
A Framework for Designing and Implementing
the Ada Standard Container Library

Jordi Marco
jmarco@lsi.upc.es

Xavier Franch
franch@lsi.upc.es

Dept. Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya

c/ Jordi Girona 1-3 (Campus Nord, C6)
E-08034 Barcelona (Catalunya, Spain)

ABSTRACT
An open issue of the Ada language is the definition of a
standard container library. Containers in this library (e.g.,
sets, maps and lists) shall offer some core functionalities
that characterise their behaviour (i.e., different strategies
for managing the elements stored therein) as well as other
general functionalities. Among these general functionalities,
we are interested in alternative ways for accessing the con-
tainers, namely direct access by position and traversals us-
ing iterators. In this paper, we present the Shortcut-Based
Framework (SBF), a framework aimed at providing suitable,
uniform, accurate and secure access by position and itera-
tors, while keeping other nice properties such as comprehen-
sibility and changeability. The SBF should be considered as
a baseline upon which the Ada standard container library
can be built. We assess the feasibility of our proposal defin-
ing a quality model for container libraries and evaluating
the SBF using some metrics defined with the Goal-Question-
Metric approach.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—Software libraries, Object-oriented design methods;
D.2.13 [Software Engineering]: Reusable Software—Re-
usable libraries; D.3.3 [Programming Languages]: Lan-
guage Constructs and Features—Frameworks, Data types
and structures; D.2.8 [Software Engineering]: Metrics—
Product metrics

General Terms
Design, Measurement.

Keywords
Container libraries, Iterators, Access by position, Quality
models.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGAda’03, December 7–11, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-476-2/03/0012 ...$5.00.

1. INTRODUCTION
Most important object-oriented (OO) programming lan-

guages include some standard libraries of reusable compo-
nents as part of their definition. One kind of such libraries
are container libraries. A container (also known as collec-
tion) may be defined as an object that contains (i.e., stores)
other objects; examples of containers are sets, maps and se-
quences. Some of the most well-known container libraries in
the OO world are: the Java Collections Framework (JCF) [1]
for Java; the Standard Template Library (STL) [18] for
C++; and the Eiffel Base Library [13] for Eiffel.
Unfortunately, the Ada language does not provide such a

standard container library, in spite of various attempts and
claims in this direction, among which we mention:

• Some existing widespread container libraries, as the
Charles Container Library [5], Booch Components [4],
etc.

• Some events, for instance the Standard Container Li-
brary for Ada workshop held during the Ada Europe
2002 conference.

• Some wide initiatives, e.g. the Application Standard
Components Library [2] or some action items issued by
the Ada Conformity Assessment Authority (remark-
ably the action item AI-302).

• Some opinions and claims, like those in the discussion
list at comp.lang.ada or the ACM SIGAda Chair Mes-
sage for March 2002 Ada Letters: “Such a [Container]
Library could be an excellent addition to the Ada In-
ternational Standard”.

Needless to say, the existence of a standard container library
for Ada would clearly contribute to the quality of the final
Ada artefacts and the effectiveness of the software develop-
ment process itself. For this reason, having a comprehensive,
structured and precise framework for designing and imple-
menting this library becomes utterly important, and this is
the objective of the present paper.
We propose in this article a framework [6, 12] (see Sect. 3)

named Shortcut-Based Framework (SBF) to drive the de-
sign and implementation of the prospective Ada Standard
Container library. The SBF is not intented to be a closed
proposal of the contents of the library; instead, it has been
defined as a baseline upon which a high-quality Ada Stan-
dard Container library can be developed. Software quality

49

is always important, but it is even more crucial in stan-
dard packages, intended to be used without changes once
deployed for a long period of time. In order to measure the
quality of the resulting library, we have already defined else-
where [8] a quality model for this kind of libraries built upon
the ISO/IEC 9126-1 Quality Standard [11], summarized in
Sect. 2. The SBF-based Ada Standard Container library we
are proposing is evaluated with respect to this quality model
in Sect. 4.

2. A QUALITY MODEL FOR THE ADA
STANDARD CONTAINER LIBRARY

In this section we summarise an ISO-based quality model
for the domain of container libraries. First we present the
ISO/IEC Quality Standard 9126-1 [11] on which this quality
model is based and then a brief description of some relevant
quality attributes that are of interest in our proposal. A
more exhaustive description of the model has been presented
at Ada-Europe 2003 [8].

2.1 The ISO/IEC 9126-1 Quality Standard
The ISO/IEC Quality Standard 9126-1 [11] provides an

appropriate and widespread framework for determining a
quality model for a given domain of software components.
An ISO/IEC-9126-1-based quality model is defined by means
of general characteristics of software, which are further re-
fined into subcharacteristics, which in turn are decomposed
into measurable attributes. Attributes collect the properties
that software components exhibit. Intermediate hierarchies
of subcharacteristics and attributes may appear making thus
the model highly structured.
The ISO/IEC 9126-1 standard fixes six top level charac-

teristics: functionality, reliability, usability, efficiency, main-
tainability and portability (see Table 1). It also fixes their
further refinement into subcharacteristics but does not elab-
orate the quality model below this level, making thus the
model flexible. The model is to be completed based on the
exploration of the particular software domain and its appli-
cation context; because of this, we may say that the stan-
dard is very versatile and may be tailored to domains of
different nature, such as the one of container libraries.

2.2 An ISO/IEC-based Quality Model for
Container Libraries

Functionality is probably the most relevant quality char-
acteristic in the domain of container libraries. Success of
the prospective Ada Standard Container Library requires
exhibiting the appropriate functionality once considered its
design requirements. It should be noted that “appropriate”
does not necessarily mean “exhaustive”, because an excess
of functionality would impact negatively in other criteria
such as usability or operability.
Table 2 shows the attributes (name, definition and exam-

ples) that play a part on some functionality subcharacteris-
tics. It is worth to remark that the Suitability subcharac-
teristic has been decomposed into two groups of attributes,
i.e., two new subcharacteristics:

• Core Suitability. Addresses the types of containers
offered and their implementations. These types are
mainly characterised by the operations for adding, re-
moving, modifying and searching elements.

Table 1: ISO/IEC 9126-1 quality standard
Functionality

suitability
presence and appropriateness of a set
of functions for specified tasks

accuracy
provision of right or agreed results or
effects

interoperability
capability of the software product to
interact with specified systems

security
prevention to (accidental or deliberate)
unauthorized access to data

compliance
adherence to functionality-related
standards or conventions

Reliability

maturity
capacity to avoid failure as a result of
faults in the software

fault tolerance
ability to maintain a specified level of
performance in case of faults

recoverability
capability of reestablish level of perfor-
mance after faults

compliance
adherence to reliability related stan-
dards or conventions

Usability

understandability
effort for recognizing the logical con-
cept and its applicability

learnability effort for learning software application

operability
effort for operation and operation con-
trol

attractiveness
capability of the product to be attrac-
tive to the user

compliance
adherence to usability related stan-
dards or conventions

Efficiency

time behavior
response and processing times;
throughput rates

resource utilization
amount of resources used and the du-
ration of such use

compliance
adherence to efficiency related stan-
dards or conventions

Maintainability

analysability
identification of deficiencies, failure
causes, parts to be modified, etc.

changeability
capability to enable a specified modifi-
cation to be implemented

stability
capability to avoid unexpected effects
from modifications

testability
capability to enable for validating the
modified software

compliance
adherence to maintainability related
standards or conventions

Portability

adaptability
opportunity for adaptation to different
environments

installability
effort needed to install the software in
a specified environment

co-existence
capability to co-exist with other inde-
pendent software in a common envi-
ronment sharing common resources

replaceability
opportunity and effort of using soft-
ware in the place of other software

compliance
adherence to portability related stan-
dards or conventions

• General Suitability. Keeps track of additional func-
tionalities offered by (most of) the containers of the
library, such as support for concurrent access or itera-
tors.

