INTERFACE 
Since an AWS application is a stand-alone server, it can have a 
local interface on the computer it runs on, while offering a web 
interface to the outside world. 
We took advantage of this possibility to make a control-panel on 
the server (see below). This control panel is displayed as long as 
the application is running, and allows controlling the server and 
tracing the requests. 
The interface features a trace window, which displays all requests 

as they are processed. At the same time, it displays who is locking 
the database, and a red/green light that is red when there are any 
uncommitted transactions in the database. It is therefore easy to 
monitor what’s going on, and to take appropriate actions if 
necessary. 
The Server (“Serveur”) menu in the interface allows to stop the 
server, lock the database, reinitialize the database (to make sure 
everything is consistent after a direct maintenance action on the 
database, f.e.). The Window (“Fenêtre”) menu allows refreshing 
the interface (we had some problems with refreshing under 
Windows), clearing the trace window, or saving the trace window 
into a file. This latter function is very useful if any problem 
happens: the trace window shows the precise path followed by the 
client that led to the problem, as well as information about the 
problem itself. In the running application, we can thus save the 
context of the problem to a file, restart the server cleanly, and 
then start working on the problem. 
The local interface was developed with Glade/GtkAda. 

4.1 Gtk and Glade 
Gtk [2] is a library for building user interfaces. It has 
implementations for both GNU/Linux and Windows, and an Ada 
binding, written by Emmanuel Briot, Joel Brobecker, Arnaud 
Charlet, and Nicolas Setton, developed and maintained by ACT. 
Glade is a GUI design tool that allows easy visual design of user 
interfaces. It allows automatic generation of interfaces in many 
languages, including Ada. 
In the case of the present project, we knew nothing beforehand 
about using Gtk. We simply looked at the code generated by 
Glade, and it was very easy to add the necessary processing in the 
generated templates. Glade also features a good round-trip 
engineering facility, which means that changes made into the 
generated code are automatically kept when a modification is 
made to the interface, and the code is generated again. 

4.2 Issues with tasking 
The only difficult issue we encountered with using Gtk was 
related to tasking. AWS uses different tasks to manage 
simultaneous connections. Since the interface traces the name of 
pages as they are displayed, it was necessary for several tasks to 
send messages to the interface at the same time. Unfortunately, 
since Gtk has been developed in C, it is not multi-tasking friendly. 
Although the Ada binding provides a locking mechanism, it only 
allows one task to manage windows, and prevents any other task 
from interacting with the GUI. This was a big problem for this 
application, since the tracing mechanism meant that many tasks 
needed to add text to the trace window, for example.  
We decided to adopt the classical structure: the main program 
would call the GUI’s main loop, and exiting this main loop would 
terminate the program. When other tasks need to update the 
display, they drop a message into a mail box and then schedule an 
idle-action. An idle-action is a call-back function which is 
automatically invoked when the GUI is idle. Of course, this 
function is invoked by the task in charge of the GUI, i.e. the one 
that holds the lock on the GUI! In our case, the idle-action will 
pick up the message from the mail box and update the GUI 
accordingly. This way, there is effectively only one task 
interacting with GTK.. 

5. THE DATABASE INTERFACE 
5.1 Choosing a database 
In addition to our constraint of having a free DBMS, we wanted it 
to be reliable; although our application is not very demanding as 
far as efficiency is concerned, reliability was important, since 
losing data about people registered to a seminar would put us in a 
bad position. Possible candidates included PostgresSQL and 
mySQL, but PostgresSQL is not available under Windows, so 
eventually we chose mySQL. 
As a side note, a nice feature of mySql is that it provides a utility 
called “mysqldump” which dumps a whole database as SQL 
statements. It is therefore extremely easy to move data to another 
database, should we ever choose to do so. 

5.2 Choosing an interface 
We had several options for interfacing to mySQL from Ada: 

• Use GNADE [3] with the native interface to mySQL; 

• Use ODBC and GNADE with the ODBC interface; 

• Use ODBC and a direct binding to it. 
 
