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ABSTRACT 
At first glance, the worlds of high-integrity software engineering 
and Extreme Programming (XP) seem to have little in common. 
Somewhat surprisingly, we have found the reverse to be the 
case—indeed it seems that many practices advocated by the XP 
community are familiar to us from many years’ of experience in 
building safety- and security-critical systems. This paper 
discusses our experiences in applying some XP practices in 
critical projects.  Secondly, we discuss how static verification can 
augment XP, particularly in the Pairwise Programming and 
Refactoring practices. 

Categories and Subject Descriptors 
D.2.4 [Software Engineering] Software/Program Verification 

General Terms 
Design, Languages, Verification 

Keywords 
Extreme Programming, Static Verification, SPARK, Ada, 
Information-flow analysis, Program Proof. 

1. INTRODUCTION 
At first glance, the terms “High Integrity” and “Extreme 
Programming” in the same sentence might seem to be a 
contradiction in terms! While the word “extreme” might seem at 
odds with the naturally conservative and rigorous world of high-
integrity engineering, we do not believe this is the case. 
In his book, Beck[2] describes XP in terms of 12 core practices: 

• The Planning Game 

• Small Releases 

• Metaphor 

• Simple design 

• Testing 

• Refactoring 

• Pair programming 

• Collective ownership 

• Continuous integration 

• 40-hour week 

• On-site customer 

• Coding standards 
Most of these are not new or radical at all: they are well tried and 
tested ideas that have been known to the software engineering 
community for some time. Practices such as regression testing, 
continuous integration, collective ownership, and the use of 
coding standards should not come as a surprise to anyone 
involved with the development of high-integrity software systems. 
Upon discovering XP, we were both surprised and pleased to find 
how much XP we already do on high-integrity projects. This was 
not as the result of some top-level management decision to adopt 
XP, but rather the discovery that XP advocates many of the 
practices that we’ve been doing for years as a matter of course. 
We also found some interesting differences where our practices 
differed from the XP viewpoint, or areas where XP didn’t seem to 
address particular problems in high-integrity development.  The 
remainder of this paper discusses these discoveries and insights, 
particularly focusing on the pair programming, and refactoring 
practices. 

2. PAIR PROGRAMMING 
XP advocates the use of “pairwise programming.” This literally 
means having two engineers sat at a single desk, using a single 
computer, designing and creating code as a cooperative activity. 
Initially, this seems odd—how can two people sat at a single 
computer be more productive than two people working alone? 
The XP community claim it is—that such pairwise activity is 
actually more productive at producing real, working, delivered 
code. We note the distinction here—you can certainly produce 
more poor code working alone, but that’s hardly the object of the 
exercise. 
Beck points out that the members of a pairwise team are thinking 
in different modes. The person at the keyboard is thinking about 
how to implement the required functionality in terms of data 
structures, algorithms and so on. The partner is thinking “more 
strategically”—considering the whole design, which test cases are 
going to need correcting or adding, how the current solution fits 
within the overall design and so on. This distinction of roles is 
important, since problems overlooked by one person are more 
likely to be spotted by the partner. This is akin to moving the 
traditional code-review process up the lifecycle until it literally 
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becomes “live” with one partner reviewing the code right there 
and then while it’s being constructed. 
In the high-integrity world, we are used to the application of 
automatic static analysis technology in the construction and 
verification of software. Consider the properties that make a 
“good” partner in the XP world. Such a partner would be excel at 
considering problems not usually thought of by the code author, 
and the partner would be pedantic—not letting a single slip or 
defect go un-noticed. Sounds like a static analysis tool to me. 
In the development of high-integrity software, we often use such 
tool support—the SPARK1 Examiner, for instance, is written in 
SPARK[1] and is used in its own development. So does the 
combination of human designer plus a static analysis tool count as 
a “pairwise” team in the XP world?  We would argue that it does. 
Consider the problem domains where human brain-power and 
tools differ: 

• My brain is good at: requirements, safety and security 
issues, non-functional trade-offs such as efficiency, 
testability, and so on. (On the other hand, tools are not 
much use in these domains.) 

• A tool is good at: being pedantic, data-flow analysis, 
information-flow analysis, static semantic analysis, 
subset checking, abstract interpretation, theorem 
proving. (All areas where my brain is severely limited.) 