For the other subcharacteristics of functionality, we focus
on accuracy and security of access by position and access by

50

Table 2: Quality Attributes for some Functionality Subcharacteristics
Core Suitability

Attribute Definition Examples

Category variety
Range of different categories of containers offered by the
library Sequences, maps, sets, trees, graphs

Container variety Range of different containers provided by every category For sequences: stacks, queues, lists
Implementation

variety
Range of different implementations provided by every cate-
gory For maps: closed hashing, red-black trees

Operation variety Range of different operations provided by every container For stacks: empty, push, pop, top, isEmpty

General Suitability
Attribute Definition Examples

Direct access by
position

Types and operations for supporting direct access to ele-
ments in containers

Type position; operation for deletion by
position

Iterators Types and operations for supporting traversal of containers Bidirectional, unidirectional; read, read/write

Algorithmic variety
Range of generic algorithms present in the library or in par-
ticular containers Sorting, merging. For arrays: binary search

Accuracy
Attribute Definition Examples

Accurate access by
position

Policies and artifacts that ensure right results when access-
ing by position

A position bound to an element remains the
same while it is in the container

Accurate access by
iterator

Policies and artifacts that ensure right results when access-
ing by iterator

Operation for knowing if the current element
during traversal has changed

Security
Attribute Definition Examples

Secure access by
position

Policies and artifacts that ensure safe use of positions when
accessing the container

Operation for knowing if a position is bound
to the right element

Secure access by
iterator

Policies and artifacts that ensure safe use of iterators when
accessing the container

Read-only iterators may not be used in an
odd manner

iterators. The study of these two attributes is crucial, since
these types of access provoke some particular situations that
need to be addressed (e.g., modifications during iterations,
access by out-of-date positions, etc.).
From the other ISO/IEC-9126-1 subcharacteristics, we

address here understandability, changeability and time and
space efficiency (see Table 3).

• Understandability becomes a fundamental property for
the Ada community effectively using the library; at-
tributes in this subcharacteristic embrace design is-
sues, documentation and the complexity of the library.

• In our context, changeability means customization to
particular needs. A good degree of changeability will
allow extending the library with new types of contain-
ers and new implementations, and also extending or
restricting the behaviour of existing types.

• Efficiency is a classical requirement on container li-
braries, both time (with complexity measures and real
benchmarks) and space (amount of memory required
by each container implementation).

3. THE SHORTCUT-BASED FRAMEWORK
As mentioned in the introduction our main objective is

not to propose a concrete collection of containers to be in-
cluded in the Standard Container Library for Ada. Rather
we propose the use of a concrete framework for the design
of this library: the Shortcut-Based Framework [16]. This
framework allows solving the majority of drawbacks (with
respect to the quality criteria presented in Sect. 2) that are
present in the most widespread container libraries [15]. This
is achieved by means of the Shortcut concept that we pro-
pose at the core of our framework.

3.1 The Shortcut Concept
Shortcuts encapsulate the feature of location or position

of an object in a container. Shortcuts provide an abstract,
reliable and efficient (all the operations have O(1) as order of
complexity) alternative access path to the elements stored in
the container. Most of the existing container libraries recog-
nise the need for such a kind of alternative access method
and thus they have similar mechanisms but they are ad-hoc
implementation-dependent and not totally reliable propos-
als (e.g., iterator in STL [18], references in JCF [1], item in
LEDA [17], location in JDSL [9], etc.). Instead, we provide
an implementation-independent approach based on the use
of shortcuts to implement a generic container which acts as
a base class of the rest of concrete containers. Shortcuts
allow implementing only once, in the base class, the most
common capabilities (e.g., iterators) in a highly efficient and
reliable way. The implementation of both the shortcuts and
the common capabilities are decoupled from the details of
the implementation of its inheritors.

3.2 The Shortcut-Based Framework
In this section we outline the main features of the Shortcut-

Based Framework (SBF) together with some implementa-
tion details. The key point consists on storing the objets of
any concrete container in a Container class, while keeping
in the concrete container only the shortcuts bound to them.
We show throughout this section the complete development
of this idea.
First, we define the SBF hierarchy for container libraries.

This hierarchy has been built borrowing the main ideas from
the different hierarchies of some widespread container li-
braries [4, 18, 17]. Since, we are not interested in fixing
all the details of the hierarchy (i.e., which concrete contain-
ers, and which concrete operations in them, do exist) the

51

Table 3: Other Important Quality Attributes
Understandability

Attribute Definition Examples

Separation between type of
container - implementation

Degree of separation among the semantics of a type of con-
tainer and its available implementations

No assumptions on the available imple-
mentations

Uniformity
Same strategies and level of detail when dealing with the
same concept in different parts of the library

Access by position available to all types
of containers

Name appropriateness Behaviour of library features accordingly to their name
The getCurrent operation of an iterator
does not change the current element

Quality of documentation
Appropriateness and comprehension of the documentation
to make easy the use of the library

UML diagrams for describing the pack-
ages; browsing capabilities

Quality of design Quality of the design of the library Use of design patterns

Complexity
Size of the library and conceptual difficulty of the offered
features

Use of advanced implementation tech-
niques

Changeability
Attribute Definition Examples

Modularity Extent of the decomposition of the library into modules One package for container type
Internal reusability Degree of reusability of the code inside the library Use of abstract classes

Programming practices Adoption of best programming practices in-the-small
Avoid global variables; adopt name con-
ventions

Decoupling Independence of the different packages that are in the library Use the Template Method pattern
Quality of design Quality of the design of the library Use of design patterns

Complexity Difficulty of analysing the internal structure of the library Intensive use of object-oriented features

Time behavior
Attribute Definition Examples

Order of magnitude
Worst-case execution time of the operations of an imple-
mentation as the size of their input grow

Constant time on insertion, O(1); linear
time on removal, O(n)

Real time efficiency
Execution ellapsed time of (a pattern of) the operations of
an implementation with selected benchmarks

Number of ms. for list traversal with
20.000 elements in a given platform

Resource utilization
Attribute Definition Examples

Data structure
order of magnitude

Worst-case amount of storage required by the data structure
of an implementation as the number of its elements grows Linear space for a hashing strategy, O(n)

Data structure
real space efficiency

Number of bytes required by the data structure of an im-
plementation given the space required to represent the ele-
mental data types

n× the space of a pointer

Order of magnitude
of the operations

Worst-case amount of auxiliary storage required by the op-
erations of an implementation as the number of elements in
its data structure grows

Linear space for a sorting algorithm

framework should include just its general layout. A com-
plete hierarchy of a container library shall provide: a con-
tainer base class (where common capabilities are offered); a
hierarchy of iterators; locations for accessing and modifying
containers; concrete containers classes; and different imple-
mentation strategies for each concrete container. Our objec-
tive is to reuse in the concrete containers classes the common
capabilities of the (fully-implemented) container base class.
Figure 1 shows the hierarchy we have chosen for the SBF.
The classes involved in this hierarchy are:

• Bidirectional iterator. An abstract class that provides
the interface of this kind of iterator, i.e. iterators that
support forward and backward traversal of a container.

