
Measuring Cohesion of Packages in Ada95
Baowen Xu

Department of Computer Science &
Engineering, Southeast University

Nanjing, China, 210096
086-25-3793977

bwxu@seu.edu.cn

Zhenqiang Chen
Department of Computer Science &
Engineering, Southeast University

Nanjing, China, 210096
086-25-3793977

chenzq@seu.edu.cn

Jianjun Zhao
Department of Computer Science &

Engineering, Fukuoka Institute of
Technology, Japan

081-92-606-4895

zhao@cs.fit.ac.jp

ABSTRACT
Ada95 is an object-oriented programming language. Pack-ages
are basic program units in Ada 95 to support OO programming,
which allow the specification of groups of logically related
entities. Thus, the cohesion of a package is mainly about how
tightly the entities are encapsulated in the package. This paper
discusses the relationships among these entities based on
dependence analysis and presents the properties to obtain these
dependencies. Based on these, the paper proposes an approach to
measure the package cohesion, which satisfies the properties that
a good measure should have.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics – performance measures.

General Terms
Measurement.

Keywords
Measurement, Cohesion, Object-Oriented.

1. INTRODUCTION
Cohesion is one of the most important software features during its
development. It tells us the tightness among the components of a
software module. The higher the cohesion of a module, the more
understandable, modifiable and maintainable the module is. A
software system should have high cohesion and low coupling.
Researchers have developed several guidelines to measure
cohesion of a module [1, 3, 4]. Since more and more applications
are object-oriented, the approaches to measure cohesion of object-
oriented (OO) programs have become an important research field.

Generally, each object-oriented programming language provides
facilities to support OO features, such as data abstraction,
encapsulation and inheritance. Each object consists of a set of
attributes to represent the states of objects and a set of operations
on attributes. Thus, in OO environment, the cohesion is mainly
about how tightly the attributes and operations are encapsulated.

There are several approaches proposed in literature to measure
OO program cohesion [2, 5, 6, 7, 11, 12]. Most approaches are
based on the interaction between operations and attributes. The
cohesion is measured as the number of the interactions. Generally
only the references from operations to attributes are considered.
And few care about the interactions of attributes to attributes and
operations to operations at the same time. This might lead to bias
when measuring the cohesion of a class. For example, when
designing the trigonometric function lib class, we might set a
global variable to record the temporal result. The variable is
referred in all the operations of the class. According to methods
based on the interaction between operations and attributes [6, 7],
the cohesion is the maximum 1. In fact, there are no relations
among the operations if the calls are not taken into account. In
this view, its cohesion is 0. The difference is caused by
considering only the references from operations to attributes,
while not considering the inter-operation relations.

In our previous work, we have done some research in measuring
OO program cohesion [10, 13, 14]. Our approach overcomes the
limitations of previous class cohesion measures, which consider
only one or two of the three facets. Since the OO mechanisms in
different programming languages are different from each other,
this paper applies our measure to Ada packages.

The remaining sections are organized as follows. Section 2
introduces the package in Ada 95. Section 3 discusses the basic
definitions and properties for our measure. Based on the
definitions and properties, Section 4 proposes approaches to
measure package cohesion. Conclusion remarks are given in the
last section.

2. PACKAGES IN ADA 95
In Ada 95[ISO95], packages and tagged types are basic program
units to support OO programming. A package allows the
specification of groups of logically related entities. Typically, a
package contains the declaration of a type along with the
declarations of primitive subprograms of the type, which can be
called from outside the package, while its inner workings remain
hidden from outside users. In this paper, we distinguish packages
into four groups.

 PG1: Packages that contain any kind of entities except
tagged types.

 PG2: Packages that only contain the declaration of one
tagged type along with those primitive subprograms
of the type. There are two subgroups in PG2:

- PG2-1: The type is an original tagged type.
- PG2-2: The type is a derived type.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGAda’03, December 7–11, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-476-2/03/0012…$5.00.

62

 PG3: Combination of PG1 and PG2.
 PG4: Generic packages.

After a generic package is instantiated, it belongs to one of the
former three groups. Thus, only cohesion measure of PG1, PG2
and PG3 is discussed in the paper.

3. DEFINITIONS
3.1 Basic Definitions
In this section, we will present our definitions in the form of PG1.
The cohesion of a package from PG1 is mainly about how tightly
the objects and subprograms are encapsulated in the package. In
this paper, the relationships among objects and subprograms are
defined as three dependencies: inter-object, inter-subprogram and
subprogram-object dependence.