These sets of problems seem complementary: tools are good at 
problems that I can’t do in my head and vice versa.  We therefore 
apply tools are far as is practical. SPARK, in particular, allows 
the tool-supported problem domain to be “turned up to 11.”[6]  
My (human) partner can then review my code knowing that the 
tools have already taken care of a great many problems. 
Reviewing time is then more productively spent considering the 
issues that really matter such as safety and security requirements. 
Oddly, Beck’s book hardly mentions static analysis at all. How 
could the XP community have missed this point, when it is so 
well-known in the high-integrity domain? We offer two possibly 
reasons for this: 

• The depth of static analysis available with traditional 
languages is limited by the ambiguous nature of their 
definition and the intractability of many static analysis 
problems on those languages.  In short, if you’re using 
traditional, unsubsetted languages the dials only go up 
to 4! This issue limits the usefulness of static analysis, 
and so it remains less widely used than it might. 

• The efficiency of any such analysis is crucial. If you 
want someone to use a tool in preference to compiling 
and testing, then the tool must be fast! Again, the 
intractable nature of many static analysis problems on 
traditional languages has limited the adoption of these 
tools. Beck illustrates this point with his “learning to 
drive” analogy—you need feedback as often as possible 
in order to make many, small corrections to a process. 

3. REFACTORING 
Fowler introduces refactoring[5] as “…the process of changing a 
software system in such a way that it does not alter the external 
                                                           
1 The SPARK programming language is not sponsored by or 

affiliated with SPARC International Inc. and is not based on 
SPARC™ architecture. 

behaviour of the code yet improves its internal structure.” The 
“does not alter the external behaviour” bit is important, since you 
want to be able to verify that the system still behaves as expected 
after the refactoring has been performed. Trying to add 
functionality at the same time as refactoring therefore hinders this 
ability.  How do we know that the system’s behaviour has been 
preserved by such a redesign?  The XP community’s mantra “test, 
test, test…” applies here. While we certainly agree that the 
regular and pedantic application of regression testing is useful, the 
limits of testing for ultra-dependable systems are well 
known[3][4]. Isn’t there any more that we can do? 
Once again, static analysis has a role to play here, but this has not 
been widely recognized outside of the high-integrity community. 
Consider data-flow analysis: if we know that a program is 
statically free from data-flow errors prior to a refactoring, then it 
seems reasonable to expect that property to be preserved by the 
redesign—if it were not, it would almost certainly be indicative of 
a bug!  What other properties can be statically verified across a 
refactoring?  The answer largely lies in the contractual strength 
of the language under analysis.  Consider the following function 
specification in Ada: 
   function Sqrt (A : Natural) return Natural; 
 
What properties (or “contract”) does this specification promise to 
its users? Actually, not much—the function promises to take a 
Natural parameter and to return a result of type Natural. The name 
“Sqrt” is something of a red-herring—this function might 
compute something like the square-root of its argument, but that 
is in no way guaranteed or implied.  The function could do pretty 
much anything. 
A conscientious Ada programmer might do better, writing: 
subtype Sqrt_Domain is Natural range 0 .. 10000; 
subtype Sqrt_Range  is Natural range 0 .. 100; 
function Sqrt (A : Sqrt_Domain) return 
                                    Sqrt_Range; 
This is better, but still leaves many details unspecified. There is 
enough detail here for a compiler to generate code for a call to 
Sqrt, but not much else. 
To enable static analysis to be useful in refactoring, we need more 
information. In SPARK, we can go as far as giving a specification 
of partial correctness for the function: 
subtype Sqrt_Domain is Natural range 0 .. 10000; 
subtype Sqrt_Range  is Natural range 0 .. 100; 
function Sqrt (A : Sqrt_Domain) return 
                                    Sqrt_Range; 
--# return X =>     X ** 2 <= A and 
--#             (X+1) ** 2 >  A; 
 