• Container iterator. An efficient implementation of Bidi-
rectional iterator enlarged with a new method that re-
turns the shortcut bound to the current item of the
iterator. This class is implemented over the base class
Container; as a consequence, it is fully independent of
the specific kind of container. All operations of this
class shall be O(1) to guarantee highly-efficient access
by iterator.

• Shortcut. Defines the interface of the the concept of
shortcut which encapsulates the feature of location or
position of objects.

• Container shortcut. An efficient (i.e., O(1) time) and
secure implementation of the Shortcut interface. Con-
tainer shortcut is implemented over the base class Con-
tainer; as a consequence, it is fully independent of the
specific kind of container but can be used for access to
items them store.

• Container. This base class acts as a common parent
class for all kinds of containers. It provides the inter-
face and implementation of the most common capabil-
ities of container libraries.

• Concrete containers. Children classes of Container
that are not leaves, which represent different types of
containers (list, map, etc.). Each of them adds the
interface and implementation of its specific function-
alities to the ones inherited from the Container class.

The strategy chosen to implement these classes con-
sists on storing the items in the base class Container
and the shortcuts bound to them in a concrete imple-
mentation (an array, dynamic storage, ...). In order
to do this, specific operations of concrete containers
are implemented using (if it is necessary) an opera-
tion implemented by their subclasses (i.e., using the
Template Method design pattern [10]). Concrete con-
tainers also define as protected the interface of the de-

52

Shortcut<Item>

Item ItemOf()
bool Defined()

Bidirectional
iterator<Item>

BindToContainer()
First(), Last(),
Next(), Previous(),
Item CurrentItem()
IsDone()

Concrete container 1

Operations for Container 1
Operations to be overriden

Concrete container n

Concrete implementation
1 of Container 1

Overriding operations
...

...

...

Container
iterator<Item>

BindToContainer()
First(), Last(),
Next(), Previous(),
Item CurrentItem()
IsDone()
Container_shortcut

CurrentShortcut()

Container<Item>

Container_shortcut Add (Item)
Container_Shortcut AddBefore(Item,

Container_shortcut)
Delete (Shortcut)
Modify (Shortcut, Item)

Container
shortcut<Item>

Item ItemOf()
bool Defined()

Operations for Container n
Operations to be overriden

Concrete implementation
k of Container 1

Overriding operations

Figure 1: The Shortcut-Based Framework

ferred operations that appear as a result of applying
the Template Method design pattern (that we call con-
crete interface) and implement a (in some cases non-
efficient) version of them using the Container interface
and shortcuts. We want to remark that this imple-
mentation strategy uses the base class Container as a
black box and, at the same time, makes the concrete
container a black box for its children classes. More-
over, all the operations of the container class are O(1).
Last but not least, each concrete container is an im-
plementation (non-abstract) class.

• Concrete implementations. Children classes of con-
crete containers that are leaves. These classes imple-
ment the concrete interface by means of data struc-
tures. They inherit all the functionalities of the con-
crete container and as a consequence their implemen-
tation can be made avoiding iterators and locations.
On the other hand, inherited implementations may re-
main if they already fulfil efficiency requirements.

3.3 Implementation Details
The essential point consists in maintaining an efficient

mapping from shortcuts to items in the Container base class.
There are three possibilities to implement this mapping de-
pending on the underlying memory management scheme:

1. Using dynamic storage without garbage collection. In
this case the Shortcut class shall be implemented with
a smart pointer [7]. Smart pointers are characterized
by the fact that deletion of allocated objects does not
take place until there are no shortcuts bound to them.
The smart pointer shall point to a tuple containing the

object and a deleted flag, i.e., an attribute to record
if the object is deleted or not. On the other hand,
the Container base class shall be implemented with a
double linked list of these tuples in order to have effi-
cient bidirectional iterators. In the sample code given
in this section we use this scheme.

2. Using dynamic storage with garbage collection. The
smart pointer shall be substituted by a regular pointer.
There are no more changes with respect the previous
approach.

3. Using an array. In this case shortcuts shall be im-
plemented as tuples of an index to the array position
and an object identifier which allows check if the ob-
ject corresponding to the index position of the array
has changed. Then the Container base class shall be
implemented as an array of tuples which contain the
object, a item identifier (counts the updates of the ar-
ray position) and two indexes to the next and previous
tuples linking the elements in the iterator ordering. As
released shortcuts (the deleted array positions) shall
be available somehow to allow further reassignment,
we shall link them too. Additional index members
corresponding to the position of the first object, the
position of the last object and the first free position
shall be maintained in the Container base class.

As a sample of these three schemes, Figure 2 shows the
array-based one.

Container

Object:

ObjectID: 2

Next: N-4

Prev: 3

Object: O3

ObjectID: 2

Next: N-3

Prev: N-1

Object: O1

ObjectID: 3

Next: N-1

Prev: -1

Object:

ObjectID: 5

Next: N-2

Prev: 2

Object:

ObjectID: 2

Next: 3

Prev: -1

Object:

ObjectID: 5

Next: k

Prev: N-2

Object: O4

ObjectID: 3

Next: -1

Prev: 0

Object: O2

ObjectID: 1

Next: 0

Prev: 1

0 2 N-331 N-4 N-2 N-1

...

First: 1

Last: N-3

FirstDeleted: 2

Examples of defined Shortcuts† Examples of not defined Shortcuts

Index: 0

ObjectID: 2

Index: N-1

ObjectID: 1

Index: N-3

ObjectID: 3
Index: 0

ObjectID: 1

Index: 3

ObjectID: 4

Index: N-3

ObjectID: 0

† Defined Shortcuts are those which ObjectId is equal to the ObjectId of the corresponding array position

Figure 2: Array-based implementation scheme

It must be remarked that shortcut assignment is properly
managed in both schemes. Using dynamic storage, the class
defining smart pointers redefines the assignment to detect
that a new shortcut has come up. Using an array, normal
behaviour of assignment is sufficient.
It can be observed that shortcuts require some extra time

and space in order to get all its benefits. We will assess
efficiency of the approach in Sect. 4.
We outline here a sample code1 of the SBF implemen-

tation of five participants in the proposed structure, Con-
tainer shortcut, Container iterator, Container, the concrete
container Map and an implementation of the concrete con-
tainer Map: MapArray. This naive implementation has been
chosen for illustrating that existing shortcuts and iterators

1The complete code can be found at
www.lsi.upc.es/∼jmarco/SBFAdaImplementation.zip

53

remain valid even in data structures that make rearrange-
ments of elements. The specifications and implementations
of the Container shortcut and the Container iterator are in
the containers specification and body packages. The imple-
mentation of shortcuts is made using dynamic memory.