Definition 1 In the package body or a subprogram of the package,
if the definition (modification) of object A uses (refer, but not
modify) object B directly or indirectly, or whether A can been
defined is determined by the state of B, then A depends on B,
denoted by A B.

Generally, if B is used in the condition part of a control statement
(such as if and while), and the definition of A is in the inner
statement of the control statement, the definition of A depends on
B’s state.

Definition 2 If object A is referred in subprogram P, P depends
on A, denoted by P A.

Definition 3 There are two types of dependencies between
subprograms: call dependence and potential dependence. If P is
called in M, then M call depends on P, denoted by M P. If the
object A used in M is defined in P, the A used in M depends on
the A defined in P, denoted by M  → AA, P, where (A, A) is
named as a tag. For each call edge, add a tag (*, *) for unification.
i.e. if P Q, P →*,* Q.

To obtain these dependencies, we introduce four sets for each
subprogram M:

• IN(M) is an object set, each element of which is an object
referred before modifying its value in M;

• OUT(M) is an object set, each element of which is an
object modified in M.

• DEP_A (M) is a dependence set which represents the
dependencies from the objects referred in M to the objects
defined outside M. Each element has the form <A, B>,
where A and B are objects of the package.

• DEP_A_OUT(M) is a dependence set which records the
dependencies from the objects referred in M to the objects
defined outside M when exiting M.

In general, the intermediate results are invisible outside, and an
object might be modified many times in a subprogram. We
introduce DEP_A_OUT to improve the precision. Obviously,
DEP_A_OUT(M) ⊆ DEP_A (M).

Property 1 A ∈ IN(M), A ∈ OUT(P) ⇒ M → AA, P.

Property 2 <A, B> ∈ DEP_A(M), B∈ OUT(P)
⇒ M → BA, P.

Property 3 M → BA, P,∀<B, C>(<B, C>∈ DEP_A_OUT(P),

C∈OUT(Q)) ⇒M → CA, Q.

In our previous work [8, 9], we have proposed methods to analyze
dependencies among statements for Ada programs. And these
dependencies can be easily transformed to the dependencies
proposed in this paper. Due to the space limitation, we do not
discuss them in detail here.

To present our cohesion measure in a united model, we introduce
package dependence graph to describe all types of dependencies.

Definition 4 The package dependence graph (PGDG) of a
package PG is a directed graph, PGDG = <N, E, T>, where N is
the node set and E is the edge set, T is the tag set. N = NO∪NP,
NO is the object node set, each of which represents a unique
object; NP is the subprogram node set, each of which represents a
unique subprogram. PGDG consists of three sub-graphs:

• Inter-Object Dependence Graph (OOG), OOG = <NO, EO>,
where NO is the object node set (the name of a node is the
name of the object it represents); EO is the edge set, if
A B, then edge <A, B>∈ EO.

• Inter-Subprogram Dependence Graph (PPG), PPG = <NP,
EP, T>, where NP is the subprogram node set; EP is the
edge set which represents the dependencies between
subprograms; T∈ (V × V) is the tag set, where V is the
union of objects and {*}.

• Subprogram-Object Dependence Graph (POG), POG = <N,
EPO>, where N is the node set which represents objects
and subprograms; EPO is the edge set representing
dependencies between subprograms and objects. If P A,
<P, A> ∈ EPO.

Example1 shows the package Tri, which contains three objects:
temp, temp1 and temp2, and four subprograms: sin, cos, tg and
ctg. Figure 1 shows the PGDG of the package Tri in Example1
(all the Tags on PPG are (*, *), because there are only call
dependencies in this example. We omit the Tags for
convenience).

Example1: package Tri.
 package Tri is

temp, temp1, temp2: real;

function sin (x: real) return real;

function cos (x: real) return real;

function tg (x: real) return real;

function ctg (x: real) return real;

 end Tri;

 package body Tri is

function sin (x: real) return real is

begin temp:=…; return temp; end sin;

…

63

function tg (x: real) return real is

begin

 temp1:=sin(x);temp2:=cos(x);

 temp:=temp1/temp2; return temp;

end tg;

…

 end Tri;

3.2 Extended Definitions
Since there is no object in the package of PG2, the definitions of
Section 3 can not be applied to these packages directly. Therefore,
this section will extend the definitions of Section 3.1 to a more
general model by the following steps:

 For PG1, if there is an embedded package, the package is
taken as an object.

 For PG2, take the components of the type as objects of the
package.

Let A, B be object of a type T, M, P primitive subprograms, and
Com1 and Com2 are components of T. Then

∃ A, B (A.Com1 B.Com2) ⇒ Com1 Com2.

