

The Case for Ada at the USAF Academy
Ricky E. Sward, Martin C. Carlisle, Barry S. Fagin, and David S. Gibson

Department of Computer Science
2354 Fairchild Dr, Suite 6G101

USAF Academy, CO 80840
1-719-333-3590

{ricky.sward, martin.carlisle, barry.fagin, david.gibson}@usafa.af.mil

ABSTRACT
This paper describes our experience with selecting Ada as the
primary programming language for Computer Science and
Computer Engineering majors at the USAF Academy. We have
decided to teach Ada in the first three courses of these majors for the
next few years. Our criteria for selecting Ada are based on features
of the language (such as strong typing, lack of single-character
errors, and case insensitivity), features of the compiler, (such as
error messages and warnings), and features of the overall
development experience (such as development environments,
availability of textbooks, GUI development support, and industry
acceptance). We compared Ada with Java, C++, and C#.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifications.
D.3.3 [Programming Languages]: Language Constructs and
Features.

General Terms: Management, Languages.

Keywords: Computer Science Education, Ada 95, Java, C++, C#.

1. INTRODUCTION
The Department of Computer Science at the USAF Academy will
continue using Ada 95 as the primary programming language for
Computer Science and Computer Engineering Majors. There are
several reasons for using Ada as our primary language. This paper
will explain how Ada’s language features, compiler features, and
development environment help our students succeed. The paper will
also discuss why we did not select Java, C++ and C#.

2. BACKGROUND
The USAF Academy is an undergraduate institution consisting of
approximately 4000 students. Each student is required to take 30
core courses as part of their degree and has the option to major in
any of 32 academic programs. The average course loads for students
is six courses per semester with 42- lesson semesters spanning 18
weeks. As part of the core curriculum, each cadet takes one
Computer Science course, Introduction to Computing, during their
first year at the Academy.

Since 1996, we have used Ada as the programming language in the
core Computer Science course [6]. Other departments at the

Academy also chose to use Ada in their courses since we taught it in
the Computer Science core course [7]. In 2001, we changed the core
course to emphasize Information Technology more than computer
programming. We continued to use Ada for the portion of the course
that emphasized problem solving with computer programs. This year
will be the first year Ada is not taught in the core course. We are
now using a visual programming tool developed at USAFA that
executes flow charts. This tool is described in [9].

Ada continues to be the primary programming language in our
Computer Science and Computer Engineering majors. It is used in
the first three Computer Science courses in these majors. This
satisfies the depth of programming language experience requirement
needed for ABET accreditation. Every few years, we re-examine the
choice of Ada as our primary language, since new programming
languages and development environments continue to emerge.

3. CRITERIA
Our decision to continue with Ada was made after considering
several aspects of different programming languages and
development environments. Overall, our decision was based on
language features, such as strong typing and case sensitivity,
compiler features, such as error messages and warnings, and the
development experience, including such things as development
environments, textbooks, and industry acceptance.

3.1 Language Features
There are several language features of Ada that make it the right
choice for our primary language. Ada’s strong typing is extremely
beneficial to both the non-major students taking the core course and
our Computer Science and Computer Engineering majors in their
courses. With strong typing, programming errors are most often
found at compile time instead of at run time. This means our
students struggle with getting a program to compile, but once they
succeed it is far more likely to do what is expected. In weakly typed
languages, getting a program to compile is straightforward, but
students will struggle with run time errors. These can be much
harder to find and correct.

Another important language feature of Ada is case insensitivity. This
helps our students be more productive. An error caused by case
sensitivity is often hard to detect, especially for novice
programmers. Although this may appear to be a small factor, Ada’s
case insensitivity gives our students a noticeable advantage. They do
not spend time struggling with these simple errors but can spend
time on the important programming issues we want them to learn.

Ada’s lack of single character errors also gives our students an
advantage. For example, in C-based languages the equality operator
is ==. Since assignment in C-based languages can typically be a

This paper is authored by an employee(s) of the United States
Government and is in the public domain.
SIGAda’03, December 7–11, 2003, San Diego, California, USA.
ACM 1-58113-476-2/03/0012.

68

statement as well as an expression, using an assignment statement in
a conditional expression causes a single-character error that is very
difficult for a novice programmer to detect. It is even harder for
them to understand the semantics behind the cause of the error.
Since assignment can not be an expression in Ada, this single-
character error is avoided. Again a possibly small factor in the
programming language helps our students avoid frustrating, difficult
errors and allows them to be more productive in an extremely
demanding academic environment. Brosgol [2] agrees that Ada is
superior to Java because Ada avoids such confusing syntax.
Agarwal [1] points out that C++ has deficiencies in its syntax that
novice programmers may struggle with.