Package specification of the Container class (in file con-
tainers.ads). This package contains the specification of short-
cuts, iterators and containers. We use a Pointer class from
the SmartPointer package, which encapsulates the definition
of smart pointers. The implementation of the Shortcut and
Iterator classes is the same, it stores a smart pointer Ptr

to the container node where the item bound to the shortcut
or to the iterator is, along with an access to the Container.
Notice that in the Delete operation of the Container class,
the Shortcut parameter is in out in order to set its smart
pointer to NULL for decrementing the number of references
to the element removed.

with Ada.Finalization;
with SmartPointer;
with SmartPointer.To;
with Bidirectional_Iterators; generic

type Item is private;
package Containers is

type Container is tagged private;
--
-- Container Shortcut
--

type Shortcut is tagged private;
function "=" (ShL,ShR: Shortcut) return Boolean;
pragma Inline ("=");
function Item_Of (Sh: Shortcut) return Item;
pragma Inline (Item_Of);
function Defined (Sh: Shortcut) return Boolean;
pragma Inline (Defined);

--
-- Container Iterator
--

package Container_Iterators is new
Bidirectional_Iterators(Item);

type Iterator is new
Container_Iterators.Bidirectional_Iterator
with private;

Procedure Bind_To_Container(It:out Iterator;
C: Container’Class);

pragma Inline (Bind_To_Container);
Procedure First (It : in out Iterator);
pragma Inline (First);
... -- other iterator’s operations
function "=" (ItL,ItR:Iterator)return Boolean;
pragma Inline ("=");
procedure Swap(It1, It2 : in out Iterator);
pragma Inline(Swap);

--
-- Container
--

procedure Add(In_The_Container:in out Container;
Elem: Item);

procedure Add_Before
(In_The_Container:in out Container;
The_Shortcut:Shortcut’Class;Elem: Item);

function Shortcut_To_The_Last_Item_Added
(In_The_Container:Container’Class)
return Shortcut;

procedure Delete(In_The_Container:in out
Container;The_Shortcut:in out Shortcut’Class);

procedure Modify (In_The_Container:in out
Container;The_Shortcut:Shortcut’Class;Elem:Item);

function Cardinality (C:Container)return Natural;
pragma Inline(Cardinality);
Undefined_Shortcut : exception;
Iterator_Is_Not_Bound : exception;
Iterator_Out_Of_Range : exception;

private
type AccessContainer is access all

Container’Class;
type Node is
record
Elem: Item;
Next: SmartPointer.Pointer;
Previous: SmartPointer.Pointer;
Deleted_Flag: Boolean := FALSE;

end record;
type Shortcut is new Ada.Finalization.Controlled
with record
Container: AccessContainer;

Ptr : SmartPointer.Pointer;
end record;
type Iterator is new
Container_Iterators.Bidirectional_Iterator with
record
Container: AccessContainer;
Ptr: SmartPointer.Pointer;

end record;
type Container is new Ada.Finalization.Controlled
with record
AccessC: AccessContainer;
Cardinality: Natural := 0;
Dummy: SmartPointer.Pointer;
Last_Item_Added: SmartPointer.Pointer;

end record;
procedure Initialize(C : in out Container);
procedure Finalize(C : in out Container);
procedure Adjust(C : in out Container);
package SP is new SmartPointer.To(Node);

end Containers;

Operations of the Container shortcut class. This code is
in the Containers package body. We do not present here
the "=" function which implementation is straightforward.
Notice that both operations below have constant time cost.

function Item_Of (Sh : Shortcut) return Item is
begin

if not Defined(Sh) then
raise Undefined_Shortcut;

end if;
return Value(Sh.Ptr).Elem;

end Item_Of;

function Defined (Sh : Shortcut) return Boolean is
begin

if IsNull(Sh.Ptr) then return false;
elsif Sh.Container = null then return false;
else return not SP.Value(Sh.Ptr).Deleted_Flag;
end if;

end Defined;

Operations of the Container iterator class. This code is in
the Containers package body too. We only show the Swap
procedure which interchange the iterator order of the items
associated to the two iterators, and the CurrentShortcut
function which returns the Shortcut associated to the cur-
rent item. Smart pointer assignment inside this method
keeps track of the existence of a new shortcut to the in-
volved element (this also happens in iterator assignment);
also, the container bound to the shortcut is the container
bound to the iterator through BindToContainer. The rest
of operations are the usual ones for iterators and are imple-
mented straightforwardly. As in the case of the Shortcut
class, all the operations need O(1) time in the worst case.

function CurrentShortcut (It : Iterator’Class)
return Shortcut is

begin
if IsDone(It) then

raise Iterator_Out_Of_Range;
end if;
return Shortcut’(Ada.Finalization.Controlled

with Container => It.Container, Ptr => It.Ptr);
end CurrentShortcut;

procedure Swap(It1, It2 : in out Iterator) is
PtrAux : SmartPointer.Pointer;
begin
if not IsDone(It1) and not IsDone(It2)

and It1 /= It2 then
if Value(It1.Ptr).Next /= It2.Ptr and

Value(It2.Ptr).Next /= It1.Ptr then
AccessValue(Value(It1.Ptr).Next).Previous:=It2.Ptr;
AccessValue(Value(It1.Ptr).Previous).Next:=It2.Ptr;
AccessValue(Value(It2.Ptr).Next).Previous:=It1.Ptr;
AccessValue(Value(It2.Ptr).Previous).Next:=It1.Ptr;
PtrAux := Value(It1.Ptr).Next;
AccessValue(It1.Ptr).Next := Value(It2.Ptr).Next;
AccessValue(It2.Ptr).Next := PtrAux;
PtrAux := Value(It1.Ptr).Previous;
AccessValue(It1.Ptr).Previous:=

Value(It2.Ptr).Previous;
AccessValue(It2.Ptr).Previous := PtrAux;
elsif Value(It1.Ptr).Next = It2.Ptr then
AccessValue(It2.Ptr).Previous:=

Value(It1.Ptr).Previous;
AccessValue(Value(It1.Ptr).Previous).Next:=It2.Ptr;
AccessValue(Value(It2.Ptr).Next).Previous:=It1.Ptr;
AccessValue(It1.Ptr).Next := Value(It2.Ptr).Next;

54

AccessValue(It2.Ptr).Next := It1.Ptr;
AccessValue(It1.Ptr).Previous := It2.Ptr;
else
AccessValue(It1.Ptr).Previous:=

Value(It2.Ptr).Previous;
AccessValue(Value(It2.Ptr).Previous).Next:=It1.Ptr;
AccessValue(Value(It1.Ptr).Next).Previous:=It2.Ptr;
AccessValue(It2.Ptr).Next := Value(It1.Ptr).Next;
AccessValue(It1.Ptr).Next := It2.Ptr;
AccessValue(It2.Ptr).Previous := It1.Ptr;
end if;
PtrAux := It1.Ptr;
It1.Ptr := It2.Ptr;
It2.Ptr := PtrAux;
end if;

end Swap;

Operations of the class Container. To get the flavor, we
present just the Add and the Delete (by shortcut) opera-
tions. Add implements the insertion in a double linked list
while Delete implements the deletion marking as deleted the
item associated to the shortcut, if any, setting to NULL the
shortcut members Ptr and Container, and the Node smart
pointer members next and previous. We remark that the
time efficiency is optimal, O(1), as it was required.

procedure Add (In_The_Container : in out Container;
Elem: Item) is

Ptr : Pointer := Create;
begin
AccessValue(Ptr).Elem := Elem;
AccessValue(Value(In_The_Container.Dummy).Previous).

