
Static Verification and Extreme Programming
Peter Amey, Roderick Chapman

Praxis Critical Systems
20, Manver Street

Bath, BA1 1PX, UK
+44 (0)1225 466991

peter.amey@praxis-cs.co.uk
rod.chapman@praxis-cs.co.uk

ABSTRACT
At first glance, the worlds of high-integrity software engineering
and Extreme Programming (XP) seem to have little in common.
Somewhat surprisingly, we have found the reverse to be the
case—indeed it seems that many practices advocated by the XP
community are familiar to us from many years’ of experience in
building safety- and security-critical systems. This paper
discusses our experiences in applying some XP practices in
critical projects. Secondly, we discuss how static verification can
augment XP, particularly in the Pairwise Programming and
Refactoring practices.

Categories and Subject Descriptors
D.2.4 [Software Engineering] Software/Program Verification

General Terms
Design, Languages, Verification

Keywords
Extreme Programming, Static Verification, SPARK, Ada,
Information-flow analysis, Program Proof.

1. INTRODUCTION
At first glance, the terms “High Integrity” and “Extreme
Programming” in the same sentence might seem to be a
contradiction in terms! While the word “extreme” might seem at
odds with the naturally conservative and rigorous world of high-
integrity engineering, we do not believe this is the case.
In his book, Beck[2] describes XP in terms of 12 core practices:

• The Planning Game

• Small Releases

• Metaphor

• Simple design

• Testing

• Refactoring

• Pair programming

• Collective ownership

• Continuous integration

• 40-hour week

• On-site customer

• Coding standards
Most of these are not new or radical at all: they are well tried and
tested ideas that have been known to the software engineering
community for some time. Practices such as regression testing,
continuous integration, collective ownership, and the use of
coding standards should not come as a surprise to anyone
involved with the development of high-integrity software systems.
Upon discovering XP, we were both surprised and pleased to find
how much XP we already do on high-integrity projects. This was
not as the result of some top-level management decision to adopt
XP, but rather the discovery that XP advocates many of the
practices that we’ve been doing for years as a matter of course.
We also found some interesting differences where our practices
differed from the XP viewpoint, or areas where XP didn’t seem to
address particular problems in high-integrity development. The
remainder of this paper discusses these discoveries and insights,
particularly focusing on the pair programming, and refactoring
practices.

2. PAIR PROGRAMMING
XP advocates the use of “pairwise programming.” This literally
means having two engineers sat at a single desk, using a single
computer, designing and creating code as a cooperative activity.
Initially, this seems odd—how can two people sat at a single
computer be more productive than two people working alone?
The XP community claim it is—that such pairwise activity is
actually more productive at producing real, working, delivered
code. We note the distinction here—you can certainly produce
more poor code working alone, but that’s hardly the object of the
exercise.
Beck points out that the members of a pairwise team are thinking
in different modes. The person at the keyboard is thinking about
how to implement the required functionality in terms of data
structures, algorithms and so on. The partner is thinking “more
strategically”—considering the whole design, which test cases are
going to need correcting or adding, how the current solution fits
within the overall design and so on. This distinction of roles is
important, since problems overlooked by one person are more
likely to be spotted by the partner. This is akin to moving the
traditional code-review process up the lifecycle until it literally

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGAda’03, December 7–11, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-476-2/03/0012…$5.00.

4

becomes “live” with one partner reviewing the code right there
and then while it’s being constructed.
In the high-integrity world, we are used to the application of
automatic static analysis technology in the construction and
verification of software. Consider the properties that make a
“good” partner in the XP world. Such a partner would be excel at
considering problems not usually thought of by the code author,
and the partner would be pedantic—not letting a single slip or
defect go un-noticed. Sounds like a static analysis tool to me.
In the development of high-integrity software, we often use such
tool support—the SPARK1 Examiner, for instance, is written in
SPARK[1] and is used in its own development. So does the
combination of human designer plus a static analysis tool count as
a “pairwise” team in the XP world? We would argue that it does.
Consider the problem domains where human brain-power and
tools differ:

• My brain is good at: requirements, safety and security
issues, non-functional trade-offs such as efficiency,
testability, and so on. (On the other hand, tools are not
much use in these domains.)