We rapidly decided to use ODBC, because it would ensure that 
our application was not dependent on any special feature of 
mySQL, and would allow us to change the DBMS without 
changing the application. mySQL provides ODBC drivers for 
both Windows and GNU/Linux. Moreover, with ODBC, other 
applications (notably Excel) can access the database, making it 
easier when we need to correct some inconsistencies in the 
database manually. 
Our first move was to use GNADE, written by Micahel Erdman. 
GNADE is an implementation of the ISO SQL standard [4]. It 
uses the so-called “embedded SQL” approach, where SQL 
statements are mixed with Ada code. A pre-processor reads the 

43



mixed code and transforms all embedded SQL statements into 
calls to the DBMS binding. A typical example of embedded SQL 
looks like this (example borrowed from [3]): 

Delare_ERROR : exception; 
Open_ERROR   : exception; 
 
EXEC SQL DECLARE BEGIN 
  empno : SQL_Standard.INTEGER; 
  ... 
EXEC SQL END-EXEC 
 
EXEC SQL 
  WHENEVER SQLERROR raise Declare_Error; 
 
EXEC SQL 
  DECLARE emp_cursor CURSOR FOR  
    SELECT empno, name INTO :empno, :name 
      FROM employees 
      WHERE manager = :to_find; 
 
EXEC SQL 
  WHENEVER SQLERROR raise Open_ERROR; 
 
EXEC SQL OPEN emp_cursor; 
 
loop 
  EXEC SQL FETCH emp_cursor; 
 
  exit when SQLCODE in 
     SQL_STANDARD.SQL_ERROR; 
  Put_Line(name); 
end loop; 
However, we had to move back for several reasons: 

• GNADE is not yet a totally mature product, and we 
experienced some difficulties with it. 

• The preprocessor idea is not very popular in the Ada world, 
and complicates the building process, requiring makefiles, 
etc. 

• Having a foreign embedded syntax in Ada code drives Ada 
tools, and especially the Ada mode of emacs, completely 
crazy. We lose automatic indentation, syntax highlighting, 
etc. In practice, this was felt to be a high nuisance. 

 
We then tried to use the binding to ODBC which is provided with 
GNADE without the preprocessor, i.e. we wrote Ada code 
directly that was roughly what the preprocessor would have 
produced. However, the interface was really designed for use with 
the preprocessor, and was not very convenient to use directly. 
Moreover, it meant that we had to drag in the whole GNADE 
library, while we were really only using a small part of it. 
At that point, we discovered the ODBC binding [5] written by 
Sune Falck. This binding consists of a very thin layer (Iodbc) that 
simply interfaces to C, and a thicker layer (Odbc2) which is more 
Ada oriented. It was much simpler to use, but suffered from being 
still quite low level in some places (especially as it uses addresses 
to pass back query results). It was however relatively easy to add 
another layer on top of it to hide the ugly details. This package 
(DB_Interface) manages the connection, and processes SQL 
requests without dependences to ODBC itself.  
The DB_Interface itself provides operations for  requests that 
simply return a single string. It has a generic child 

(DB_Interface.Cursor) for requests that return tables. This child is 
instantiated with a string containing the SQL request, and 
provides iterator operations over the resulting table, with access 
functions to return the values of the various columns. 
The final structure of the interface is described in the figure 
below: 

 