Next:=Ptr;
AccessValue(Ptr).Previous:=

Value(In_The_Container.Dummy).Previous;
AccessValue(Ptr).Next:=In_The_Container.Dummy;
AccessValue(In_The_Container.Dummy).Previous:=Ptr;
In_The_Container.Cardinality:=

In_The_Container.Cardinality+1;
In_The_Container.Last_Item_Added := Ptr;

end Add;

procedure Delete(In_The_Container: in out Container;
The_Shortcut:in out Shortcut’Class) is

begin
if Defined(The_Shortcut) then
if The_Shortcut.Container

=In_The_Container.AccessC then
AccessValue(The_Shortcut.Ptr).Deleted_Flag := true;
AccessValue(Value(The_Shortcut.Ptr).Previous).Next:=

Value(The_Shortcut.Ptr).Next;
AccessValue(Value(The_Shortcut.Ptr).Next).Previous:=

Value(The_Shortcut.Ptr).Previous;
SetNull(AccessValue(The_Shortcut.Ptr).Previous);
SetNull(AccessValue(The_Shortcut.Ptr).Next);
if The_Shortcut.Ptr =

In_The_Container.Last_Item_Added then
SetNull(In_The_Container.Last_Item_Added);
end if;
SetNull(The_Shortcut.Ptr);
The_Shortcut.Container := null;
In_The_Container.Cardinality :=

In_The_Container.Cardinality-1;
else
raise Undefined_Shortcut;
end if;
end if;

end Delete;

Concrete Container Map class. This class is in the sec-
ond level of the SBF class hierarchy. The concrete container
Map bounds values to keys. We show here the package spec-
ification of this class and the implementation of the map
operation Delete (by key) which illustrates the use of the
Template Method design pattern. The identifiers of the de-
ferred operations that appear, as well as the type represen-
tations, have the string Con as prefix. The ConDelete oper-
ation deletes the shortcut stored in a concrete implementa-
tion of the container abstraction; this shortcut is returned
as result and used then to delete the item. Actually this
implementation of Delete does not depend on the concrete
implementation of the map container. We want to remark
that its execution time is the same as the execution time
of the concrete deferred operation (shortcut operations take
O(1) time).

generic
type Key is private;
type Value is private;
with function "=" (L, R : Key) return Boolean is <>;
with function Key_Of (I : Item) return Key is <>;
with function Value_Of (I : Item) return Value is <>;

package Containers.Maps is
type Map is new Container with private;
procedure Add (In_The_Container : in out Map;

Elem: Item);
procedure Add_Before (In_The_Container : in out Map;

The_Shortcut: Shortcut’Class; Elem: Item);
procedure Delete (In_The_Container : in out Map;

The_Shortcut: in out Shortcut’Class);
procedure Modify (In_The_Container : in out Map;

The_Shortcut: Shortcut’Class; Elem: Item);
procedure Delete (In_The_Container : in out Map;

The_Key: Key);
function Get (In_The_Container : Map;

The_Key: Key) return Value;
function Exist (In_The_Container : Map;

The_Key: Key) return Boolean;
Con_Error : exception;
Not_Existing_Key : exception;

private
type Map is new Container with
record
Sh : Shortcut;

end record;
subtype Con_Item is Shortcut;
subtype Con_Key is Key;
subtype Con_Value is Shortcut;
function Con_Key_Of(CI:Con_Item)return Con_Key;
pragma Inline(Con_Key_Of);
function Con_Value_Of(CI:Con_Item)return Con_Value;
pragma Inline(Con_Value_Of);
procedure Con_Add (In_The_Container:in out Map;

Elem: Con_Item);
procedure Con_Delete (In_The_Container:in out Map;

The_Key: Con_Key);
function Con_Get (In_The_Container:Map;

The_Key: Con_Key) return Con_Item;
function Con_Exist (In_The_Container : Map;

The_Key: Con_Key) return Boolean;
end Containers.Maps;

The Delete map operation uses Dispatching operations in
order to call the concrete operations of the implementation
class that has called Delete.

procedure Dispatching_Delete (In_The_Container :in out
Map’Class; The_Key: Con_Key) is

begin
Con_Delete(In_The_Container,The_Key);

end Dispatching_Delete;

procedure Delete (In_The_Container : in out Map;
The_Key: Key) is

Sh : Shortcut;
begin
Sh := Dispatching_Get(In_The_Container,The_Key);
Dispatching_Delete(In_The_Container,The_Key);
Containers.Delete(Container(In_The_Container),Sh);
end Delete;

Now, we consider a possible concrete implementation, named
MapArray for the concrete container Map. We have chosen
this example because it shows the main points of the SBF:

• The application of the Template Method design pat-
tern.

• The use of parent and children classes as black boxes.

• The persistence of iterators and shortcuts, even when
the concrete implementation makes rearrangements of
items inside the underlying data structure (as it is the
case of MapArray).

• The possibility of defining generic algorithms that work
over any kind of containers.

Concrete Implementation MapArray. This class is at the
bottom level of the SBF class hierarchy. This array-based

55

implementation of the Map includes the code for the deferred
concrete operation ConDelete. It is worth to remark that
this implementation changes positions of elements in the
array; in despite of these rearrangements, all the existing
shortcuts and iterators keep being valid.

procedure Con_Delete(In_The_Container:in out MapArray;
The_Key: Con_Key) is

begin
if not Con_Exist(In_The_Container,The_key) then

raise Not_Existing_Key;
end if;
In_The_Container.FirstFree :=

In_The_Container.FirstFree-1;
for i in In_The_Container.Cache ..

In_The_Container.FirstFree-1 loop
In_The_Container.MapA(i) :=

In_The_Container.MapA(i+1);
end loop;
SmartPointer.SetNull(
In_The_Container.MapA(In_The_Container.FirstFree).Ptr);

end Con_Delete;

3.4 Use of the SBF
We illustrate here how to use a SBF-based Ada Con-

tainer Library by presenting two generic algorithms over it:
Min In Range and Sort. The Min In Range algorithm re-
turns the minimun element found between two iterators in
a given order. The Sort algorithm sorts the elements of a
container (with respect to the iteration order). Fig. 3 shows
an example of the last one in which can be observed that
after sorting the container all the shortcuts refer to the right
object. We remark that these generic algorithms work for
any kind of container with the same time efficiency (because
iterators are independent of the concrete container).

