
A Practical Comparison Between Java and Ada in
Implementing a Real-Time Embedded System

Eric Potratz
Department of Computer Science

University of Northern Iowa
Cedar Falls, IA 50614-0507

+ 1.319.273.2618

epotratz@forbin.net

ABSTRACT
This paper presents a student’s observations from an
undergraduate research project that explored using Java to
implement the software for a real-time embedded system that was
originally implemented in a university-level real-time systems
course using Ada 95. It briefly gives an overview of the project,
the decision made concerning which Java virtual machine to use,
and how that virtual machine performed in the real-time
environment. It then goes into detail about the merits and
drawbacks of using Java to implement real-time and embedded
systems such as this one and how using Java to implement them
compares with using Ada.

Categories and Subject Descriptors
D.3.3. [Programming Languages]: Language Constructs and
Features – classes and objects; concurrent programming
structures; control structures; data types and structures; dynamic
storage management; inheritance; procedures, functions, and
subroutines

General Terms
Algorithms, Design, Performance, Languages

Keywords
Ada, concurrency, conditional synchronization, drivers,
embedded systems, Java, memory management, object-oriented
programming, package elaboration, performance, priority
inversion, real-time systems, scheduling

1. INTRODUCTION
The Java Programming Language has come to have a significant
role in areas ranging from university-level Computer Science
education to implementing computer applications in both desktop
and server environments. Interestingly, Java is also growing in
popularity as a tool to implement applications in embedded
systems environments.

After using Ada 95 to develop software for a real-time embedded
system in the Real-Time Systems course at the University of
Northern Iowa, I chose to take the opportunity in my senior
undergraduate research project to explore how usable Java is in
implementing that same system. Over the course of implementing
this real-time embedded system, a number of notable strengths
and weaknesses in the Java language emerged.

2. PROJECT OVERVIEW
The goal for the signature project of UNI’s Real-Time Systems
course [11] is to write the software for an embedded system that
controls an electric model railroad. The basic system specification
requires the software to provide users with a way to control
multiple trains and prevent collisions between trains operating on
the tracks at the same time. Specific real-time and embedded
system issues involved in implementing this specification include
writing low-level drivers to interface with the hardware, designing
and implementing concurrent processes, and satisfying a
particular hard real-time requirement that prevents hardware
damage at the instant when a train passes from one electrically
isolated section of track to another.

For the Real-Time Systems course, we implemented this system
using the Ada 95 programming language with the GNAT
compiler developed by Ada Core Technologies [16] and used the
real-time operating system known as MaRTE OS [9]. The target
system which our software had to control includes:

� a 133 MHz Intel x86-compatible AMD K5 microprocessor

� 32 megabytes of RAM

� a VGA video adapter

� a DoubleTalk voice synthesizer (manufactured by RC
Systems, Inc.) [6]

� turnouts, which are Y-shaped three-way junctions in the
track through which a train can pass between the common
lower arm and either the left upper arm or right upper arm at
a time depending on which direction it is switched to,
controlled by electric motors

� adjustable power supplies called cabs, one available for each
train operating on the tracks

� Hall effect sensors spaced along the tracks to monitor the
movement of trains

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SIGAda’03, December 7–11, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-476-2/03/0012…$5.00.

71

� hand controller input devices including pushbuttons, toggle
switches and an analog dial that are intended to allow users
to control trains

3. CHOOSING A VIRTUAL MACHINE
For the Java-based implementation of this system, I would have
ideally liked to use an implementation of the Real-Time Java
Expert Group’s [12] Real-Time Specification for Java [2]. Virtual
machines that implement this specification provide additional
degrees of flexibility for thread scheduling and memory
management helpful in implementing real-time systems that are
not found in standard Java. The only available implementation of
this specification at the time, though, was the reference
implementation provided by TimeSys [15].
TimeSys’ Real-Time Java virtual machine only runs with full
functionality on TimeSys Linux—a specialized version of Linux
developed by TimeSys for real-time applications. Unfortunately,
this implementation is not particularly suited for small embedded
systems. The size of the TimeSys Linux kernel, the basic utilities
required to boot a minimal working Linux system, and the
reference implementation’s Java virtual machine executable far
exceed the amount of storage provided by a 3½-inch disk, which
is the medium that we used to transfer the Ada version of the
software to the target system. In addition, low-level access to PC
hardware in TimeSys Linux involves going through the Linux
kernel, introducing extra processing overhead that is not there in
MaRTE OS where direct access to the hardware is allowed.
So, instead of this reference implementation, I chose to look for a
more compact Java virtual machine—one better suited for a small
embedded system—that could run on top of MaRTE OS without a
large amount of work. Out of the available portable Java virtual
machine implementations designed specifically for real-time or
embedded systems, I chose to use SimpleRTJ [5] [13], developed
by RTJ Computing Pty. Ltd. Despite its significant lack of real-
time functionality compared to TimeSys’ Real-Time Java
implementation, the features that led me to choose this particular
virtual machine include:
� a functional Java environment suitable for an embedded

system at little cost (although the version of SimpleRTJ used
was just an evaluation version)
� the capability for the operating system, the Java virtual

machine, and the Java application to easily fit all on one 3½-
inch disk
� the ability to pre-link all classes of a Java application

together into a single binary image during the application
compilation process, eliminating the need to deal with
separate dynamically-loaded class files and a file system to
store those files on
� the relatively simple process by which the virtual machine

can be ported to the target system using the services
provided by MaRTE OS

The SimpleRTJ virtual machine supports Java applications
compiled for Sun Microsystems’ version 1.1 release of Java. It
can execute almost all of the same bytecodes that are used in
standard Java 1.1 applets and applications.1 As a result, all a

1 Only support for the double floating-point primitive type is

excluded.

developer needs in order to compile Java applications for this
virtual machine is Sun Microsystems’ latest Java SDK [14] and
SimpleRTJ’s proprietary ClassLinker tool to pre-link the
compiled classes.