5.3 Implementing objects over the DBMS 
We did not want the core of the application to deal directly with 
SQL, since having SQL statements spread all over the place 
would have made the application much more difficult to maintain. 
In general, it is better to design a structure such that programmers 
who are not fluent in SQL can add new features to the application. 
Each object of the application (like clients, seminars, orders, etc.) 
is implemented as a package which is a child of the “Objects” 
package. Each object provides functionalities dealing with the 
object, and only this object, and translates the requests into SQL 
queries.  
Each instance of an object is identified by a unique handle 
(actually a primary key in the data base). Operations dealing with 
persistence, like creating a new object, setting its value, etc. share 
a lot of commonality. We designed a generic package 
(“Data_Manager”) that automatically provides these operations.  
The specification (slightly simplified) of this package is as 
follows: 

with Globals, Objects; 
use Globals; 
pragma Elaborate (Objects); 
 
generic 
   type Data is private; 
   Data_Name : String; 
   Columns   : String; 
 
   with function Image (Item : Data) 
      return Array_Of_Unbounded;  
   with function Value (Item : Array_Of_Unbounded) 
      return Data; 
package Data_Manager is 
   pragma Elaborate_Body; 
 
   Max_Columns : constant Positive := 20; 
   function  Uncommitted return Boolean; 

SQL requests 

ODBC requests,  
Ada style 

ODBC requests,  
C style 

IODBC 

ODBC2 

DB_Interface Db_Interface.Cursor 

44



 
   type Handle is private; 
   Null_Handle : constant Handle; 
   function To_String (Source : Handle) 
      return String; 
   function To_Handle (Source : String) 
      return Handle; 
   Bad_Handle : exception; 
 
   procedure Set (The_Handle : Handle; 
                  Item       : Data); 
   function  Get (The_Handle : Handle) return 
Data; 
   function  Create (Item : Data) return Handle; 
   procedure Delete (The_Handle : Handle); 
 
private 
   … 
end Data_Manager; 
The generic parameters are the type of data to store in the 
database, a string identifying the column names in the database, 
and two functions allowing to convert the data to and from arrays 
of unbounded strings. At the database level, all data are managed 
as strings, and this allows reconstructing the proper data from its 
string representation. 
Although all objects are managed through their handles, note that 
the package provides “To_String” and “To_Handle” functions to 
convert handles to and from a string representation. This is very 
important in our case, because it allows passing handles to (and 
getting handles from) web pages as parameters. 
An object package instantiates the data manager, and only 
operations that are special to an object need to be written when a 
new object is created. A typical object uses the following design 
pattern: 

with Globals, Data_Manager, AWS.Templates; 
use Globals; 
pragma Elaborate (Data_Manager); 
package Objects.Abstraction is 
 
   type Data is 
      record 
         … 
      end record; 
 
   function Image (Item : Data) 
      return Array_Of_Unbounded; 
   function Value (Item : Array_Of_Unbounded)  
      return Data; 
   package Manager is new Data_Manager 
     (Data      => Data, 
      Data_Name => "my_data", 
      Columns   => “col1, col2, col3"); 
 
   subtype Handle is Manager.Handle;  
 
   type List is array (Positive range <>) 
      of Handle; 
 
   function Associations (Item : Handle) 
      return AWS.Templates.Translate_Table; 
   function Associations (Item : List) 
      return AWS.Templates.Translate_Table; 
   function Extract (Param : AWS.Parameters.List) 
      return Data;  

 -- Other operations on Abstraction.Data 
 
end Objects.Abstraction; 
In addition to the database  (persistence) operations provided by 
the data manager, each object features “Associations” operations 
that associate template tags with the fields of the data, or vector 
tags in the case of a list of data, and conversely an “Extract” 
function that reconstructs the data from the parameters of a web 
page. 
In a sense, this structure allows easy conversions between three 
representations of the data: 

• As an Ada record, for computing 

• As tags, for displaying in web pages 

• As a database table. 
 