Ada’s support for subtypes and enumeration types is far superior to
Java, C++, or C#. The enumeration types in Ada can be used as
indices in arrays, unlike Java, C++, and C#. This gives our students
a powerful programming tool not available in the other languages.
Ada also has built-in language support for multi-tasking, which has
been used widely in our networks and operating systems courses.

As pointed out by Humphries [9], Ada includes mixed-language
pragmas, which allow for easy interface with other programming
languages. The A# language, Ada ported to .NET, is a fully
interoperable language with the other languages in the .NET
environment [5].

Finally, Ada’s support for both imperative and Object-Oriented
(OO) paradigms is essential for teaching introductory programming.
Java requires students who are new to programming to learn the
basics of OO syntax at the same time as they are learning the basics
of computing. Students are not well-equipped intellectually to learn
OO until they first understand control flow, variable assignment,
and modularization. Virtually every paper in the computer science
education literature over the past few years, even those friendly to
Java, recognize this as a problem. (See for example [10] and [8]).

3.2 Compiler Features
The compilers available for Ada, with their compile time error
messages, are very useful for teaching novice programmers. The
error messages are most often accurate and steer the students in the
right direction to solve their syntax error. Errors at run time are not
as helpful to the novice programmer. With strong typing and
descriptive compiler error messages, our students are able to be
more productive and solve more problems on their own.

For example, suppose we have an enumeration type called Colors
and we are using it in a case statement as shown in Figure 1. Ada
requires that all members of the enumeration type are included in the
when clauses of a case statement, or at least covered by an “others”
clause. If we change the Colors enumeration type to now include the
color Blue, we need to change all the case statements that refer to
Colors. Compilers for languages that do not force explicit
enumeration of case values will require users to identify all sites for
necessary changes manually, increasing the possibility of logical
errors.

By contrast, Ada compilers check this requirement and flag each of
the case statements that must be updated. With a reasonable
development environment, the job of updating all the affected case
statements is trivial. Similarly, if we are using Colors as an index of
an array, the Ada compiler will flag the initialization of the array and
require that we include all members of the enumeration type in the

initialization. These two particular compiler checks are not only
good programming practice, but help

with Ada.Text_Io;
use Ada.Text_Io;
procedure Color_Prog is
 type Colors is
 (Red,
 White);
 C : Colors := White;
begin
 case C is
 when Red =>
 Put("Red");
 when White =>
 Put("White");
 end case;
end Color_Prog;

Figure 1 – The Colors Enumeration Example

our students avoid run time errors in their programs. Most
importantly, they encourage students to think rigorously about the
implications of changes they make to computer programs.

3.3 Development Experience
As we considered different programming languages to use, we
evaluated newer languages such as Java and C#, the new language
in Microsoft’s .NET environment. We evaluated these languages
based on industry acceptance, the ability to write both imperative
and object-oriented code, the GUI development tools available,
textbooks available, and the development environment.

Both Java and C# are much more widely accepted by industry than
Ada. At the Academy, however, we are not affected by industry
trends as much as a civilian institution might be because our
students go directly into the Air Force after graduation. Our
graduates will work on projects where they manage programmers,
but will most likely not be programming when they serve in the Air
Force. That is why we can focus on the education of computer
scientists, and not the training of programmers.

We mentioned previously the importance of languages that support
both imperative and object-oriented programming styles. We
decided against Java as a primary language choice. With the object-
oriented syntax required to write even a simple program, it is not
practical to write imperative code in Java and then transition the
students to an object-oriented style. However, it is practical to write
imperative code segments in C#, so we examined C# in more detail.

The Visual Studio .NET development environment provided for C#
programming is a very powerful tool. The touch and feel of the
development environment including the “intelli-sense” auto-
completion feature supports easy, rapid development of code.
However, we believe that it is too complicated for the novice
programmer to use effectively. There are many features of the
environment that, while ideally suited for a professional Windows
application developer, are bound to confuse a novice programmer.

By contrast, AdaGIDE [4] is an excellent tool that is easily
understood by the novice programmer, yet is powerful enough for
projects being done in the senior year of our majors. We also
believed that if we went to Visual Studio, we would lose control of

69

the environment. Going from a product developed in-house to an
off-the-shelf development environment built by Microsoft takes
away a great deal of flexibility that, historically, has been of great
benefit to us. Changes we desire in AdaGIDE are quickly integrated
and fielded to our students.

We also examined the GUI development tools available for C# and
Ada. The GUI builder in Visual Studio .NET is a powerful tool that
easily allows the user to build sophisticated, professional-grade GUI
applications using C#. When compared to the RAPID GUI
development tool available for Ada [3], C# is a much more
powerful, user-friendly tool. This is not surprising, since Visual
Studio .NET is a commercial product with a multi-million dollar
R&D effort behind it. However, a sophisticated development
environment and GUI builder are not crucial components of
introductory Computer Science courses. AdaGIDE and RAPID are
sufficient for the types of projects we have our majors complete,
making the superior development environments available for other
languages less of a concern.