Note also in SPARK that functions never have side-effects, so this 
property is implicit in the specification. Now we have enough 
information to make a static refactoring work. We could change 
the implementation of Sqrt (say from a binary-search, to a 
hardware-style “bit-bashing” algorithm) and re-verify that the 
implementation still meets the contract using the various analysis 
techniques at our disposal—in this case flow-analysis, verification 
condition generation, and theorem proving. Moreover, this level 
of verification can be achieved prior to re-testing of the system as 
a whole. 
Even without going to the lengths of partial correctness proofs, 
we have found that the level of static analysis supported in 
“minimal SPARK” to be very useful in protecting the integrity of 
large systems during significant refactoring efforts. In particular, 
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SPARK requires the specification of global data access and mode 
to be attached to all subprograms. Packages must also announce 
the existence of their own static state and the manner of its 
initialization. Many common refactorings involve moving the 
persistent state of a system (for example, changing an abstract 
state machine package into an instance of an abstract data type). 
SPARK protects the engineer from mistakes, since the top-level 
information-flow for a subsystem can be shown to be preserved 
even if the internal structure and state is completely altered. 
Once again, though, we find that this static-analysis based 
approach to refactoring is little known. Only two languages 
support the level of design-by-contract2 in specifications 
required to really make the approach useful: SPARK and Eiffel. 
Only SPARK emphasizes static verification of contracts over the 
dynamic (i.e. testing). 
With dynamic verification, XP advocates a “write the tests first” 
approach. Is there an analogue of this approach in the use of static 
analysis? It seems there is—we have long supported a “write the 
contracts first” design approach with SPARK, where the contracts 
of units are written as a design activity and then rigorously 
checked against the eventual implementation using the SPARK 
Examiner.  

3.1 Refactoring tests 
We often come across systems that are crying out to be 
refactored. High-integrity systems, in particular, typically have a 
long lifetime, and requirements change both during development 
and maintenance. Such systems are clearly candidates for regular 
refactoring, yet we often find this is not done: changes are added 
which distort the original design, rather than allowing the original 
design to be refactored so that the new requirements may be 
implemented elegantly. Why is this so? A number of reasons are 
often cited: 

• “Because the code is finished.” There seems to be a 
strong psychological effect whereby “finished” code is 
deemed to be set-in-stone and never to be touched 
again. 

• Deadlines are always “too tight” to allow for a 
refactoring activity. Very few projects we’ve ever seen 
actually plan for refactoring. 

• Refactoring code might be easy, but re-working a large 
test set is seen as prohibitively expensive. 

The latter point is interesting. XP says you can refactor and all the 
tests should still work with no changes. This is true for “black 
box” requirements based tests—of course, you should be able to 
refactor the inner working of a system while preserving the top-
level behavior. Unfortunately, in the high-integrity world, we 
often have somewhat Draconian requirements for structural test 
coverage. Such tests are definitely affected by refactoring: we 
have often heard that a piece of code cannot be re-designed, not 
owing to the cost of changing the code, but because “it will break 
all the coverage tests.” 
We do not have a simple solution to this issue. Collecting 
coverage data as a side-effect of requirements based tests is 
certainly a good idea, but writing structural-based coverage test 
cases just for the sake of getting a particular (typically “100%”) 

                                                           
2 “Design-by-contract” is a trademark of Interactive Software 

Engineering Inc. 

coverage result seems to be of dubious value, especially if these 
very test cases inhibit the application of other useful activities 
such as refactoring. One would hope that the simplification of 
code resulting from a refactoring would actually improve 
coverage results. We could therefore propose a principal that 
says: using a stable set of requirements-based tests, refactoring 
should only ever be allowed to maintain or improve structural 
coverage of the code being refactored. Or, put another way, if a 
refactoring degrades coverage, then you probably shouldn’t be 
doing it! 