This principle is nice, but does not allow covering all the needs, 
since sometimes we need information involving more than one 
object. For example, we needed the list of all clients who attended 
a seminar or asked for a documentation.. Is it a property of the 
seminar, the documentations, or the client? Putting such a 
function in either object would have created dependencies across 
objects, something that we wanted to avoid, except when it was 
structurally required (an order refers to the ordering client for 
example, therefore there must be a dependence from 
“Objects.Order” to “Objects.Client”). All requests that are not 
logically part of an object are gathered in another package, called 
“Queries”. This way, we keep cross-dependencies to a minimum, 
and we guarantee that all SQL statements are within the “Objects” 
hierarchy plus the “Queries” package, and nowhere else. 
Another issue was raised when we felt the need to have operations 
that affected all objects. For example, we needed to have some 
checks performed on objects whenever we had a commit or 
rollback operation on the database (for example, to check if some 
objects had uncommitted changes). 
The natural place for such general procedures is in the “Objects” 
package itself. The body of the package would then have to with 
all its children (all the objects) in order to call the corresponding 
procedures. But this would mean that each time a new object is 
added to the system, the body of the “Objects” package needs to 
be modified. To avoid this, we used the ambassador paradigm 
(described in [6]) from the ESCADRE project [7]. The “Objects” 
package defines an abstract “ambassador” tagged type: 

type Ambassador is abstract tagged null record; 
 
function Is_Committed (Item : Ambassador) 
  return Boolean is abstract; 
procedure On_Commit (Item : Ambassador) 
  is abstract; 
procedure On_Roll_Back (Item : Ambassador) 
  is abstract; 
  
procedure Register (Item : Ambassador'Class); 
This type has a primitive operation for each of the services that 
are to be dispatched to all objects, plus a primitive to register any 
object belonging to the class of Ambassadors. Each object 
package will (locally) derive a type from Ambassador, and create 
one instance of it which will be registered (by elaboration code of 

45



the package) to the “Objects” package. The “Objects” package 
just maintains a list of ambassadors, and when a global request is 
made, it just calls the corresponding primitive operation on all 
ambassadors. In practice, this is done by the “Data_Manager” 
generic package, so we don’t really have to bother about it when 
we design new objects. 

5.4 Other issues 
When the program starts, it opens a connection to the database, 
and keeps the connection open all the time. It would seem more 
logical to open the connection when a user comes in, and to close 
it when the user leaves; however, this is incompatible with a web 
interface, because we never know that a user has left. Moreover, 
the user can bookmark pages, or use the “Back” button on the 
browser, allowing to access data in a very unstructured way.  This 
resulted in making it very difficult to decide when to open or 
close the connection. By having the connection always open, we 
avoid the problem. 
But we discovered a quite unexpected issue, due to the very low 
service rate of the server. If a database connection stays open for 
several hours without any activity, the database server thinks that 
the client has died, and closes the connection. It is therefore 
necessary to “ping” the database every now and then to keep the 
connection alive. 
This was easily done by introducing a task in the high level 
database interface (package “DB_Interface”) that wakes up at 4 
hours period, and sends a dummy request to the database. 

6. OTHER FUNCTIONALITIES 
6.1 Bulk mailing 
Bulk mailing consists basically in an extraction of clients that 
match certain criteria: sometimes we want to mail all our clients, 
sometimes the continuous education services only. It is therefore 
typically a (quite sophisticated) SQL query. 
The result of the query is simply put into a file in CSV (comma 
separated values) format, which is a text format that can be read 
by any spreadsheet or database application that we know of. It is 
therefore both easy to produce (we just need Text_IO) and easy to 
manipulate. 

6.2 Logging 
Finally, we have a logging package that registers into a simple 
text file the main events in the database, like creating a seminar, 
registering new clients, etc. Since AWS provides us with the IP 
address of the client, we have a table mapping this IP address to 
actual persons, and we are able to log the event together with the 
time and the person who was responsible for it. 
The log can be viewed using a regular page. It is therefore easy to 
trace who changed some important state in the database, and 
when. 

6.3 Error management 
We wanted the program to be very fault tolerant, since it runs on 
our computer, and nobody can reset it while we are on vacation 
(or presenting a paper at a SIGAda conference!). We therefore 
established the following error policy: 

• When an error is detected in any subprogram except a page, 
it traces the cause of the problem to the local interface, and 
raises (or propagates) an exception. If the detected error was 
not already an exception, an exception message is added to 
identify the context of the problem. Since all subprograms 
are initially called from pages, the exception will eventually 
be propagated to a page subprogram. 