The Min In Range generic algorithm

generic
type Item is private;
with function "<" (L,R:Item) return boolean is <>;
with package BI is new Bidirectional_Iterators(Item);
use BI;

function Min_In_Range(FirstIt,LastIt:
BI.Bidirectional_Iterator’Class)
return BI.Bidirectional_Iterator’Class is

ItMin,It: BI.Bidirectional_Iterator’Class:= FirstIt;
begin

while not IsDone(It) and It /= LastIt loop
if CurrentItem(It) < CurrentItem(ItMin) then

ItMin := It;
end if;
Next(It);

end loop;
return ItMin;

end Min_In_Range;

The sort generic algorithm

generic
type Item is private;
with function "<" (L,R:Item) return boolean is <>;
with package C is new Containers(Item);
use C;
procedure Sort (C1 : in out C.Container’Class);

procedure Sort (C1: in out C.Container’Class) is
function Min_In_Range is new
GenericAlgorithms.Min_In_Range(Item => Item,

"<" => "<", BI => C.Container_Iterators);
It1, It2, ItMin : C.Iterator;

begin
if Cardinality(C1) /= 0 then
Bind_To_Container(It1,C1);
Bind_To_Container(It2,C1);
Last(It2);
Next(It2);
while not IsDone(It1) loop

ItMin:=Iterator(Min_In_Range(It1,It2));
Swap(It1,ItMin);
Next(It1);

end loop;
end if;

end Sort;

5 3 1 2 7 7

s1 s2 s3client shortcuts

After sorting a container client shortcuts refer to same element and

concrete container not change

1 2 3 5 7 7

s1 s2 s3client shortcuts

Figure 3: Sorting a container.

4. EVALUATING THE SHORTCUT-BASED
FRAMEWORK

In this section we carry out the assessment of the SBF
introduced in the last section. We proceed as follows. First
we define some metrics for reasoning about the quality of a
SBF-based Ada container library, using the ISO/IEC-9126
quality model for container libraries presented in Sect. 2
and then we reason about how the SBF affects the value of
these metrics. Remarkably, this study is carried out without
making any assumption about the library other than it is
built on top of our framework.
There are many proposals for defining metrics. We have

adopted one of the most widespread approaches, the Goal-
Question-Metric (GQM) [3]. In GQM, goals of the product
under measurement are identified, and then some questions
are raised to characterize the way the assessment of a spe-
cific goal is going to be performed. Last, a set of metrics
is associated with every question in order to answer it in
a quantitative way; metrics can be objective or subjective.
The final result of the GQM approach is a hierarchical struc-
ture in graph-like form, since metrics may influence in more
than one question, and questions may be related to more
than one goal. Goals are composed of four elements: pur-
pose, issue, object and viewpoint. In our framework, these
elements take the following form:

• Purpose. Presence or absence of a particular feature
or characteristic in the library.

• Issue. The GQM recommends to identify quality goals;
then, we define one issue for each attribute of the
ISO/IEC-based quality model. As a consequence, we
have as many goals as quality attributes.

• Object. Always the SBF-based Ada Standard Con-
tainer Library.

56

Table 4: GQM Model for the Suitability Attributes
Goal Question Metric Value

Purpose: Have an appropriate
Has the library the most frequently

% of basic categories N.A.
Issue: Category variety

used categories of containers?

Viewpoint: Ada community
Has the library a robust proposal

100 − % of unnecessary categories N.A.
of categories of containers?

Purpose: Have an appropriate

Has the library the most frequently used
types of containers for each category?

mean(% of basic types of containers for
each category it has)

N.A.

Issue: Container variety
Has the library a robust proposal

100 − % of conflicts among two basic
types of containers

N.A.
Viewpoint: Ada community

of types of containers? 100 − mean(% of unnecessary types of
containers in each category it has)

N.A.

Has the library the most frequently used
types of implementation strategies for
each category?

mean(% of basic implementation stra-
tegies for each type of container it has)

N.A.Purpose: Have an appropriate
Issue: Implementation variety
Viewpoint: Ada community Has the library a robust proposal of

implementation strategies for each con-
tainer?

100 − mean(% of unnecessary imple-
mentations of containers in each cate-
gory it has)

N.A.

Purpose: Have an appropriate
Issue: Operation variety

Has the library the most frequently used
operations for each container?

mean(% of basic operations in each
type of container it has)

N.A.

Viewpoint: Ada community
Has the library a robust proposal of op-
erations for each container?

100 − mean(% of unnecessary opera-
tions in each type of container it has)

N.A.

N.A.: Not Affected

• Viewpoint. There are two viewpoints: the Ada com-
munity, as end user of the library; and the library de-
velopers themselves, who may have their own interests.

4.1 Assessment of Core Suitability
Table 4 presents a summary of goals, questions and met-

rics for the suitability attributes2. Questions are the same
for the four goals bound to the four suitability attributes:
expressive power embraced by the library, and quality of its
contents.
With respect to expressive power, we feel necessary to dis-

tinguish among basic and advanced categories, types of con-
tainers, implementation strategies and operation sets. The
concept of basic depends on the viewpoint (this is marked in
the table with the italics style). So, the Ada community may
classify e.g. graphs as a basic category of containers or as
advanced one, depending on their particular requirements.
In this paper we focus on basic elements, to simplify met-
rics definition; a deeper analysis shall consider advanced ele-
ments yielding to additional metrics. Therefore, the metrics
are defined as a measure of the basic elements of each kind
present in the library. We argue that the metrics are not
affected at all by the adoption of the SBF; in other words,
the containers, implementations and operations chosen to
be present in the library would not be altered or restricted
anyway by our proposal. Some particular remarks about
situations that are problematic in other approaches but not
in ours follow:

• The SBF allows types of containers with arbitrary re-
moval and modification operations.

• The SBF allows implementations with any kind of mem-
ory management (arrays, dynamic storage with or with-
out garbage collection, resizable memory chunks, etc.).

2It is not a goal of the paper to give detailed arguments
supporting this particular model; in fact, this would require
to present a whole metrics plan as defined in [19].

• The SBF allows implementations with rearrangement
of elements in its data structure after modifications
(e.g., open addressing hashing).

We characterize content quality by robustness, basically
presence of unnecessary or conflicting elements in the li-
brary. Again, our proposal does not interfere with the ro-
bustness of the library: shortcuts do not improve or damage
the robustness of the core suitability of the library.

4.2 Assessment of other Functionality Attributes
Table 5 shows an excerpt of the GQM model for other

functionality attributes. Some explanations follow:

• Access by position is characterized by the set of op-
erations that use shortcuts to access the elements in
the container: lookup, removal and modification. We
measure the percentage of containers that provide each
of these operations. The SBF provides 100% coverage.

• For iterators, the questions elucidate which types exist
(see for instance [18] for a summary of types of iter-
ators). We show as example the questions for two of
those types. We use the same metric as before with
the same 100% result.

• Concerning algorithmic variety, we distinguish among
the algorithms provided by the library and the possi-
bility of defining new ones3. In both cases we focus
on algorithms using positions or iterators. The SBF
is well-suited for both categories, because it does not
restrict the type of algorithms that can be designed
(see Sect. 3.4 for examples). Remarkably, generic al-
gorithms that traverse the container using iterators are
allowed to modify the container during iteration.

3This last question is also relevant for changeability; we re-
mark that the GQM approach allows questions to be bound
to more than one goal.

57

Table 5: GQM Model for other Functionality Attributes
Goal Question Metric Value

Does the library provide an operation
for retrieving by position?

% of containers that provide it 100 %
Purpose: Have
Issue: Access by position

Does the library provide an operation
for removing by position?

% of containers that provide it 100 %
Viewpoint: Ada community

Does the library provide an operation
for modifying by position?

% of containers that provide it 100 %

Purpose: Have
Issue: Access by Iterators

Does the library allow removing during
iteration?