4. OTHER XP PRACTICES 
This section offers some brief comments on some of the other 
core XP practices. 

4.1 Coding Standards 
The use of coding standards is well established in the 
development of high-integrity software. The rules in such 
standards range from simple lexical conventions (“Indent by 3 
spaces and don’t use tabs...”) to semantically subtle program 
properties (“Functions shall not have side-effects.”) We often find 
two problems. Firstly, coding standards evolve within a company 
or project based on historical events and the sometimes rather 
personal whims of the engineers involved. Secondly, such 
standards are often enforced by entirely manual review, rather 
than through the use of tools, which is inefficient and often 
incomplete, especially for the more subtle rules—no human I 
know of can do global data-flow analysis in their head! We 
strongly advocate the use of well-designed language subsets 
supported as far as possible by tools. On SPARK projects, our 
coding standards are remarkably short (rule 1 is “The code shall 
be SPARK as defined by [...]”) with only a few additional 
guidelines for non-SPARK code. We also set goals for static 
analysis as entry criteria for subsequent code review, such as 
requiring no unjustified flow-errors, or setting a target for the 
number of verification conditions to be automatically proven by 
the theorem-prover. We find such criteria more meaningful and 
useful than the simpler forms of complexity metric gathered by 
other tools. We always enforce simple lexical style rules, often 
using the built-in support offered by recent Ada compilers. 

4.2 On-site customer 
This practice advocates having a customer as a full-time member 
of your software development team. In the (unfortunately) rare 
cases where we have been able to do this, we find this practice to 
be of use. Customers come with a large amount of built-in 
knowledge, particularly relating to the environment and domain 
of the system that you’re building, which acts as an excellent 
“ambiguity detector.” In interpreting and implementing a 
particular requirement or function, an engineer is prone to jump to 
a possibly wrong conclusions “Oh, that means X...”. An on-site 
customer is likely to respond “Actually, no it means Y...”, 
exposing ambiguity and incompleteness immediately, rather than 
delaying such discovery until later in the life-cycle. 

4.3 Simple Design 
Beck sums up this practice as “Design the simplest thing that will 
work now” for each integrated system build, rather than going for 
a “Big Up-Front Design”3 that tries to encompass the entire 

                                                           
3 One XP advocate has coined this approach “BUFD the project 

slayer...” 
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planned system. The motivation for this is that requirements will 
invariably change, so most of a “big up-front design” ends up 
being thrown away anyway, and a simple design can always be 
re-factored later to add or adapt to requirements change. 
While this Occam-like approach to software design has some 
merit, we find one particular difficulty with it from out 
perspective of building high-integrity systems: the need to 
accommodate non-functional requirements, such as safety, 
security and real-time properties. From our experience, it is very 
difficult (or at least prohibitively expensive) to “refactor in” such 
non-functional properties. Software safety and security properties 
are often achieved by architectural means (such as partitioning), 
which have to be considered from the outset of a project, 
particularly if that project is to be subject to an external audit or 
inspection by a regulator. With this in mind, we advocate a design 
approach that uses non-functional properties to drive the top-level 
architecture. The “keep it simple” rule can be used for individual 
subsystems, with some assurance that their eventual composition 
will preserve the required top-level behavior. 

5. TWO PROJECTS 
This section describes how we have adopted some XP practices in 
two very different projects: the MULTOS CA and the SPARK 
Examiner. 

5.1 The MULTOS CA 
The development of the MULTOS CA is fully described in [7]. 
This project initially led to our discovery of XP and how many 
XP techniques we were already using. In particular the CA 
development made use of the following techniques: 
The Planning Game. We never stopped planning and re-planning 
the development as the system evolved and (invariably) 
requirements began to change. 
Small Releases and Continuous Integration. The system was built 
as a series of controlled releases, each adding a planned set of 
functionality. The user-interface was development one cycle 
“ahead” of the core functionality so that the GUI developed and 
testing in build N could be used as the test harness for the 
functions implemented in build N+1. This avoided the need for 
expensive test harnesses and simulation. 
Simple design. This was implemented within the guidance above. 
We very carefully considered security properties and performance 
before committing to a design. 
Testing. The system was continually regression tested using an 
ever-growing set of tests. Almost all tests were purely 
requirements-based and were derived from the top-level formal 
specification of the system. Automation of tests proved very 
important: we used the Rational VisualTest environment to create 
scripts and groups of tests that could be run individually or as a 
group with as little human intervention as possible. 
Refactoring. There was some refactoring as the system was built, 
but it is interesting to note how many requirements changes were 
accommodated by the design without the need for refactoring. In 
particular, the system was designed to be extensible for several 
versions of the MULTOS system—we started the project 
implementing just a single version, but ended up delivering 
support for three versions, without having to refactor the original 
design. 
Pair programming and Coding standards. While we didn’t use 
the “two engineers at one desk” approach advocated by XP, we 