4. JAVA APPLICATION PERFORMANCE
Java programs generally compile to bytecodes, not machine code.
A Java virtual machine executing on a target system then
interprets these bytecodes to execute Java programs. This method
of execution combined with the level of dynamic typing provided
by Java’s runtime system to support polymorphism, the related
lack of support for Java compilers to in-line methods, and Java’s
memory management model, which relies heavily on dynamically
allocated memory and a garbage collector to automatically
manage that memory, fosters some curiosity about how these
issues affect the performance of Java programs—especially in
real-time environments.

While I was unable to port enough of the model railroad software
to Java to get trains running over just the course of the semester-
long research project, I took the time during the course of my
research to try one performance-related test on SimpleRTJ using a
critical portion of the software. The test application helped
examine how effectively the Java virtual machine could handle
interrupts generated by the Hall effect sensors situated along the
train tracks.

The train tracks in the model railroad system are divided into a
number of electrically isolated sections called blocks. Hall effect
sensors, which each produce an electric signal at the instant a
magnetic field is applied or removed in close proximity, are
situated on the boundaries between adjacent blocks. These electric
signals are translated into hardware interrupts by the I/O board
that the sensors are connected to inside of the computer system.
Trains that run on the tracks then have magnets attached to the
front of the locomotive and the rear of the caboose. When the
trains are in motion, those magnets trigger the Hall sensors,
signaling the computer and providing a means by which the
computer software can track the location of each train. How
quickly the software can respond to these signals is important in
determining whether it can satisfy the hard real-time requirement
for the system.

The system specification states that only those blocks of track that
trains occupy can be kept powered. All other blocks must be
unpowered (connected to ground). So, when the front of an
electric train locomotive passes from one block into the next
adjacent block, power must be applied to the next block before
the locomotive’s front wheels enter that block (within about 40 to
80 milliseconds of tripping the Hall sensor). This must happen
because the contact between the front set of locomotive wheels
and the metal rails of the tracks are what supply the locomotive
with the electricity it needs to operate. If the computer software
cannot switch on power to the next block before the front wheels
make contact with them, then the wheels will momentarily close
the gap between the two electrically isolated blocks as they pass
into the next block, providing a path for electricity to flow
between the powered block that the train is currently in and the
grounded unpowered block that the train is just entering. This
results in a large amount of current flowing through the track
hardware, blowing the fuse placed in the circuit to prevent more
extensive damage should something like this occur. The hard real-

72

time requirement for this system requires the computer software
to detect a train entering a block and subsequently supply power
to that block within that 40 to 80 millisecond time frame.
Satisfying this requirement helps prevent these fuses from being
blown.

The test program used to help evaluate this aspect of the system
was designed to see how well the Java virtual machine could
process the interrupts generated by the Hall effect sensors. It
would simply speak each Hall sensor’s identification number
through the DoubleTalk speech synthesizer when it is tripped and
its implementation involved both interrupt handlers for the Hall
sensors and a driver for the DoubleTalk voice synthesizer whose
implementation involved the use of a second thread. The vast
majority of the Java version of this program was implemented
entirely in Java with only very small portions—those used to
access the desired hardware—written in Ada and assembly
language.

Upon executing the Java version of the test program and flooding
the system with interrupts by rapidly tripping Hall sensors with
hand-held magnets, the Java test application appeared to keep up
just as well with handling Hall sensor signals as the same test
program implemented using Ada. There were no detectable
dropped interrupts. In fact, despite the extra overhead that Java
has in interpreting bytecodes, the behavior of the Java test
program was indistinguishable from the behavior of the Ada test
program.

So, a Java virtual machine like SimpleRTJ running on our target
system appears to have at least enough raw performance to
execute a Java implementation of the model railroad software.
The software required to get trains safely running on the tracks,
though, involves the use of significantly more concurrent threads
of execution. While most of these threads remain idle the majority
of the time, some of Java’s weaknesses with respect to memory
management and thread scheduling (which will be covered in
more detail shortly) cast some amount of doubt on whether Java
could support the full real-time system without having ported
enough of the software to see whether the system could
successfully handle a moving train.

5. HELPFUL JAVA LANGUAGE
FEATURES
While working on the Java implementation of the model railroad
system, a couple of Java language features proved to be very
helpful.