• A tool is good at: being pedantic, data-flow analysis,
information-flow analysis, static semantic analysis,
subset checking, abstract interpretation, theorem
proving. (All areas where my brain is severely limited.)

These sets of problems seem complementary: tools are good at
problems that I can’t do in my head and vice versa. We therefore
apply tools are far as is practical. SPARK, in particular, allows
the tool-supported problem domain to be “turned up to 11.”[6]
My (human) partner can then review my code knowing that the
tools have already taken care of a great many problems.
Reviewing time is then more productively spent considering the
issues that really matter such as safety and security requirements.
Oddly, Beck’s book hardly mentions static analysis at all. How
could the XP community have missed this point, when it is so
well-known in the high-integrity domain? We offer two possibly
reasons for this:

• The depth of static analysis available with traditional
languages is limited by the ambiguous nature of their
definition and the intractability of many static analysis
problems on those languages. In short, if you’re using
traditional, unsubsetted languages the dials only go up
to 4! This issue limits the usefulness of static analysis,
and so it remains less widely used than it might.

• The efficiency of any such analysis is crucial. If you
want someone to use a tool in preference to compiling
and testing, then the tool must be fast! Again, the
intractable nature of many static analysis problems on
traditional languages has limited the adoption of these
tools. Beck illustrates this point with his “learning to
drive” analogy—you need feedback as often as possible
in order to make many, small corrections to a process.

3. REFACTORING
Fowler introduces refactoring[5] as “…the process of changing a
software system in such a way that it does not alter the external

1 The SPARK programming language is not sponsored by or

affiliated with SPARC International Inc. and is not based on
SPARC™ architecture.

behaviour of the code yet improves its internal structure.” The
“does not alter the external behaviour” bit is important, since you
want to be able to verify that the system still behaves as expected
after the refactoring has been performed. Trying to add
functionality at the same time as refactoring therefore hinders this
ability. How do we know that the system’s behaviour has been
preserved by such a redesign? The XP community’s mantra “test,
test, test…” applies here. While we certainly agree that the
regular and pedantic application of regression testing is useful, the
limits of testing for ultra-dependable systems are well
known[3][4]. Isn’t there any more that we can do?
Once again, static analysis has a role to play here, but this has not
been widely recognized outside of the high-integrity community.
Consider data-flow analysis: if we know that a program is
statically free from data-flow errors prior to a refactoring, then it
seems reasonable to expect that property to be preserved by the
redesign—if it were not, it would almost certainly be indicative of
a bug! What other properties can be statically verified across a
refactoring? The answer largely lies in the contractual strength
of the language under analysis. Consider the following function
specification in Ada:
 function Sqrt (A : Natural) return Natural;

What properties (or “contract”) does this specification promise to
its users? Actually, not much—the function promises to take a
Natural parameter and to return a result of type Natural. The name
“Sqrt” is something of a red-herring—this function might
compute something like the square-root of its argument, but that
is in no way guaranteed or implied. The function could do pretty
much anything.
A conscientious Ada programmer might do better, writing:
subtype Sqrt_Domain is Natural range 0 .. 10000;
subtype Sqrt_Range is Natural range 0 .. 100;
function Sqrt (A : Sqrt_Domain) return
 Sqrt_Range;
This is better, but still leaves many details unspecified. There is
enough detail here for a compiler to generate code for a call to
Sqrt, but not much else.
To enable static analysis to be useful in refactoring, we need more
information. In SPARK, we can go as far as giving a specification
of partial correctness for the function:
subtype Sqrt_Domain is Natural range 0 .. 10000;
subtype Sqrt_Range is Natural range 0 .. 100;
function Sqrt (A : Sqrt_Domain) return
 Sqrt_Range;
--# return X => X ** 2 <= A and
--# (X+1) ** 2 > A;

Note also in SPARK that functions never have side-effects, so this
property is implicit in the specification. Now we have enough
information to make a static refactoring work. We could change
the implementation of Sqrt (say from a binary-search, to a
hardware-style “bit-bashing” algorithm) and re-verify that the
implementation still meets the contract using the various analysis
techniques at our disposal—in this case flow-analysis, verification
condition generation, and theorem proving. Moreover, this level
of verification can be achieved prior to re-testing of the system as
a whole.
Even without going to the lengths of partial correctness proofs,
we have found that the level of static analysis supported in
“minimal SPARK” to be very useful in protecting the integrity of
large systems during significant refactoring efforts. In particular,