did use static analysis and regular reviewing. Where possible, 
coding standards were enforced by tools, such as the SPARK 
Examiner for SPARK, and the BoundsChecker tool for C++. 
Collective ownership. Within the restrictions of security imposed 
by the CM system, all development engineers were able to access 
and work on all the code. Note, though, that security and 
independence requirements meant that the development and test 
teams were not permitted write-access to each other’s sections of 
the CM system. 
Some XP practices were not used in the development of the CA. 
These were: 
Metaphor. The use of metaphor or “stories” as a requirements 
engineering approach has some merit, but the CA was constructed 
using a rigorous requirements engineering process (REVEAL) 
and was formally specified using the Z language. 
40-hour week. A laudable goal, which was almost attained on 
average, although there were some weeks where this was 
exceeded owing to hard deadlines. 
On-site customer. Unfortunately, we were not able to implement 
this practice. In retrospect this would have been useful—a small 
number of defects were discovered during the customer’s 
acceptable test process that almost certainly would have been 
spotted much earlier by an on-site customer. 

5.2 The SPARK Examiner 
The SPARK Examiner is a software tool that supports the SPARK 
language. It implements most of the functions of the front-end of 
a compiler, but then goes on to implement a number of static 
analyses such as checking the semantic rules of SPARK, 
information flow analysis, and verification-condition generation. 
Our discovery of XP led to some changes in the way that the 
Examiner is developed and maintained. This section briefly 
describes our current development and quality control approach in 
terms of the core XP practices. 
Development. Consider a simple addition to the SPARK 
language—the addition of modular types, for instance. We start 
with the SPARK language design itself, writing the rules and any 
necessary subset restrictions. There may also be a phase of 
defining the syntax and semantics of any additional annotations 
that may be required. Development then proceeds incrementally, 
with code and new test cases being developed at the same time. 
Both positive tests (i.e. legal SPARK programs that produce some 
expected output from the Examiner) and negative tests (i.e. illegal 
programs that deliberately break the language rules) are 
constructed. New tests are independently reviewed (i.e. by 
another member of the team) before being added to the CM 
system. 
The SPARK Examiner is, of course, written in SPARK, so static 
analysis is performed interactively, before code is ever compiled 
or checked back in to the CM system. 
Testing. The SPARK development environment contains a suite 
several thousand tests, both positive and negative. The source and 
expected results for each test are stored in our CM system, so a 
complete history for each test is available. A developer can run 
the tests in about 15 minutes on a contemporary PC. 
Alternatively, an “overnight” regression test run is used. This 
script checks out the latest “wavefront” sources for all the SPARK 
tools, builds them, and runs both static analysis and tests. An 
automated “diff” is then generated that highlights any discrepancy 
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between the master copy of the expected results and those just 
obtained. A summary of the results is emailed to all team 
members. Any differences have to be reviewed and approved by a 
team member. If acceptable, then the new results are checked 
back in to the CM system. 
Regression Analysis. Part of the “overnight” regression testing 
actually includes a complete static analysis of the Examiner 
source. Once again, the expected results of this are stored in the 
CM system, just like any other test result. This is often the first 
place we look if a difference in behavior is observed – it’s 
certainly easier to review a static analysis report than it is to look 
at possibly hundreds of other test results. This is rare, though, 
since all developers are encouraged to run the self-analysis 
interactively during development, rather than waiting for the 
subsequent “overnight” run.4 The SPARK language and the 
Examiner are carefully designed so that this style of constructive 
static analysis is tractable for large programs. 
Supporting Regression Test. During the development of this 
analysis and test strategy, we found one particular problem that 
caused some difficulty. The Examiner’s analysis report normally 
includes an error number and a source-file line number for each 
error or warning reported. It is common that, during development, 
we add or remove code that preserved all existing errors and 
warnings, but simply changes the line numbers. Secondly, new 
code may raise a new (expected) warning, but that will then 
change the numbering of all subsequent warnings, so these show 
up as wholly spurious “diffs” in the regression analysis. To solve 
this problem, we implemented a new switch in the Examiner 
called “plain output mode.” This instructs the Examiner to 
suppress all line numbers, error numbers, and time-stamps in its 
output, which significantly reduces the number of “spurious diffs” 
in the regression analysis. This switch was initially only used 
within the SPARK development team, but proved so useful that it 
is now available to all users.5 
Refactoring. Over the years, several significant refactorings of the 
Examiner have been achieved.  Indeed—many of these were 
performed before the term “refactoring” had even been coined 
and become commonly used. For example, the main Examiner 
data-structures used to be library-level abstract state machines. 
Some years ago, these were re-designed to be instances of simple 
abstract data types, with the various analysis procedures declaring 
their own “heaps” as local variables. These “heaps” (actually 
arrays) are used to build the various data structures needed by 
Examiner, but are then deallocated “for free” when the procedure 
in question returns, just like any other local variable.6 
Another example concerns the static semantic processing routines 
for expressions. There are two kinds of expressions in SPAR—
“expression” and “annotation expression”. The former is a pure 
subset of Ada’s normal form of expression, while the latter has an 
extended syntax and semantics covering quantified terms, logical 