5.1 Native Methods
Native methods are one of the language features in Java that are
helpful in implementing embedded systems such as the model
railroad system. A native method in Java is declared using Java’s
native keyword in the method declaration, and, like a Java
abstract method, is not supplied with a method body. Instead, the
bodies of native methods are implemented using another language
that compiles to the target system’s machine code. The machine
code for these methods is then either compiled directly into the
virtual machine (as is done with SimpleRTJ) or placed in a shared
library and dynamically linked to the virtual machine at run-time
(as is done by Sun’s virtual machine). Whenever a native method

is called, this associated machine code is executed instead of Java
bytecodes.
Native methods essentially provide the same capability to the
Java virtual machine to execute code written in lower-level
languages that GNAT provides to Ada in allowing developers to
import procedures written in C or C++ and include in-line
assembly language in their code. In both Java and Ada, this
particular capability is useful when the language does not provide
particular low-level access to hardware or operating system
services on the target system that another language does. For
example, both Java and Ada do not provide access to an Intel x86-
compatible microprocessor’s I/O port instructions. These, though,
are easily accessible using assembly language. Additionally,
SimpleRTJ does not provide any console-related services to Java
applications. MaRTE OS, though, does provide these services to
Ada. Java’s native methods provide the means by which Java
applications can access hardware features and operating system
services such as these that are only accessible through these other
languages.
However, I should note that I came across an interesting issue
involving how other languages’ code executing in a Java
application via native methods affects Java virtual machines like
SimpleRTJ in a way that does not affect code imported from other
languages into an Ada application.
In an Ada application, code written in Ada or imported from
another language such as C generally ends up compiled to
machine instructions. All concurrent code in the system is then
executed in separate threads that are managed by the operating
system. In the Java runtime system provided by SimpleRTJ,
though, concurrency is implemented differently. SimpleRTJ was
designed for use on small embedded systems and, to keep the
complexity of the virtual machine relatively low so that it could
more effectively run on such systems, the virtual machine was
designed so that it executes exclusively in one operating system
thread—even when a Java application has multiple Java threads.
Instead of using separate threads managed by the operating
system to provide support for concurrency, SimpleRTJ relies on
an external timer interrupt to tell its single thread when it needs to
perform scheduling management for the Java threads in the Java
application. Between executing the bytecodes of a Java thread,
the virtual machine then looks to see whether that timer interrupt
has occurred and performs thread scheduling if it has, switching
execution to a different Java thread if necessary. As a result,
SimpleRTJ acts much like both an operating system on a single
processor system and a single central processing unit whose
machine instructions are Java bytecodes all rolled into one thread
of execution.
From this difference between the ways that concurrent control is
implemented in the Ada runtime system and SimpleRTJ’s Java
runtime system, the interesting issue with SimpleRTJ and native
methods arises out of the differences between how physical CPU
machine instructions are designed and what constitutes a Java
“instruction” (a bytecode).
Physical CPU machine instructions used in normal execution
generally never block. They complete within a finite number of
processor cycles. The same behavior extends to most Java
bytecodes. Native method “instructions,” though, are an
exception. In Java virtual machines, a native method call
effectively behaves like a single bytecode. If the machine code in

73

a native method blocks, then the bytecode that invoked the native
method effectively blocks that whole bytecode processor in the
virtual machine. In the meantime, that bytecode processor cannot
execute any other bytecodes because the native method call has
blocked it. Since SimpleRTJ is designed so that the bytecode
processor and thread scheduler both execute in the same single
operating system thread, the part of the virtual machine that
manages thread scheduling will also not be able see that timer
interrupts are occurring let alone schedule or switch between
other Java threads. As a result, even though the Java application
itself may have multiple Java threads, none of those threads will
execute while one of them has blocked the sole bytecode
processor in the virtual machine on a blocking native method.
This problem became apparent when trying to access MaRTE
OS’s console input services through native methods in a Java
application executing in SimpleRTJ. Whenever a line of text was
read from the console, the MaRTE OS thread executing the Java
virtual machine would block, waiting for either a character or a
whole line of input before proceeding. As a result, none of the
other Java threads would be scheduled to execute as one would
hope, bringing the whole Java application to a grinding halt.
In this particular system implementation, though, SimpleRTJ is
fortunately just a piece of software executing on top of an
operating system and we can design a way to prevent this from
happening. A server task external to the Java virtual machine can
be created using a language such as Ada or C that will execute in
another thread managed by the operating system. As part of this
server task, we can provide Java native methods that allow a Java
application to interface with it without blocking the virtual
machine. Such native methods can notify the server task of the
request and immediately return control to the virtual machine,
allowing the virtual machine to continue executing bytecodes
while the external task handles the blocking call. In the meantime,
the Java thread in the virtual machine that requested the blocking
call can use other available native methods to periodically poll
that external task while it waits for the request to complete.
Had I the time, I alternatively could have written a console driver
in Java using simpler non-blocking native methods that directly
accessed the keyboard hardware. Doing so would have solved this
problem without resorting to external server tasks. Unfortunately,
though, this was beyond the scope of both the model railroad
project and my research project.
Additionally, other Java virtual machines may be implemented in
a way that does not have this single-thread limitation. Other
virtual machine implementations may actually implement
concurrent control by producing additional operating-system-level
threads for each Java thread in an application. This would
effectively provide each Java thread with an independent
bytecode processor and separate out the operating system element
of the virtual machine that manages thread scheduling so that any
one bytecode processor cannot affect it, preventing the blocking
problem experienced with SimpleRTJ. Further exploration of this,
though, was also beyond the scope of this project.

5.2 Support for Concurrency
Another real-time-related feature of Java very useful in
implementing the model railroad software is its direct support for
concurrency.