∃ A, P (P A.Com) ⇒ P Com.

∃ A, B, M, P (M  → 2.,1. ComBComA P)

⇒ M  → 2,1 ComCom P.

 For PG3, take the types as objects of the package.

 To present our measure in a unified model, we add powers
for different objects.

PW(O) =









others
OOPGCohesioin

OOCohesion

1
object typea is))((

object package a is)(

where Cohesion (O) is the cohesion of O, PG (O) returns the
package containing O.

4. MEASURING PACKAGE COHESION
According to the PGDG, this section will propose our method to
measure the package cohesion. In the following discussions, we
assume package PG contains n objects and m subprograms, where
m, n ≥0.

4.1 Measuring Inter-Object Cohesion
Inter-object cohesion is about the tightness among objects in a
package. To measure this cohesion, for each object A, introduce a
set A_DEP to record the objects on which A depends, i.e.

O_DEP(A) = {B| A B, A ≠ B}.
Let

∑
∈

=
)(_

)()(_
ADEPOB

BPWADEPPW .

Then, we define the inter-object cohesion as:

=),_(PGOOCohesion













>
−

=
=

∑
=

1
1

)(_1
1)(
00

1
n

n
ADEPPW

n

nAPW
n

n

i

i

where
1

)(_
−n

ADEPPW
 represents the degree on which A

depends on other objects.

If n=0, there is no object in the package, we set it to 0. If n=1,
there is one and only one object in the package, the cohesion is its
power.

4.2 Measuring Subprogram-Object Cohesion
Subprogram-object cohesion is the most important field in
measuring cohesion. Until now, there have been several
approaches proposed in literature, such as Chae’s methods [6, 7].
But most approaches are based on the POG. As we have
mentioned above, all these methods describe the object reference
in a simple way and subprograms are connected by the objects
referred. Whether there are related among these subprograms are
not described exactly. Thus, these approaches should be improved
to describe these relations. For completeness, we use Co(Prev) to
represent a previous cohesion measure, which satisfies Briand’s
four properties.

For each subprogram P, we introduce another two sets: P_O and
P_O_OUT. Where

• P_O(P) records all the objects referred in P.

Figure. 1. PGDG of class Tri

temp

temp1

temp2

(a) OOG

sin

cos

tg

ctg

(c) PPG

sin cos tg ctg

temp temp1 temp2

(b) POG

64

• P_O_OUT(P) records the objects referred in P, but these
objects relate to objects referred by other subprogram,
i.e.,

P_O_OUT(P)={A|∃B, M (P  → AB , M

∨ M  → BA, P)∧A,B ≠’*’}.

Let

∑

∑

∈

∈=ρ

)(_

)(__

)(

)(
)(

POPA
i

POUTOPA
i

i

i

APW

APW
P

Then, we define the subprogram-object cohesion as:

=),_(PGOPCohesion















ρ∗

=

=∨=

∑
∑

∑

=

∈

OthersPPrevCom

m
APW

APW
nm

m

i

i

POPA
i

i

1i

)(_

)()(1

1
)(

)(
000

If P_O(P) = Φ, i.e. no objects are referred in P, we set)(Pρ =0.
If the objects referred in P are not related to other subprograms,
these objects can work as local variables. It decreases the
cohesion to take a local variable for a subprogram as an object for
all subprograms. If there is no object or subprogram in the
package, no subprogram will depend on others. Thus,

0),_(=PGOPCohesion .

4.3 Measuring Inter-Subprogram Cohesion
In the PGDG, although subprograms can be connected by objects,
this is not necessary sure that these subprograms are related. To
measure the inter-subprogram cohesion, we introduce another set
P_DEP(P) = {M| P M} for each P. The inter-subprogram
cohesion Cohesion(P_P, PG) is defined as following:

=),_(PGPPCohesion













>
−

=
=

∑
=

1
1

)(_1
11
00

1
m

m
PDEPP

m

m
m

m

i

i

where
1

|)(_|
−m

PDEPP
 represents the tightness between P and

other subprograms in the package.

If each subprogram depends on all other subprograms,
Cohesion(P_P, PG) = 1.

If all subprograms have no relations with any other subprogram,
Cohesion(P_P, PG) = 0.

4.4 Measuring Package Cohesion
After measuring the three facets independently, we have a
discrete view of the cohesion of a package. We have two ways to
measure the package cohesion:

1) Each measurement works as a field, the package
cohesion is 3-tuple,

Cohesion(PG) = < Cohesion(O_O, PG),
 Cohesion(P_O, PG),
 Cohesion(P_P, PG)>.