                                                           
4 One SPARK developer (who shall remain nameless…) is now 

so dependent on the self-analysis that he often forgets to 
compile his code at all, and then complains that his tests aren’t 
working as expected, much to the amusement of the rest of the 
team! 

5 If only they read the manual… 
6 Remember that SPARK has no access types, so we don’t use 

allocators to build linked data structures. 

implication and so on. The procedures for semantic analysis of 
these two forms initially grew entirely separately, and remained 
so for many years. Eventually, though, it became apparent that 
there was so much in common between the processing of the two 
forms that a refactoring was called for. The common processing 
routines (e.g. the treatment of “primary” expressions, which is 
common to both) were “lifted” into the enclosing package and 
parameterized as necessary. This major simplification produced a 
significant reduction in the amount of code, with absolutely no 
visible difference in external behavior. Secondly, static analysis 
was used during this process to ensure that each “lifted” 
procedure preserved the contracts of the original form. 
Aside—Porting the Examiner. SPARK is designed to have an 
“unambiguous semantics”—it is free from all erroneous and 
implementation-dependent behavior. One pleasant side-effect(sic) 
of this is that SPARK is a remarkable portable language. A 
testament to this is the ease with which we are able to port the 
Examiner to new host platforms. The same self-analysis and 
regression testing approach is used on all currently supported 
platforms (IA32/Windows, SPARC/Solaris, and VAX/VMS) with 
very nearly identical test results of all three. We have also been 
able to construct (as yet unsupported) demonstration versions of 
the Examiner on other platforms such as IA32/Linux, Mac OS X, 
and Alpha/OpenVMS – these ports have been constructed and 
have passed regression testing with little or no effort. 

6. CONCLUSIONS 
It seems that XP and the development of High-Integrity systems 
are not such strange bedfellows after all. In particular: 

• Many XP practices (such as regression testing and 
coding standards) are well known and widely used in 
the world of high-integrity software, where such 
rigorous practices are the norm, rather than the 
exception. 

• Modern hardware, even with modest commodity PCs, 
offers the kind of processing power that enables 
extraordinary depths of analysis and volumes of tests to 
be run in “coffee break” timescales. 

• Static Verification offers an extra level of defense in 
showing that a refactoring has preserved program 
behavior. We have employed this technique for many 
years on a long-lived and highly portable toolset 
development. 

• Static Verification offers an extra weapon in our 
verification arsenal that we can use to complement 
regression testing. A language like SPARK allows deep 
analysis of subtle program properties, and can be 
employed both during program construction and as a 
pre-curser to regression testing. 

The catch, of course, is that the depth and efficiency of static 
verification critically depends on the language under analysis. 
SPARK sets a particular high watermark in this domain, but 
remains (at present) largely unknown to the XP community. This 
may explain why the benefits of static verification have not been 
reported more widely in the XP literature to date. There are signs 
of life, though—Eiffel has brought design-by-contract to a wider 
audience, and its benefits have been recognized by efforts such as 
the Java Modeling Language (JML) which does aim to address 
both static and dynamic verification. Static verification may yet 
become a sexy and fashionable practice! 
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