In the Ada implementation of this system, we used Ada language
constructs such as tasks and protected types to respectively
implement concurrent control and mutually exclusive regions of
execution to protect operations on data shared between tasks.
Because Java also directly supports concurrency, porting the
model railroad project to Java involved for the most part the use
of equivalent language constructs: Thread objects and objects
whose operations are protected using synchronized methods.
Thread objects in Java are the equivalents to Ada’s tasks. They
provide the way to define concurrent execution in Java
applications. Each Java Thread running in a Java virtual machine
effectively executes concurrently with the other Threads in a Java
application. To help protect operations on the data that concurrent
Threads manipulate, Java provides a kind of method called a
synchronized method that is used to implement these operations.
These methods are declared by specifying the synchronized
keyword in the method declaration.
Synchronized methods force a calling Thread to first
automatically obtain the lock on the object whose method it wants
to execute before it enters that method. Since a particular object’s
lock can only be held by one particular Thread at a time,
synchronized methods help enforce mutual exclusion within an
object, providing a way to create Java objects that are basically
equivalent to Ada protected types.
This support for concurrency in Java is better integrated into the
language than Ada’s concurrency support is integrated into Ada,
giving Java some advantages. In Ada, tasks and protected types
are special types of objects. Declaring and making use of them
requires a different syntax than other data types implemented as
records and procedures that operate on those records. Tasks and
protected types also cannot be extended in an object-oriented
manner like objects implemented using Ada’s tagged records can.
This limits the extent to which Ada’s tasks and protected types
can be reused.
Being Java objects, though, Java’s Threads and protected type
equivalents are treated in the same way as all other objects in
Java. For example, the syntax for working with these kinds of
objects is the same syntax used with all other objects. Threads
communicate with other Threads using typical method calls and
the syntax for implementing synchronized methods and calling
synchronized methods is the same as that for normal methods.
Additionally, both Threads and objects that implement
equivalents to Ada protected types can be extended in an object
oriented manner just like all other objects can. This level of
integration can make reusing these kinds of components more
straightforward in Java than it is in Ada.

6. JAVA’S DRAWBACKS
Despite Java’s convenient support for native methods and
concurrency, a host of drawbacks surfaced in the Java language
that are significant concerns in implementing real-time embedded
systems such as the model railroad system.

6.1 Conditional Synchronization & Task
Synchronization
While Ada provides convenient ways to declare entry barriers for
conditional synchronization on protected type operations and
declare task entry points for task synchronization, Java does not.

74

It instead provides a more primitive way to implement these kinds
of behaviors using a set of low-level methods.

6.1.1 Implementing Entry Barriers
An example from the model railroad project where we decided to
use conditional synchronization on a protected type operation is
in the DoubleTalk voice synthesizer driver. The implementation
of this driver involves a producer-consumer relationship between
tasks external to the driver that submit phrases to be spoken
through the voice synthesizer and a single task in the driver that
sends each of the requested phrases to the DoubleTalk hardware.
Since sending a phrase to the hardware is a character by character
process that takes a relatively lengthy amount of time and we did
not want any producer tasks to have to wait to have their phrase
spoken because of the real-time nature of the system, we decided
to place all phrases submitted to the driver in a reasonably-sized
queue. The task interacting directly with the DoubleTalk
hardware then takes phrases out of this queue one by one as they
become available and works on sending them through the voice
synthesizer.

Because multiple tasks access this queue, we must have mutual
exclusion between the parts of the driver that add a phrase to the
queue and remove a phrase from the queue. Using Ada, we
accomplished this by making the queue type used in the driver a
protected type and making the operations that enqueue and
dequeue phrases operations on that protected type. In Java, we
begin implementing the same kind of behavior by making the
methods in the queue class that enqueue and dequeue phrases
synchronized methods.

Now by design, we chose to have the DoubleTalk driver start
dropping phrases when the queue becomes full. As a result, no
conditional synchronization is needed on the procedure that
producer threads use to enqueue phrases. When the queue is not
full, the call to enqueue a phrase places the phrase in the queue.
When the queue is full, the procedure simply discards the phrase
since there is nowhere to put it in the queue. Without any need for
an entry barrier on this operation, all we have to do in Ada to
implement this operation is to make it a procedure operation on
the protected queue type. To do the same thing in Java, we need
not do anything beyond making the operation a synchronized
method in the queue class.

We do want to have conditional synchronization, though, on the
operation that the consumer task in the driver uses to remove
phrases from the queue. When the phrase queue is empty, we do
not want the consumer task to perform a dequeue operation. We
would also like to have that task wait in a suspended state while it
cannot dequeue a phrase instead of polling the queue to see
whether or not it is empty in order to conserve CPU cycles.

To accomplish this using Ada, we have to make the protected
queue type’s Dequeue operation an entry procedure operation
and assign it an entry condition stating that the queue must not be
empty when a task enters it. Declaring the operation as an entry
procedure creates a task queue associated with that operation
where tasks waiting to enter that operation will be placed by the
runtime system when the entry condition is false. The entry
condition specified determines when tasks are to be suspended
and placed in the entry queue or allowed to execute the operation.