% of containers that provide it 100 %

Viewpoint: Ada community
Does the library allow modifying during
iteration?

% of containers that provide it 100 %

Purpose: Have
Has the library the most frequently used
algorithms?

% of basic generic algorithms N.A.

Issue: Algorithmic variety
Viewpoint: Ada community

Does the library allow defining new
generic algorithms that work with all
containers?

% of containers for which is
possible

100 %

Is it impossible to access to an item
other than the original one?

100% − % of cases that is
possible

100 %

Purpose: Have
Issue: Accurate Access by position
Viewpoint: Ada community

Is it possible to use implementation
strategies that make rearrangements
without making positions out-of-date?

% of cases that is possible 100 %

Do positions remain valid when inser-
tions or deletions take place?

% of cases that remains valid 100 %

Purpose: Have
Issue: Accurate Access by iterator

Is it impossible to traverse the data
structure beyond the last element?

100% − % of cases that is
possible

100 %

Viewpoint: Ada community
Does the iterator remain valid when in-
sertions or deletions take place?

% of cases that remains valid 90 %

Is it impossible to use a position to ac-
cess to a wrong container?

100% − % of cases that is
possible

100 %

Purpose: Have
Issue: Secure Access by position
Viewpoint: Ada community

Is an exception raised if a position which
does not have associated an object is
used?

% of cases that is raised 100 %

Is it possible to know if a position its
bound to an element in a container?

% of cases that it is possible 100 %

Purpose: Have
Issue: Secure Access by iterator

Is it possible to know if an iterator is
still valid or not?

% of cases that is possible 100 %

Viewpoint: Ada community
Is it impossible to use operations not
valid given the type of the iterator?

100% −% of cases that remains
valid

100 %

N.A.: Not Affected

• In accuracy and security goals, we have included ques-
tions for identifying those situations that can yield to
erroneous behaviour. We include some examples in the
table addressing to scenarios that typically fail to be-
have accurately in other proposals. For instance, the
SBF ensures accuracy of results even for those strate-
gies that rearrange the elements in the data structure.
Metrics just count the percentage of failure cases. We
remark that the SBF suffers just a restriction: removal
of the current element during an iterator makes the it-
erator undefined4.

4.3 Assessment of Understandability and
Changeability

Briefly, we summarize in this section the points that show
how the SBF supports these attributes. First, the concept
of shortcut is in fact a kind of container-oriented design pat-
tern; in fact, we have formulated the SBF in terms of design

4Even this restriction could be avoided with a little extra
cost, but we have considered it unnecessary.

patterns [16] using the notation of [10]. The use of design
patterns has been mentioned in Sect. 2 as a technique sup-
porting quality of design, and also enhances quality of docu-
mentation and uniformity, since all the concepts are applied
the same way to all kinds of containers.
The internal structure of the SBF exhibits also other prop-

erties that have been identified as quality attributes. First,
access by position and iterators rely on a clear distinction
among specification and implementation of containers; fur-
thermore, shortcuts and iterators follow this distinction, i.e.
they are formulated in terms of the specification and do not
impose any restriction on the implementations of the con-
tainers. Second, complexity is kept up to a minimum level:
for instance, the set of operations to manage shortcuts and
iterators is small and always the same, shortcuts are ob-
tained as a result of the usual insertion operation without
any further action, etc. Next, other design properties such as
modularity and loose coupling are fulfilled as a consequence
of our proposal. Last, internal reusability is favoured due
to the organization of the class hierarchy in the SBF; this
property makes library customization and extension easier.

58

4.4 Assessment of Efficiency
The assessment of the SBF concerning efficiency turns

out to be a crucial point. It is clear that there must be a
price to pay for having access by position and iterators ful-
filling suitability, accuracy, security, understandability and
changeability as explained above, and this price is efficiency.
Nevertheless, we have checked that efficiency is not serio-
susly damaged by the SBF. We summarize our study in
terms of the efficiency attributes identified in Sect. 2.2.

4.4.1 Assessment of Time Behavior
Order of magnitude. It is worth to remark two funda-

mental things. First, all the operations that involve short-
cuts and iterators are as efficient as they can be, which
means that access by shortcut is O(1), and traversals using
iterators are O(n), being n the number of elements in the
container. Second, the order of magnitude of the core oper-
ations of the containers (i.e., those using neither shortcuts
nor iterators) remains the same; in other words, shortcut
management can be done without penalising the order of
magnitude of the operations.
Real time efficiency. We have carried out some exper-

iments for assessing this quality attribute. We have devel-
oped a SBF-based version of the Booch Components library
(see [14] for details) and then we have compared some ex-
ecution results on a large set of instances with the original
version of the library. As an example, we have measured the
results for three representative processes (insertion, lookup
and iteration) in a particular type of container, namely a
Bag implemented with a hashing table. In order to cover a
reasonable sample of representative scenarios we have con-
sidered the following three criteria: container’s element size,
percentage of occupation of the Bag and number of colli-
sions by bucket produced by the hash function. For each
scenario, different bag sizes and different number of inser-
tions (depending of the number of occurrences of each item)
have been tested.
From the results obtained, we have observed that the ex-

ecution time of iteration and the execution time of lookup
(with respect to the number of items) are independent of the
scenario in the case of the shortcut version, while in the case
of the original version the execution time increases propor-
tionally to the size of the items and in some cases (instances
are generated randomly) inversely proportional to the per-
centage of occupation of the bag, and the execution time of
lookup grows proportionally to the size of the item. In all
the cases, the execution time of the shortcuts version is less
than the execution time of the original version and oscillates
between 1.5 and 3 times faster in the case of iteration, and
between 3 and 15 times faster in the case of lookup. The
insertion overhead in the shortcuts version, which oscillates
between a bit more than 1 and 3 times slower than in the
original version.
Figure 4 shows the number of iterations required to amor-

tise the insertion overhead in the best case (B.C. curves)
and the worst case (W.C. curves) for some representative
scenarios. The overhead of insertions is amortised with 2
and 8 iterations respectively. In general, time efficiency of
insertion with shortcut gets closer to the one of the original
version as size of elements increases; we remark that with
strings of 300 characters, there are cases where one single
iteration makes our proposal better than the original one.
All the test programs and the Ada-95 packages needed to

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

C
om

pu
tin

g
T

im
e

(S
ec

on
ds

)

Number of Iterations

Shortcuts version W.C.
Original version W.C.

Shortcuts version B.C.
Original version B.C.

Figure 4: Comparing the original version of Booch
Components with the shortcuts version.

generate these programs together with the shortcut version
can be found at www.lsi.upc.es/∼jmarco/testing.html and
the original library at www.pogner.demon.co.uk/components/bc.