5

SPARK requires the specification of global data access and mode
to be attached to all subprograms. Packages must also announce
the existence of their own static state and the manner of its
initialization. Many common refactorings involve moving the
persistent state of a system (for example, changing an abstract
state machine package into an instance of an abstract data type).
SPARK protects the engineer from mistakes, since the top-level
information-flow for a subsystem can be shown to be preserved
even if the internal structure and state is completely altered.
Once again, though, we find that this static-analysis based
approach to refactoring is little known. Only two languages
support the level of design-by-contract2 in specifications
required to really make the approach useful: SPARK and Eiffel.
Only SPARK emphasizes static verification of contracts over the
dynamic (i.e. testing).
With dynamic verification, XP advocates a “write the tests first”
approach. Is there an analogue of this approach in the use of static
analysis? It seems there is—we have long supported a “write the
contracts first” design approach with SPARK, where the contracts
of units are written as a design activity and then rigorously
checked against the eventual implementation using the SPARK
Examiner.

3.1 Refactoring tests
We often come across systems that are crying out to be
refactored. High-integrity systems, in particular, typically have a
long lifetime, and requirements change both during development
and maintenance. Such systems are clearly candidates for regular
refactoring, yet we often find this is not done: changes are added
which distort the original design, rather than allowing the original
design to be refactored so that the new requirements may be
implemented elegantly. Why is this so? A number of reasons are
often cited:

• “Because the code is finished.” There seems to be a
strong psychological effect whereby “finished” code is
deemed to be set-in-stone and never to be touched
again.

• Deadlines are always “too tight” to allow for a
refactoring activity. Very few projects we’ve ever seen
actually plan for refactoring.

• Refactoring code might be easy, but re-working a large
test set is seen as prohibitively expensive.

The latter point is interesting. XP says you can refactor and all the
tests should still work with no changes. This is true for “black
box” requirements based tests—of course, you should be able to
refactor the inner working of a system while preserving the top-
level behavior. Unfortunately, in the high-integrity world, we
often have somewhat Draconian requirements for structural test
coverage. Such tests are definitely affected by refactoring: we
have often heard that a piece of code cannot be re-designed, not
owing to the cost of changing the code, but because “it will break
all the coverage tests.”
We do not have a simple solution to this issue. Collecting
coverage data as a side-effect of requirements based tests is
certainly a good idea, but writing structural-based coverage test
cases just for the sake of getting a particular (typically “100%”)

2 “Design-by-contract” is a trademark of Interactive Software

Engineering Inc.

coverage result seems to be of dubious value, especially if these
very test cases inhibit the application of other useful activities
such as refactoring. One would hope that the simplification of
code resulting from a refactoring would actually improve
coverage results. We could therefore propose a principal that
says: using a stable set of requirements-based tests, refactoring
should only ever be allowed to maintain or improve structural
coverage of the code being refactored. Or, put another way, if a
refactoring degrades coverage, then you probably shouldn’t be
doing it!

4. OTHER XP PRACTICES
This section offers some brief comments on some of the other
core XP practices.

4.1 Coding Standards
The use of coding standards is well established in the
development of high-integrity software. The rules in such
standards range from simple lexical conventions (“Indent by 3
spaces and don’t use tabs...”) to semantically subtle program
properties (“Functions shall not have side-effects.”) We often find
two problems. Firstly, coding standards evolve within a company
or project based on historical events and the sometimes rather
personal whims of the engineers involved. Secondly, such
standards are often enforced by entirely manual review, rather
than through the use of tools, which is inefficient and often
incomplete, especially for the more subtle rules—no human I
know of can do global data-flow analysis in their head! We
strongly advocate the use of well-designed language subsets
supported as far as possible by tools. On SPARK projects, our
coding standards are remarkably short (rule 1 is “The code shall
be SPARK as defined by [...]”) with only a few additional
guidelines for non-SPARK code. We also set goals for static
analysis as entry criteria for subsequent code review, such as
requiring no unjustified flow-errors, or setting a target for the
number of verification conditions to be automatically proven by
the theorem-prover. We find such criteria more meaningful and
useful than the simpler forms of complexity metric gathered by
other tools. We always enforce simple lexical style rules, often
using the built-in support offered by recent Ada compilers.