Figure 1 shows the partial implementations of the Enqueue and
Dequeue operations for the Ada implementation of this
protected queue type. In this implementation, when the consumer
task in the DoubleTalk driver calls on the Dequeue operation to
dequeue a phrase when the queue is empty, the Ada runtime
system will suspend that task and place it in the Dequeue
operation’s entry task queue. That task will then stay in that entry
queue until some producer task calls the phrase queue’s
Enqueue operation, placing a phrase in the phrase queue and
causing the Ada runtime system to reevaluate the Dequeue
operation’s entry condition. When such an action changes the
state of the queue so that the queue is no longer empty, the
runtime system will wake the consumer task from the Dequeue
entry queue, allowing it its turn to execute the Dequeue
operation and remove an existing phrase.

Java does not provide any way to simply declare entry conditions
like this on synchronized methods and, as a result, this makes
producing this same behavior in Java more complicated. Java

Figure 1. The specification and partial implementation of the
Ada protected phrase queue type for the Doubletalk driver

protected type Phrase_Queue_Type is
 entry Dequeue (Phrase : out Phrase_Type);

 procedure Enqueue (Phrase : in Phrase_Type);

 function Is_Empty return Boolean;

 function Is_Full return Boolean;

private
 -- Private declarations...

end Phrase_Queue_Type;

protected body Phrase_Queue_Type is
 entry Dequeue (Phrase : out Phrase_Type)
 when not Is_Empty is
 begin
 -- Dequeue a phrase from the queue,
 -- assigning the dequeued phrase to
 -- ‘Phrase’...
 end Dequeue;

 procedure Enqueue (Phrase : in Phrase_Type) is
 begin
 if not Is_Full then
 -- Enqueue ‘Phrase’...
 end if;
 end Enqueue;

 function Is_Empty return Boolean is
 begin
 -- Return True when the queue is empty,
 -- False when it is not.
 end Is_Empty;

 function Is_Full return Boolean is
 begin
 -- Return True when the queue is full,
 -- False when it is not.
 end Is_Full;
end Phrase_Queue_Type;

75

supplies three low-level methods called wait, notify, and
notifyAll to all objects and a combination of these methods
can be used to implement the entry barrier for this queue class’s
dequeue method.

When a particular Java Thread owns the lock on a particular
object and calls that object’s wait method, it is suspended and
placed in the object’s set of waiting Threads, one of which is
provided for every Java object. It then gives up the lock on that
object. At a future point in time, when the object’s state has just
changed so that an entry condition on the entry barrier has
become true, another Thread that owns the object’s lock at that
time must explicitly call the object’s notify method. This
method “notifies,” or wakes up, any one Thread currently in the
object’s wait set. After such a Thread is awakened, it must then
successfully reacquire the object’s lock and, once it has done so,
it can then start executing again immediately after the call to
wait that placed it in the wait set.

The partial Java implementation of the entry barrier for this queue
class is shown in Figure 2. In this implementation, a Thread
entering the dequeue method first checks to see whether or not
the queue is empty before it attempts to dequeue a phrase. If the
queue is empty, it will invoke the queue instance’s wait method
in order to suspend itself, place itself in the queue instance’s wait
set, and release the queue’s object lock. For the purposes of the

model railroad project, this call to wait is placed in a while loop
where the calling Thread stays while the entry condition is false.
This loop is placed there just in case the Thread’s wait is
interrupted for some reason when wait throws an
InterruptedException. This way, if the entry condition
happens to still be false when the Thread is awakened due to an
interruption, it will keep waiting at the barrier instead of
proceeding into the method when it should not.

Finally, something in this implementation must also be in place to
wake up this Thread when somebody else puts a phrase in the
queue. At the end of the enqueue method, a producer Thread
must call the queue instance’s notify method in order to notify
the consumer Thread waiting in the queue’s wait set that a phrase
now exists in the queue, waking that Thread so that it can proceed
to dequeue that phrase. If there is no Thread in the wait set, then
this call does nothing to the wait set.

Comparing the partial Ada and Java implementations of this
queue data type, we see that the Java implementation of entry
barriers is more complex than Ada’s. In Ada, all we have to do is
declare an entry operation and the entry condition for that
operation. In Java, though, we have to actually worry about the
algorithms involving the wait and notify methods that will
produce the desired behavior. Despite this, this particular Java
implementation nevertheless gets the job done in very simple
situations like this DoubleTalk phrase queue where only one entry
condition exists on one synchronized method.

6.1.2 The Drawbacks of wait, notify, and notifyAll
The queue class used in the implementation of the DoubleTalk
driver only uses the wait and notify methods in a very simple
way because there is only one entry barrier on one synchronized
method in the class. Within the scope of the model railroad
system, this also happens to be the most complicated situation in
which we make use of these particular methods. But, it is
nevertheless important to note that the wait, notify, and
notifyAll methods have a few serious drawbacks when used
in more involved ways.
Firstly, compared to Ada, the low-level nature of these methods
can make putting additional entry barriers on other Java
synchronized methods more than trivial—especially when going
from a class where calls to wait and notify have been
optimized for one entry barrier on one synchronized method to
multiple entry barriers on multiple synchronized methods.
For example, consider how the queue class implementations in
Figures 1 and 2 must be changed if we would decide to add an
entry barrier to the queue’s enqueue operation so that it would not
discard phrases when the queue is full but instead execute the
operation only when an opening in the queue is available,
suspending calling tasks otherwise. To adjust the Ada
implementation shown in Figure 1, all we have to do is change the
Enqueue procedure of the protected queue type to an entry
procedure, creating another task entry queue for that operation,
and then add the appropriate entry condition. The Ada runtime
system will then automatically take care of ensuring that this
additional entry barrier is enforced. The modified Ada
implementation including this change is shown in Figure 3.
Adding this entry barrier in Java, though, is not as trivial. Each
Java object only has one wait set in which all Threads calling on