2) Integrate the three facets as a whole

=)(PGCohesion













∗

≠=
=

∑
=

OthersPGCohesionk

mnPGPPCohesionk
m

i
ii

3

1
)(

0,0),_(*
00

where k∈ (]1,0 ; k1, k2, k3 >0, and k1 + k2 + k3 =1.

Cohesion1(PG) = Cohesion(O_O, PG)
Cohesion2(PG) = Cohesion(P_P, PG)
Cohesion3(PG) = Cohesion(P_O, PG)

If n=0, m≠0, the package cohesion describes only the tightness of
the call relations, thus we introduce a parameter k to constrain it.

For the example shown in Figure 1, the cohesion of Tri describes
as follows:

Cohesion(O_O, Tri)= 1/3
Cohesion(P_O, Tri)=0
Cohesion(P_P, Tri)=1/3

Let k1= k2= k3= 1/3, Co(Prev)=1, then

Cohesion(Tri)= 2/9.
Briand et al. [3, 4] have stated that a good cohesion measure
should be

(1) Non-negative and standardization.
(2) Minimum and maximum.
(3) Monotony.
(4) Cohesion does not increase when combining two

modules.
These properties give a guideline to develop a good cohesion
measure.

According to the definitions, it is easy to prove our measure
satisfies these properties.

4.5 Cohesion for PG2-2
In the hierarchies of types, the derived type inherits the
components and primitive subprograms of the super types.
Generally, inheritance will increase the coupling and decrease the

65

cohesion. For the package from PG2-2, we will discuss its
cohesion in four cases:

Case 1: Take the package independently.

Case 2: Take all the primitive subprograms and components
(contains those from super type) into consideration.

Case 3: If the primitive subprograms of the derived type might
access the components (or subprogram) of the super type, take
these components (or subprogram) as those of the derived type.

Case 4: Take the super type as an object of the derived type.
The shortcoming of Case 1 is that: It only measures the cohesion
of the additional components and primitive subprograms of the
derived type, not the complete type.

The primitive subprograms in the super type can not access the
components of the derived type except dispatched subprograms.
Consequently, in Case 2 or 3, the deeper the hierarchy of types is,
the smaller the cohesion. And it is hard to design a package which
cohesion is big enough.
Although we present four cases in this section, none is good
enough to describe the cohesion for a package from PG2-2. To
measure the cohesion of a derived type, much more aspects
should be considered.

5. RELATED WORKS
There have several methods proposed in literatures to measure
class cohesion. This section gives a brief review of these methods.

(1) Chidamber’s LCOM1 ∈ [0,
2

)1(−∗ mm
], it measures the

cohesion by similar methods and non-similar methods. It is a
reverse cohesion measure. The bigger the measure, the lower the
cohesion.

(2) The PPG in Hitz’s LCOM2 is represented by an undirected
graph. LCOM2 is the number of sub-graphs connected. When
there is one and only one sub-graph, he introduces connectivity to
distinguish them.

(3) Briand’s RCI is the ratio of the number of edges on POG to
the max interaction between subprograms and objects.

(4) Henderson’s LCOM3 can be described as follows.

)(3 CLCOM =
m

mA
n

n

j
j

−

−µ∑
=

1

|)(|1
1

where µ(A)= {M| A∈P_O(M)}, A is attribute and M is method.

 (5) Chae’s CO [6] introduces glue methods, and Xu-Zhou’s CO
[13] introduces cut set (glue edges) to analyze the interact pattern.
These two measures are more rational than other measures.

From the introductions above, we can see that

• All these methods consider the attribute reference in a
simple way. Whether the methods are related or not are
not described exactly.

• LCOM1, LCOM2 and LCOM3 are non-standard, because
their up-bounds are related to the number of methods in
the class. LCOM1 is non-monotonous. The measuring
results might be inconsistent with intuition in some cases

• RCI has the basic four properties proposed by Briand. But
it does not consider the patterns of the interactions among
its members, neither LCOM1 and LCOM2 nor LCOM3.

• Chae’s CO overcomes most limitations of previous
measures. But it is non-monotonous [13]. Xu-Zhou’s CO
improves Chae’s cohesion measure, and makes its result
more consistent with intuition. The chief disadvantage of
both measures is that they can be applied to connected
POG; otherwise the result will always be 0.

• LCOM1 and LCOM2 measure the cohesion among
methods in a class. We can improve the similar function
using the dependencies among methods proposed in this
paper.