4.2 On-site customer
This practice advocates having a customer as a full-time member
of your software development team. In the (unfortunately) rare
cases where we have been able to do this, we find this practice to
be of use. Customers come with a large amount of built-in
knowledge, particularly relating to the environment and domain
of the system that you’re building, which acts as an excellent
“ambiguity detector.” In interpreting and implementing a
particular requirement or function, an engineer is prone to jump to
a possibly wrong conclusions “Oh, that means X...”. An on-site
customer is likely to respond “Actually, no it means Y...”,
exposing ambiguity and incompleteness immediately, rather than
delaying such discovery until later in the life-cycle.

4.3 Simple Design
Beck sums up this practice as “Design the simplest thing that will
work now” for each integrated system build, rather than going for
a “Big Up-Front Design”3 that tries to encompass the entire

3 One XP advocate has coined this approach “BUFD the project

slayer...”

6

planned system. The motivation for this is that requirements will
invariably change, so most of a “big up-front design” ends up
being thrown away anyway, and a simple design can always be
re-factored later to add or adapt to requirements change.
While this Occam-like approach to software design has some
merit, we find one particular difficulty with it from out
perspective of building high-integrity systems: the need to
accommodate non-functional requirements, such as safety,
security and real-time properties. From our experience, it is very
difficult (or at least prohibitively expensive) to “refactor in” such
non-functional properties. Software safety and security properties
are often achieved by architectural means (such as partitioning),
which have to be considered from the outset of a project,
particularly if that project is to be subject to an external audit or
inspection by a regulator. With this in mind, we advocate a design
approach that uses non-functional properties to drive the top-level
architecture. The “keep it simple” rule can be used for individual
subsystems, with some assurance that their eventual composition
will preserve the required top-level behavior.

5. TWO PROJECTS
This section describes how we have adopted some XP practices in
two very different projects: the MULTOS CA and the SPARK
Examiner.

5.1 The MULTOS CA
The development of the MULTOS CA is fully described in [7].
This project initially led to our discovery of XP and how many
XP techniques we were already using. In particular the CA
development made use of the following techniques:
The Planning Game. We never stopped planning and re-planning
the development as the system evolved and (invariably)
requirements began to change.
Small Releases and Continuous Integration. The system was built
as a series of controlled releases, each adding a planned set of
functionality. The user-interface was development one cycle
“ahead” of the core functionality so that the GUI developed and
testing in build N could be used as the test harness for the
functions implemented in build N+1. This avoided the need for
expensive test harnesses and simulation.
Simple design. This was implemented within the guidance above.
We very carefully considered security properties and performance
before committing to a design.
Testing. The system was continually regression tested using an
ever-growing set of tests. Almost all tests were purely
requirements-based and were derived from the top-level formal
specification of the system. Automation of tests proved very
important: we used the Rational VisualTest environment to create
scripts and groups of tests that could be run individually or as a
group with as little human intervention as possible.
Refactoring. There was some refactoring as the system was built,
but it is interesting to note how many requirements changes were
accommodated by the design without the need for refactoring. In
particular, the system was designed to be extensible for several
versions of the MULTOS system—we started the project
implementing just a single version, but ended up delivering
support for three versions, without having to refactor the original
design.
Pair programming and Coding standards. While we didn’t use
the “two engineers at one desk” approach advocated by XP, we

did use static analysis and regular reviewing. Where possible,
coding standards were enforced by tools, such as the SPARK
Examiner for SPARK, and the BoundsChecker tool for C++.
Collective ownership. Within the restrictions of security imposed
by the CM system, all development engineers were able to access
and work on all the code. Note, though, that security and
independence requirements meant that the development and test
teams were not permitted write-access to each other’s sections of
the CM system.
Some XP practices were not used in the development of the CA.
These were:
Metaphor. The use of metaphor or “stories” as a requirements
engineering approach has some merit, but the CA was constructed
using a rigorous requirements engineering process (REVEAL)
and was formally specified using the Z language.
40-hour week. A laudable goal, which was almost attained on
average, although there were some weeks where this was
exceeded owing to hard deadlines.
On-site customer. Unfortunately, we were not able to implement
this practice. In retrospect this would have been useful—a small
number of defects were discovered during the customer’s
acceptable test process that almost certainly would have been
spotted much earlier by an on-site customer.