Figure 2. The partial implementation of the Java phrase
queue class for the Doubletalk driver

public class PhraseQueue {
 /* Instance variables and constructor
 declarations... */

 public synchronized Phrase dequeue() {
 while (isEmpty()) {
 try {
 wait();
 }
 catch (InterruptedException
 exception) { }
 }

 /* Dequeue the next phrase in the queue
 and return it */
 }

 public synchronized
 void enqueue(Phrase phrase) {

 if (!isFull()) {
 /* Enqueue ‘phrase’ ... */
 }

 notify();
 }

 public synchronized boolean isEmpty() {
 /* Return true when the queue is empty,
 false when it is not. */
 }

 public synchronized boolean isFull() {
 /* Return true when the queue is full,
 false when it is not. */
 }
}

76

wait can be placed. So, even if there are multiple synchronized
instance methods in a Java class that each have entry barriers with
different entry conditions, the Threads waiting on these different
entry conditions must still all wait in the same wait set. If this is
the case and a particular entry condition on one of the entry
barriers becomes true, a call to notify then no longer
guarantees that a Thread waiting on that particular condition will
be the Thread notified. Consequently, the use of the notify
method in this case can result in latent notification for Threads
that actually care about the entry condition that has just changed.
If the one Thread awakened by notify is waiting on another
entry barrier, then the other Threads that actually care about that
particular entry condition will have to wait longer—until another
future call to notify—to be awakened so that they can proceed.
Even then there is still no guarantee that one of those particular
Threads will be awakened on that next call. This is not desirable
behavior–especially in real-time systems.
So, for the entry barrier implementation to behave correctly when
an entry condition becomes true, the Java software will now have
to either somehow look through all of the Threads in the object’s
wait set to determine which one waiting on that entry condition
should be awakened or awaken all Threads in the object’s wait set
and leave it up to each one of them to somehow decide whether or
not they can proceed. Unfortunately, there is no way in Java to do

the former. But, Java provides the notifyAll method to help
accomplish the latter. When notifyAll is called on a particular
object, it notifies every Thread in that object’s wait set. Each
Thread must then in turn reacquire the object’s lock before it can
continue to execute in the synchronized region of code that it was
suspended in.
Because every Thread in the wait set is awakened, each must
somehow determine whether or not the entry condition at the
barrier it is waiting at is true before it proceeds into the method.
Those Threads still not allowed to proceed should suspend
themselves again by calling wait. Those allowed to proceed
should continue into the method to execute.
To produce this behavior in the queue class shown in Figure 2, the
call to notify in the enqueue method must be changed to a
call to notifyAll so that all Threads in the queue instance’s
wait set can reevaluate their entry conditions. Additionally, a
while loop must be inserted at the very beginning of this method
with a call to wait in its body to enforce the new entry barrier
for the enqueue operation. This loop will ensure that Threads
will only be allowed to enqueue a phrase when the queue is not
full.
The dequeue method must also be modified to help implement
this additional entry barrier. The while loop in place in Figure 2
for the existing dequeue entry barrier is already sufficient to
prevent Threads from entering the method in situations when they
are notified for some change in an entry barrier’s entry condition
and the queue is still empty. The dequeue method, though, must
be modified to call the notifyAll method after it has dequeued
a phrase to notify any Threads waiting in the enqueue method
that an opening exists in the queue in which they can enqueue a
phrase. All of these changes are shown in Figure 4.
Unfortunately, implementing multiple entry barriers in this way in
Java generally requires multiple Threads to be awakened when an
entry condition becomes true—more than are actually waiting on
that particular condition. This introduces extra processing
overhead in Java programs due to thread switching that is not
present in Ada. When entry conditions are reevaluated in Java, a
switch must be made to each waiting Thread so that each can
reevaluate its own entry condition and take the appropriate action.
In Ada, though, the runtime system takes care of evaluating entry
conditions. It does not force a switch to every task waiting at
every entry operation on a protected object so that each can
reevaluate its entry condition. As a result, the Java
implementation of entry barriers is more inefficient—especially
when a system must manage large numbers of threads.
So, why not try to implement some way in Java involving the
wait, notify, and notifyAll methods that separates
Threads waiting on an object out into different wait sets—one for
each entry barrier? It turns out that attempting to do this is
complicated by another problem inherent in the use of the wait,
notify, and notifyAll methods. This problem is nested
object lock deadlock, which can occur in a Java system when a
Thread calls an object’s wait method while owning the locks for
a number of different object instances.
To attempt to remove the need to notify each and every object
waiting on an instance of the queue class in Figure 4 when an
entry condition changes, one might try creating two internal
objects in each phrase queue instance that are used solely for their

Figure 3. The specification and partial implementation of an
Ada protected phrase queue type with entry barriers on both

the Enqueue and Dequeue operations

protected type Phrase_Queue_Type is
 entry Dequeue (Phrase : out Phrase_Type);

 entry Enqueue (Phrase : in Phrase_Type);

 function Is_Empty return Boolean;

 function Is_Full return Boolean;

private
 -- Private declarations...