4.4.2 Assessment of Resource Utilization
Data structure real space efficiency. Being N the

number of elements in the container and assuming a pointer-
based implementation of shortcuts without garbage collec-
tion, which is the worst case concerning space efficiency, the
total amount of extra space required for shortcut manage-
ment is:

2 · N · space(pointer) + N · space(shortcut)+
N · space(bool) + N · space(integer)

The first operand comes from the double linked list5, the
second one from the shortcuts stored in the implementation
of a concrete abstraction and the last two operands from
the deleted flag and the reference counter. We would like
to remark that this waste of space will usually generate a
later saving, when shortcuts substitute identifiers (generally
strings, which require more space than shortcuts) in refer-
ences from other containers. Identifiers would be requiered
if the Ada Standard Container Library would not provide
access by position, or if this access by position were unac-
curate or unsecure and so rejected in critical systems. The
relationship between these two factors may be formally es-
tablished.
Let N be the total number of objects in the container and

R the total number of external references to objects in the
container. Since generally,

space(identifier) ≥ space(pointer) (1)

then ∃k ≥ 1 s.t. (k+1)·space(pointer) > space(identifier) ≥
k·space(pointer) and since space(shortcut) = 2·space(pointer)
(because we use two pointers for assuring that a particular
shortcut is bound to a particular container) and assuming
the worst case space(bool) = space(integer) = space(pointer),
space is really saved when the relationship

R · space(identifier) ≥ (6 · N + 2 · R) · space(pointer) (2)
5The space of a smart pointer is the same as a regular one.

59

holds, which is satisfied when the following condition holds:

R · k ≥ 6 · N + 2 · R (3)

For example, if identifiers were strings of average size 40
(i.e., k = 10 with pointers requiring 4 bytes) and there is
an external reference to each of them (N = R), then by
substituting from (3) we obtain:

10 · R ≥ 8 · R
that obviously holds.
Order of magnitude of the data structure. From

the result above, we can verify that the addition of shortcut
management does not increase the order of magnitude of the
data structure used in the container implementation.
Order of magnitude of the auxiliary space in op-

erations. Any operation, either related to core or general
suitability, suffers from more than an O(1) increment of aux-
iliary space.

5. CONCLUSIONS
In this paper we have presented the Shortcut-Based Frame-

work (SBF) as the basis for designing and implementing a
prospective Ada Standard Container Library. The SBF aims
at supporting access by position and iterators suitable for
containers in the library. The proposal is built around the
concept of shortcut. We have arranged a class hierarchy
that includes base classes for containers, shortcuts and iter-
ators, and specializations for types of containers and imple-
mentations. We have assessed the quality of the SBF-based
container library using an ISO/IEC-based quality model,
together with some metrics defined with the Goal-Question-
Metric approach.
We think that the main contributions of our work are:

• The SBF provides high-quality access by position and
iterators. Unlike other approaches for handling this
kind of access, the SBF provides rich suitability and
ensures accuracy and security of their use. Also, our
approach provides uniformity and supports understand-
ability and changeability of the library, among other
advantages. We have quantified the cost of the ap-
proach regarding efficiency, which turns out to be not
severe; in fact, both time and space overhead may dis-
appear under some circumstances.

• The SBF provides absolute freedom for the core suit-
ability of the library, i.e., types of containers, imple-
mentation strategies and operations offered. For this
reason, our approach does not interfere with the dis-
cussion about whether an existing Ada library (Charles,
Booch Components, etc.) can be used as the basis for
the standard library, or else if this library shall be de-
sign and implemented from the scratch.

• Our proposal has been assessed thoroughly using an
exhaustive quality model and a set of metrics. It should
remain clear that in this paper we have not presented
neither the whole quality model nor the whole set of
metrics, for the sake of brevity; we have focused on
those parts of the model and those metrics that are
more relevant for our proposal.

To be more precise, the SBF avoids the following prob-
lems, which are very usual in other proposals for dealing
with access by position and iterators:

• Out-of-date positions or iterators. Shortcuts are de-
coupled from physical positions (either memory ad-
dresses or array indexes).

• Restrictions on the use of iterators. Remarkably it is
allowed to update the container during a traversal.

• Restrictions on the implementation strategy. Remark-
ably, implementations in which the elements may change
their position are allowed. Also, the SBF may be tai-
lored to any kind of memory management scheme.

• Lack of uniformity. All the containers offer the same
operations for iterating and accessing by position.

• Lack of internal reuse. The cost of extending the li-
brary with new types of containers or new implemen-
tation strategies is diminished due to the reuse of code
for shortcut management.

6. REFERENCES
[1] K. Arnold, J. Gosling and D. Holmes. The Java

Programming Language. Addison-Wesley, 3rd edition,
2000.

[2] Application Standard Components Library (ASCL).
http://ascl.sourceforge.net/.

[3] V. Basili, C. Caldiera and H. Rombach. Goal Question
Metric Paradigm. Encyclopedia of Software
Engineering, volume 1, John Wiley & Sons, 1994.

[4] G. Booch, D.G. Weller and S. Wright. The Booch
Library for Ada 95 (version 1999). Available at
http://www.pogner.demon.co.uk/components/bc.

[5] M. Heaney. Charles Container Library. At
home.earthlink.net/∼matthewjheaney/.

[6] L.P. Deutsch. Design reuse and frameworks in the
smalltalk-80 system. Software Reusability, Volume II.
Applications and Experience, ACM, 1989.

[7] D.R. Edelson. Smart pointers: They’re smart, but
they’re not pointers. In Proceedings of the 1992
USENIX C++ Conference, pages 1-19. USENIX
Association, 1990.

[8] X. Franch and J. Marco. A Quality Model for the Ada
Standard Container Library. To appear in Reliable
Software Technologies Ada-Europe 2003, LNCS.
Toulouse (France), June 2003.

[9] M.T. Goodrich, M. Handy, B. Hudson and
R. Tamassia. Accessing the internal organization of
data structures in the JDSL library In Workshop on
Algorithm Engineering and Experimentation (ALENEX
’99), volume 1619 of Lecture Notes in Computer
Science, pages 96-111. Springer-Verlag, 1999.

[10] E. Gamma, R. Helm, R. Johnson and J. Vlissides.
Design Patterns. Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1996.

[11] ISO/IEC Standards 9126-1 Software Engineering –
Product Quality – Part 1: Quality Model, June 2001.

[12] R.E. Johnson and B. Foote. Designing reusable
classes. Journal of Object-Oriented Programming,
1(2):22-35, June/July 1988.

[13] B. Meyer. Reusable Software: the base object-oriented
component libraries. Prentice Hall, 1994.

[14] J. Marco and X. Franch. Reengineering the Booch
Component Library. In Reliable Software Technologies

60

Ada-Europe 2000, volume 1845 of Lecture Notes in
Computer Science, pages 96-111. Springer-Verlag, 2000.

[15] J. Marco and X. Franch. Bridging the Gap Between
Design and Implementation of Component Libraries
(extended version). Technical Report, Departament de
Llenguatges i Sistemes Informàtics. Universitat
Politècnica de Catalunya, 2000.

[16] J. Marco and X. Franch. Shortcuts for the Ada
Standard Container Library. Presented at the
Workshop for Standard Container Library for Ada.
Held during the Ada-Europe 2002 Conference, Wien
(Österreich). Available at
http://www.auto.tuwien.ac.at/AE2002/resources.html.

[17] K. Mehlhorn and S. Näher. The LEDA Platform of
Combinatorial and Geometric Computing. Cambridge
University Press, 1999.

[18] D.R. Musser and A. Saini. STL Tutorial and
Reference Guide. Addison-Wesley, 1996.

[19] R. Solingen and E. Berghout. The
Gol/Question/Metric Method: a Practical Guide for
Quality Improvement of Software Development.
McGraw-Hill, 1999.

61