• All pages have a catch-all exception handler, which returns 
(remember that pages are functions) a call to 
“Pages.Error.Build”, i.e. they display an error page. The 
parameters of “Pages.Error.Build” include an 
“Exception_Occurrence” parameter. 

• The error page rolls back the database (to return to a safe 
state), and displays a page explaining that a problem has 
occurred. This page has a text entry where the user can add 
more information, and a “Send” button that sends a mail to 
the maintainer of the program, with all the information about 
the error (including the context from the exception 
occurrence and comments by the user) . 

 
Using this strategy, no information about the problem is lost, 
while allowing the application to return to a safe state and 
continue. 

7. LESSONS LEARNED 
7.1 On the general structure of the 
application 
The whole application, excluding AWS and the ready-to-use 
software components (but including the code generated by Glade) 
is about 10_000 raw lines (4460 semi-colons). It is nicely 
partitioned into subsystems, as pictured in the following 
figure:

 
We have completely separated the pages (which deal only with 
high level objects), the DBMS interface which is completely 
hidden below the objects layer, the local user interface, and the 
management of the HTTP link. This structure proved very 
effective, since adding functionalities or modifying the 
application are straightforward and follow well defined and 
unified design patterns. 

User_interface 

Pages 

Objects 

DB_Interface 

HTTP 
management 

Content 
management 

Data 
management 

Local GUI 
management 

Engine 

46



7.2 On portability 
All of AWS, GTK/Glade, MySQL and ODBC are available on 
both GNU/Linux and Windows. None of these software 
components showed differences between the two systems. 
The net effect is that exactly the same code is used on both 
operating systems. In the first times, we used to test the program 
on both systems; we don’t do that any more. Whenever a 
modification or improvement is needed, we usually develop and 
test it on a Windows laptop, then copy the modified sources to the 
GNU/Linux desktop, recompile and bring directly into service 
without any further testing. 
Many people would find this dangerous; and to be honest, this is 
not a life-critical application! But the point is that in our 
experience, we never exhibited a difference in behaviour, 
including when we were chasing bugs: bugs behaved exactly the 
same on both systems. 
To state it shortly: this application is 100% portable, full stop. It 
owes a lot to Ada and the nice software components we used. 
This does not mean that all Ada programs are portable, but it is a 
proof by example that is possible to have 100% portability with 
Ada, even for such an application that would look at first as very 
OS dependent. 

7.3 Exceptions and reliability 
We used exceptions extensively in this program. Many 
assumptions are checked, and raise exceptions when they failed. 
Carefully placed exception handlers ensure that errors are caught 
at an appropriate place, and allow the system to return to a 
consistent state. 
The net result is that the server never stops, even in the face of 
programming errors. This was a main goal of the project, since 
the server must run permanently. 
We wanted to stress this achievement here, because many people 
are afraid of exceptions. Of course, this program does not need 
the high level of confidence of life-critical software, but we claim 
that obtaining 100% availability would have been very difficult to 
achieve without the nice exception mechanism provided by Ada 

8. USING APACHE OR A DEDICATED 
WEB SERVER? 
At this point, it may be worth discussing, in the light of this 
experiment, the benefits and drawbacks of developing an 
independent web server, as allowed by AWS, versus the more 
conventional approach of using CGI, scripts, and a general Web 
server like Apache. 

8.1 Ease of changes 
Apache is a dedicated, general-purpose, web server. The 
application itself is made of pages and scripts that can easily be 
changed without affecting the server. When you update some 
script, it has no effect on other pages served by the same server. 
With AWS, the whole application is a program. If the application 
changes, the whole program has to be recompiled. To activate the 
new version, it is necessary to stop and restart the server, thus 
creating a short time of unavailability. Note that AWS provides 
services for storing states between runs, so that any user 

connected when the server is stopped can restart at the same 
point, therefore mitigating this drawback. 
If a single AWS server is used for several applications, for 
example using the virtual hosting facility (see 2.2 above), then all 
applications will experience a short breakdown while the server is 
restarted. 
Note however that this does not apply if you just need to change 
the aspect of a page, but not the content. In this case, you update a 
template, which is a file external to the server. 