• LCOM3, Chae and Xu-Zhou’s CO measure the cohesion
among methods and attributes in a class. In this paper we
improve them by introducing)(Mρ for each method M.

6. CONCLUSION
This paper proposes an approach to measure the cohesion of a
package based on dependence analysis. In this method, we
discussed the tightness of a package from the three facets: inter-
object, subprogram-object and inter-subprogram. These three
facets can be used to measure the package cohesion independently
and can also be integrated as a whole. Our approach overcomes
the limitations of previous class cohesion measures, which
consider only one or two of the three facets. Thus, our measure is
more consistent with the intuition. In the future work, we will
verify and improve our measure by experiment analysis

When measuring package cohesion, the following should be paid
attentions.

(1) In the hierarchies of types, the primitive subprograms of
super type might access the objects of the derived type by
dispatching. Therefore, when measuring the cohesion of
PG2, it is hard to determine whether the accession of
derived typed is considered or not.

(2) We can determine polymorphic calls in an application
system. However it is impossible for a package, which
can be reused in many systems.

(3) How to deal with some special subprograms, such as
access subprograms, since such subprograms can access
some special objects in the package.

(4) How to apply the domain knowledge to cohesion
measure.

In all, if a package can be applied to many applications, the
cohesion is mainly about itself without considering the
application environments. Otherwise, it is the cohesion in the
special environments.

66

7. ACKNOWLEDGMENTS
This work was supported in part by the National Natural Science
Foundation of China (NSFC) (60073012), National Grand
Fundamental Research 973 Program of China (G1999032701),
and National Research Foundation for the Doctoral Program of
Higher Education of China (20020286004).

8. REFERENCES
[1] Allen, E.B., Khoshgoftaar, T.M. Measuring Coupling and

Cohesion: An Information-Theory Approach. in Proceedings
of the Sixth International Software Metrics Symposium.
Florida USA, IEEE CS Press, 1999, 119-127.

[2] Bansiya, J.L., et al. A Class Cohesion Metric for Object-
oriented Designs. Journal of Object-oriented Programming,
1999, 11(8): 47-52.

[3] Briand, L.C., Morasca, S., Basili, V.R. Property-Based
Software Engineering Measurement. IEEE Trans. Software
Engineering, Jan. 1996, 22(1): 68-85.

[4] Briand, L.C., Daly, J., Wuest, J. A Unified Framework for
Cohesion Measurement in Object-Oriented Systems.
Empirical Software Engineering, 1998, 3(1): 65-117.

[5] Briand, L.C., Morasca, S., Basili, V.R. Defining and
Validating Measures for Object-Based High-Level Design.
IEEE Trans. Software Engineering, 1999, 25(5): 722-743.

[6] Chae, H.S., Kwon, Y.R., Bae, D.H. A Cohesion Measure for
Object-Oriented Classes. Software –––– Practice &
Experience, 2000, 30(12): 1405-1431.

[7] Chae, H.S., Kwon, Y.R. A Cohesion Measure for Classes in
Object-Oriented Systems. in Proceedings of the Fifth
International Software Metrics Symposium. Bethesda, MD
USA, 1998, IEEE CS Press, 158-166.

[8] Chen, Z., Xu, B., Yang, H. Slicing Tagged Objects in Ada
95. in Proceedings of AdaEurope’2001, LNCS 2043: 100-
112.

[9] Chen, Z., Xu, B., Yang, H., Zhao, J. Static Dependency
Analysis for Concurrent Ada 95 Programs. in Proceedings of
AdaEurope 2002, LNCS 2361, 219-230.

[10] Chen, Z., Xu, B. Zhou, Y., Zhao, J., Yang, H. A Novel
Approach to Measuring Class Cohesion Based on
Dependence Analysis. in Proceedings of ICSM 2002, IEEE
CS Press, 377-383

[11] Chidamber, S.R., Kemerer, C.F. A Metrics Suite for Object-
Oriented Design. IEEE Trans. Software Engineering, 1994,
20(6): 476-493.

[12] Hitz, M., Montazeri, B. Measuring Coupling and Cohesion
in Object-Oriented Systems. in Proceedings of International
Symposium on Applied Corporate Computing, Monterrey,
Mexico, October 1995: 25-27.

[13] Xu, B., Zhou, Y. Comments on A cohesion measure for
object-oriented classes. Software –––– Practice &
Experience, 2001, 31(14): 1381-1388.

[14] Zhou, Y., Guan, Y., Xu, B. On Revising Chae’s Cohesion
Measure for Classes. J. Software. 2001, 12(Suppl.): 295-300
(in Chinese)

67