end Phrase_Queue_Type;

protected body Phrase_Queue_Type is
 entry Dequeue (Phrase : out Phrase_Type)
 when not Is_Empty is
 begin
 -- Dequeue a phrase from the queue,
 -- assigning the dequeued phrase to
 -- ‘Phrase’...
 end Dequeue;

 entry Enqueue (Phrase : in Phrase_Type)
 when not Is_Full is
 begin
 -- Enqueue ‘Phrase’...
 end Enqueue;

 -- The same implementations for Is_Empty and
 -- Is_Full from Figure 1 are included here
 -- as well...
end Phrase_Queue_Type;

77

wait sets. All Threads waiting on the enqueue method’s entry
barrier could then by some means be placed in one of those
objects’ wait set and all Threads waiting on the dequeue
method’s entry barrier could be placed in the other object’s wait
set. Once this is done, then only one Thread waiting on the
enqueue entry barrier’s corresponding wait set object would
have to be notified each time a phrase is dequeued since we know
for sure that Threads in that object’s wait set are waiting on just
that particular entry condition. We would not have to notify all
Threads waiting at all of the queue instance’s entry barriers. The
same would hold true for Threads waiting on the dequeue entry
barrier whenever a phrase is enqueued.
We still, though, must have mutual exclusion between the
enqueue and dequeue methods. To achieve this, both of these
methods must still be synchronized so that Threads trying to
perform either operation are forced to execute them one at a time.
But if this must be the case, consider what will happen when a
Thread must be suspended at one of the entry barriers. A Thread
entering either the enqueue or dequeue method must first

obtain the phrase queue’s object lock. If the entry barrier’s entry
condition evaluates to false, that Thread must then wait at the
barrier until the entry condition becomes true. To suspend itself in
the correct wait set, it must next obtain the object lock on the
internal object whose wait set is to contain all the Threads waiting
at that particular entry barrier. But, when it finally calls the
internal wait set object’s wait method to suspend itself, it gives
up only the lock on the internal wait set object. It does not release
the phrase queue lock it first obtained to enter the synchronized
enqueue or dequeue method. As a result, the Thread will have
suspended itself but no other Thread will be able to enqueue or
dequeue anything and wake that Thread back up. This will place
any Threads that attempt to use that phrase queue in deadlock.
This scenario demonstrates a more general problem in Java that
can occur when the wait, notify, and notifyAll methods
are used in situations where Threads have made nested calls to
obtain the object locks for different object instances. One might
hope that a Thread calling wait would relinquish all object locks
that it possesses and then reacquire each of those locks after it has
been notified at a later time, but it only relinquishes the lock on
the object that it called the wait method on, retaining all other
locks it has. Consequently, other Threads will be locked out of all
objects whose locks are still possessed by the suspended Thread,
vastly increasing the likelihood for deadlock in the system. This is
yet another drawback to how the wait, notify, and
notifyAll methods behave—especially in systems that use
these methods and synchronized methods in more involved ways.
Lastly, even though we designed the model railroad software so
that it did not rely on the need to extend concurrency-related
objects in Java that use the wait, notify, and notifyAll
methods, it is worth noting that the process of extending these
kinds of classes can be greatly complicated when a subclass tries
to add more functionality that uses these methods. In many cases,
while a parent class that uses these methods may work perfectly
by itself, subclasses that add functionality using wait, notify,
and notifyAll may fail to work as intended due to the way in
which the parent and subclass implementations interact with one
another. This behavior is generally referred to as the “inheritance
anomaly” [3] [4].
In Java, this anomaly can lead to undesired behavior ranging from
latent Thread notification to race conditions. Exactly how the
class misbehaves depends on the implementations of the parent
class and subclass. Most of the time, these problems can only be
corrected by refining the implementations of both the parent class
and the subclass. This is unfortunate since a developer must be
concerned about how the parent class is implemented in order to
implement the subclass properly and great care must be taken in
designing both a parent class that uses these methods as well as its
subclasses. This need for concern about the parent class’s
implementation also violates encapsulation. So, while one of
Java’s strengths may be that it allows concurrency-related
features like Threads and synchronized methods to be extended in
an object-oriented manner, the use of the wait, notify, and
notifyAll methods in these kinds of objects has the potential
to turn this convenience into more of a nightmare.

6.1.3 Thread Synchronization
The Ada implementation of the model railroad software did not
rely much on task synchronization. The majority of the tasks in
the software’s design were periodic and their behavior relied on

Figure 4. The partial Java implementation of a phrase queue
class with entry barriers on both the enqueue and dequeue

operations

public class PhraseQueue
{
 /* Instance variables and constructor
 declarations... */

 public synchronized Phrase dequeue() {
 while (isEmpty()) {
 try {
 wait();
 }
 catch (InterruptedException
 exception) { }
 }

 Phrase phrase;

 /* Dequeue the next phrase in the queue,
 assigning it to ‘phrase’. */

 notifyAll();
 return phrase;
 }

 public synchronized
 void enqueue(Phrase phrase) {

 while (isFull()) {
 try {
 wait();
 }
 catch (InterruptedException
 exception) { }
 }