We also noticed a lack of textbooks available to use in our Data
Structures (CS-2) course. To our knowledge, there are no textbooks
available for a CS-2 course written for C#. This was a major
drawback of C# and was enough to dissuade us from using C# as
our primary language. The textbooks available for Ada are
acceptable for our purposes.

4. CONCLUSION
The primary objections to Ada at any level, including in the
classroom, are not technical but sociological, primarily concerning
its lack of widespread acceptance. These are valid concerns, if taken
in the appropriate context.

An analogy from natural languages may be appropriate here. No one
would suggest that people stop speaking English and be made to
learn Esperanto. Esperanto has simpler grammar, phonetic spelling,
and by any set of technical linguistic criteria is simply a “better”
language. Nonetheless, the costs of retraining and the efficiency
problems with switching are too great: we live with the
imperfections of English because linguistic issues aren’t the only
ones to consider.

Similarly, those who believe that university computer science
departments serve as training grounds for industry programmers, or
for whom preparation for industry is a significant factor in
curriculum decisions, need to take non-technical factors into account
when choosing a programming language. One author (Fagin) taught
computer science in Russia for a semester. His students all were
studying English as part of their computer science curriculum,
because that is the rest of the world uses. Complaints to the Dean
about the large number of irregular verbs in English and its
atrocious spelling rules would not have progressed very far.

But education is different. If we are interested in preparing young
minds for the intellectual discipline of computer science, then we
have the luxury, indeed the obligation, to start from scratch and pick
the best tool for that task. Currently, that tool is Ada.

We must always be open to the possibility that this may not always
be the case. Despite our focus on the differences in this paper, it is
clear that mainstream programming languages are becoming more
and more alike. More and more features best embodied in Ada
(strong typing, generics, support for vital software engineering

principles) are making their way into C# and Java. That’s why we’ll
continue to examine the question of programming language choice
for our majors.

However, it is clear that, at least for now, Ada remains the right
choice for introducing students to the intellectual discipline of
computer science at the Air Force Academy.

5. REFERENCES
[1] Agarwal, A. and Agarwal, Krishna. Some Deficiencies of C++

Teaching CS1 and CS2. ACM SIGPlan Notices, v.38, June
2003.

[2] Brosgol, Benjamin M. A Comparison of Ada and Java as a
Foundation Teaching Language, AdaCore Technologies, from
http://www.act-europe.fr/texts/papers/ada-java-teaching-
comp.pdf

[3] Carlisle, M.C. A Truly Implementation Independent GUI
Design Tool. Proceedings of SIGAda ’99, Redondo Beach CA,
October 1999. Also appears in Ada Letters, 19(3): 47-52,
September 1999.

[4] Carlisle, M.C. and A. T. Chamillard, AdaGIDE: A Friendly
Introductory Programming Environment for a Freshman
Computer Science Course, Proceedings of ASEET '97,
Monmouth NJ, June 1997. Also appears in Ada Letters, vol.
18, no. 2 (March 1998), pp. 42-52.

[5] Carlisle, M.C., Sward, Ricky E. and Humphries, Jeffrey W.
Weaving Ada 95 into the .NET Environment, Proceedings of
SIGAda 2002, December 8-12, 2002, Houston, TX.

[6] Chamillard, A.T. and Hobart, William C. Transitioning to Ada
in an Introductory Course for Non-Majors. In Proceedings of
TRI-Ada ’97, St Louis, Missouri, November 1997, pp. 37-40.

[7] Chamillard, A.T., Lisowski, Ronald J., and Young, Richard R.
Using Ada in Non-CS Majors. In Proceedings of the ACM
SIGAda Annual International Conference (SIGAda ’98),
Washington, DC, November 1998, pp. 61-67.

[8] Hristova, M. et al, Identifying and Correcting Java
Programming Errors for Introductory Computer Science
Students. In Proceedings of the 34th SIGCSE Technical
Symposium on Computer Science Education, Reno, Nevada,
February 2003, pp 153-156.

[9] Humphries, J. W., Carlisle, Martin C., Wilson, Terry A.
Multilanguage Programming with Ada in the .NET
Environment. In Proceedings of the ACM SIGAda Annual
International Conference (SIGAda ’03), San Diego, CA,
December 2003.

[10] Reges, S. Conservatively Radical Java in CS1. In Proceedings
of the 31st SIGCSE Technical Symposium on Computer Science
Education, Austin, TX, March 2000, pp 85-89.

70