8.2 Concurrency 
Concurrency, and especially mutual exclusion, is an important 
feature of a web application. With a regular server, each request 
runs as a separate process. Mutual exclusion is generally dealt 
with by having heavy-weight mechanisms, like lock files. 
Since an AWS application is a single executable, it can have 
global locks implemented by protected types. It is therefore easy 
to have a light-weight mutual exclusion mechanism. 
Although we didn’t have this need in our application, it is also 
much easier to make several users communicate through the usual 
tools of Ada tasking. 
Finally, within a single application, it is very easy to have 
periodic events (like the automatic mailer), with a simple task. 
This would require cron or similar system level application with 
an Apache application, and would not be integrated in the 
application itself. 

8.3 Half-web application 
In the case of Gesem, the web interface is the main goal of the 
application, and we took advantage of the “single program” 
approach to feature a local panel displaying trace information and 
managing the application as a whole. 
But there is another class of applications, where the local interface 
would be the main goal, while still providing the possibility to 
interact with it remotely through the web. Imagine for example an 
experiment, where the computer manages various devices; with 
AWS, it can be designed as a regular application, while allowing 
the experiment to be managed remotely through a web interface. 
This would be very difficult to do with an Apache based interface. 

8.4 Installation 
We are discussing here the case of a Web application intended to 
be widely available, like START [8]. 
As Apache is a very general server, a lot of things can be 
parameterized. Having the parameters right for Apache usually 
requires extensive knowledge of how it works, plus administrator 
rights. Note that defaults parameters for Apache under 
GNU/Linux may vary according to the distribution, therefore 
making difficult to have applications that run correctly in all 
contexts. 
On the other hand, an AWS application is simply a regular 
executable, with a set of data files that can even be integrated in 
the executable itself. The executable can run with normal user’s 
privileges, so the application can run out-of-the-box (or out-of-
the-download !). 

47



9. CONCLUSION 
In this paper, we have discussed the design choices and showed 
the design patterns that were used in developing our Gesem 
application. Although Gesem is not a particularly demanding 
application, especially as the workload is concerned, it is quite 
typical of any application that must simultaneously provide a 
local and a remote user interface, while manipulating data from a 
database. 
Of course, the final structure emerged from a trial-and-error 
process. But it is now well established, and can be reused for any 
project of the same type. With the experience acquired, Adalog is 
now ready to develop web application for its clients in a very 
cost-effective manner. 
As a side effect of this development, several reusable components 
were designed, like the abstract interface over ODBC, or the data 
manager that adds persistence to objects. It is our intent that these 
components will eventually be made available from Adalog’s free 
components page (http://www.adalog.fr/compo1.htm). 

10. ACKNOWLEDGMENTS 
Much of the development work of Gesem was performed by two 
Adalog trainees, Jérôme Burlando and Bertrand Carlier, whose 
work is gratefully acknowledged. 

Thanks to Pascal Obry for useful comments on an earlier version 
of this paper. 

11. REFERENCES 
[1] AWS. http://libre.act-europe.fr/aws/ 

[2] Gtk: http://www.gtk.org 

[3] GNADE. http://gnade.sourceforge.net/ 

[4] SQL. ISO/IEC 9075 :1999 

[5] AdaODBC. http://www.adapower.com/reuse/iodbc.html 
[6] Manuel du concepteur ESCADRE v5.0. 

http://escadre.cad.etca.fr/ESCADRE/v5.0/documentation/s_d
esign50/s_design50.pdf (in French) 

[7] ESCADRE. http://escadre.cad.etca.fr (in French) 

[8] START, Submission Tracking And Review Toolset, 
http://www.softconf.com/START. 

 

 

48