5.2 The SPARK Examiner
The SPARK Examiner is a software tool that supports the SPARK
language. It implements most of the functions of the front-end of
a compiler, but then goes on to implement a number of static
analyses such as checking the semantic rules of SPARK,
information flow analysis, and verification-condition generation.
Our discovery of XP led to some changes in the way that the
Examiner is developed and maintained. This section briefly
describes our current development and quality control approach in
terms of the core XP practices.
Development. Consider a simple addition to the SPARK
language—the addition of modular types, for instance. We start
with the SPARK language design itself, writing the rules and any
necessary subset restrictions. There may also be a phase of
defining the syntax and semantics of any additional annotations
that may be required. Development then proceeds incrementally,
with code and new test cases being developed at the same time.
Both positive tests (i.e. legal SPARK programs that produce some
expected output from the Examiner) and negative tests (i.e. illegal
programs that deliberately break the language rules) are
constructed. New tests are independently reviewed (i.e. by
another member of the team) before being added to the CM
system.
The SPARK Examiner is, of course, written in SPARK, so static
analysis is performed interactively, before code is ever compiled
or checked back in to the CM system.
Testing. The SPARK development environment contains a suite
several thousand tests, both positive and negative. The source and
expected results for each test are stored in our CM system, so a
complete history for each test is available. A developer can run
the tests in about 15 minutes on a contemporary PC.
Alternatively, an “overnight” regression test run is used. This
script checks out the latest “wavefront” sources for all the SPARK
tools, builds them, and runs both static analysis and tests. An
automated “diff” is then generated that highlights any discrepancy

7

between the master copy of the expected results and those just
obtained. A summary of the results is emailed to all team
members. Any differences have to be reviewed and approved by a
team member. If acceptable, then the new results are checked
back in to the CM system.
Regression Analysis. Part of the “overnight” regression testing
actually includes a complete static analysis of the Examiner
source. Once again, the expected results of this are stored in the
CM system, just like any other test result. This is often the first
place we look if a difference in behavior is observed – it’s
certainly easier to review a static analysis report than it is to look
at possibly hundreds of other test results. This is rare, though,
since all developers are encouraged to run the self-analysis
interactively during development, rather than waiting for the
subsequent “overnight” run.4 The SPARK language and the
Examiner are carefully designed so that this style of constructive
static analysis is tractable for large programs.
Supporting Regression Test. During the development of this
analysis and test strategy, we found one particular problem that
caused some difficulty. The Examiner’s analysis report normally
includes an error number and a source-file line number for each
error or warning reported. It is common that, during development,
we add or remove code that preserved all existing errors and
warnings, but simply changes the line numbers. Secondly, new
code may raise a new (expected) warning, but that will then
change the numbering of all subsequent warnings, so these show
up as wholly spurious “diffs” in the regression analysis. To solve
this problem, we implemented a new switch in the Examiner
called “plain output mode.” This instructs the Examiner to
suppress all line numbers, error numbers, and time-stamps in its
output, which significantly reduces the number of “spurious diffs”
in the regression analysis. This switch was initially only used
within the SPARK development team, but proved so useful that it
is now available to all users.5
Refactoring. Over the years, several significant refactorings of the
Examiner have been achieved. Indeed—many of these were
performed before the term “refactoring” had even been coined
and become commonly used. For example, the main Examiner
data-structures used to be library-level abstract state machines.
Some years ago, these were re-designed to be instances of simple
abstract data types, with the various analysis procedures declaring
their own “heaps” as local variables. These “heaps” (actually
arrays) are used to build the various data structures needed by
Examiner, but are then deallocated “for free” when the procedure
in question returns, just like any other local variable.6
Another example concerns the static semantic processing routines
for expressions. There are two kinds of expressions in SPAR—
“expression” and “annotation expression”. The former is a pure
subset of Ada’s normal form of expression, while the latter has an
extended syntax and semantics covering quantified terms, logical

4 One SPARK developer (who shall remain nameless…) is now

so dependent on the self-analysis that he often forgets to
compile his code at all, and then complains that his tests aren’t
working as expected, much to the amusement of the rest of the
team!

5 If only they read the manual…
6 Remember that SPARK has no access types, so we don’t use

allocators to build linked data structures.

implication and so on. The procedures for semantic analysis of
these two forms initially grew entirely separately, and remained
so for many years. Eventually, though, it became apparent that
there was so much in common between the processing of the two
forms that a refactoring was called for. The common processing
routines (e.g. the treatment of “primary” expressions, which is
common to both) were “lifted” into the enclosing package and
parameterized as necessary. This major simplification produced a
significant reduction in the amount of code, with absolutely no
visible difference in external behavior. Secondly, static analysis
was used during this process to ensure that each “lifted”
procedure preserved the contracts of the original form.
Aside—Porting the Examiner. SPARK is designed to have an
“unambiguous semantics”—it is free from all erroneous and
implementation-dependent behavior. One pleasant side-effect(sic)
of this is that SPARK is a remarkable portable language. A
testament to this is the ease with which we are able to port the
Examiner to new host platforms. The same self-analysis and
regression testing approach is used on all currently supported
platforms (IA32/Windows, SPARC/Solaris, and VAX/VMS) with
very nearly identical test results of all three. We have also been
able to construct (as yet unsupported) demonstration versions of
the Examiner on other platforms such as IA32/Linux, Mac OS X,
and Alpha/OpenVMS – these ports have been constructed and
have passed regression testing with little or no effort.

6. CONCLUSIONS
It seems that XP and the development of High-Integrity systems
are not such strange bedfellows after all. In particular:

• Many XP practices (such as regression testing and
coding standards) are well known and widely used in
the world of high-integrity software, where such
rigorous practices are the norm, rather than the
exception.

• Modern hardware, even with modest commodity PCs,
offers the kind of processing power that enables
extraordinary depths of analysis and volumes of tests to
be run in “coffee break” timescales.

• Static Verification offers an extra level of defense in
showing that a refactoring has preserved program
behavior. We have employed this technique for many
years on a long-lived and highly portable toolset
development.

• Static Verification offers an extra weapon in our
verification arsenal that we can use to complement
regression testing. A language like SPARK allows deep
analysis of subtle program properties, and can be
employed both during program construction and as a
pre-curser to regression testing.

The catch, of course, is that the depth and efficiency of static
verification critically depends on the language under analysis.
SPARK sets a particular high watermark in this domain, but
remains (at present) largely unknown to the XP community. This
may explain why the benefits of static verification have not been
reported more widely in the XP literature to date. There are signs
of life, though—Eiffel has brought design-by-contract to a wider
audience, and its benefits have been recognized by efforts such as
the Java Modeling Language (JML) which does aim to address
both static and dynamic verification. Static verification may yet
become a sexy and fashionable practice!

8

7. REFERENCES
[1] John Barnes. High Integrity Software: The SPARK Approach

to Safety and Security. Addison Wesley, 2003 ISBN 0-321-
13616-0.

[2] Kent Beck. Extreme Programming Explained. Addison
Wesley. ISBN 0-201-61641-6.

[3] Butler, Ricky W.; and Finelli, George B.: The Infeasibility of
Quantifying the Reliability of Life-Critical Real-Time
Software. IEEE Transactions on Software Engineering, vol.
19, no. 1, Jan. 1993, pp 3-12.

[4] Littlewood, Bev; and Strigini, Lorenzo: Validation of
Ultrahigh Dependability for Software-Based Systems.
CACM 36(11): 69-80 (1993)

[5] Fowler, Martin: Refactoring: Improving the Design of
Existing Code. Addison Wesley, 2000. ISBN 0-201-48567-2.

[6] Reiner, Rob: This is Spinal Tap, 1984. (The bit with the
amplifier…)

[7] Hall, Anthony and Chapman, Roderick: Correctness by
Construction: Building a Commercial Secure System. IEEE
Software Jan/Feb 2002. Also on www.sparkada.com

9