 /* Enqueue ‘phrase’ ... */

 notifyAll();
 }

 /* The same implementations for isEmpty and
 isFull from Figure 2 are included here as
 well... */
}

78

global data structures that they shared access to, so I did not have
the opportunity to explore implementing task synchronization in
Java in as much depth as entry barriers. The only places where the
Ada implementation used task synchronization were where
several instances of a particular task type existed concurrently at
runtime and each task instance needed to be initialized with
information like an identification number before it could execute
properly.
A particular example of this in the system is in the
implementation of the tasks that control the turnouts on the tracks.
These Y-shaped junctions in track allow a train approaching the
lower common arm of the turnout to choose between going
through either the upper left or right arm. A train approaching
either the left or right arm instead must ensure that the turnout is
switched to the correct direction so that it can safely travel
through to the common arm without derailing. In either case, if
the turnout fails to completely switch to the correct direction
before the train passes through the junction, the train will derail.
To help prevent this, we create a task for each turnout that
watches its turnout as it switches directions to make sure that it
reaches its desired position within a reasonable amount of time.
If, for some reason, the turnout becomes stuck and cannot get to
its desired position, then its task will quickly stop any train that is
about to go through the turnout and attempt to unstick the turnout
by switching the turnout’s position from left to right and back
over and over again until it successfully reaches its desired
position.
Before these tasks can execute properly, each must know which
turnout they have to watch. In the Ada implementation of the
software, we were prohibited from using dynamic memory and, as
a result, could not dynamically create tasks. So, we could not
separately create tasks in such a way that we could effectively use
type discriminants to assign a turnout to each task. Instead, we
had to declare an array of these tasks. Before each task could then
proceed to watch its turnout, it had to service an entry point at the
very beginning of its block of execution where the main program
could synchronize with it and give it its turnout’s identification
number.
In the Java implementation, since we are forced to use
dynamically created objects for Threads, we can go ahead and use
the equivalent of an Ada type discriminant by creating a
constructor method for the turnout Thread class that requires a
turnout’s identification number to be supplied when a turnout
Thread is created. When each of these Threads is created, its
identification number is then simply passed to the constructor and
there is no need for any task synchronization.
Despite the lack of utilization of task synchronization in the Java
version of this system, it is worth noting the similarities between
how task synchronization and entry barriers can be implemented
in Java. As with entry barriers, task synchronization involves one
task waiting for a particular condition to become true. For task
synchronization, that condition is whether or not the other Java
Thread involved in the synchronization is at a point in its
execution where it is ready to rendezvous. Because of this, the
wait, notify, and notifyAll methods can be used to
implement blocking task synchronization in a manner similar to
implementing entry barriers on synchronized methods.
Consequently, implementing task synchronization in this way will

have the same types of drawbacks seen in implementing entry
barriers.
Particularly, because the Ada runtime system automatically
handles the dynamic aspects of task synchronization in addition to
handling the enforcement of entry barriers, implementing task
synchronization is more complicated in Java than it is in Ada. All
a developer has to do in Ada is define entry points for a task and
what to do at those points where entries are accepted in the sever
task. Then, when the system is executing and either the server or
client task wishes to synchronize at that entry point, the runtime
system takes care of making sure both tasks are at the proper
points in their execution before communication between them is
allowed to proceed. In Java, a developer has to program this
behavior manually using the wait, notify, and notifyAll
methods.

6.2 Thread Scheduling
Standard Java virtual machines provide some scale of control over
how Threads can be scheduled while an application is executing.
The Java virtual machine provided by Sun Microsystems allows
developers to assign priorities to Threads. These priorities are
then used by the virtual machine to determine how to switch
among Threads while a Java application is running. SimpleRTJ,
designed for use in smaller embedded systems, provides much
more simplistic support for priorities. In SimpleRTJ, all regular
application Threads have the same priority.2 Only SimpleRTJ’s
Events Thread, which exists to handle asynchronous events such
as hardware interrupts, is given a higher priority over all of the
other Threads to guarantee that any time-critical handling of these
kinds events is done in a timely manner.
These virtual machines provide a level of support for Thread
priorities no matter how limited. But, even though they do this,
they still only are implemented to satisfy the Thread scheduling
specifications for standard (non-real-time) Java that are laid out in
The Java Language Specification [8]. As a result, there are two
significant concerns with respect to Thread scheduling must be
considered while implementing the model railroad software.

6.2.1 Arbitrary Thread Scheduling
One issue with standard Java’s Thread scheduling is that The Java
Language Specification says nothing about how Threads that are
waiting to acquire an object’s lock are to be scheduled for access
to the lock. It also does not address how Threads waiting in an
object’s wait set are to be scheduled for notification when
notify is invoked to wake just a single Thread. According to
The Java Language Specification, any arbitrary Thread can be
chosen out of those waiting at a synchronized method to acquire
an object lock or those to be taken out of an object’s wait set after
notify is called. The next Thread chosen does not necessarily
depend on its priority or how long it has been waiting.
This was not how scheduling was handled in the Ada
implementation of the model railroad software. The Ada 95
Reference Manual [7] addresses how tasks are to be scheduled in
equivalent situations. For example, tasks waiting in entry queues
will, by default, be chosen for entry based on order of arrival.
When the Ada Real-Time Systems Annex is available, tasks can

2 Consequently, SimpleRTJ does not fully implement this part of

the The Java Language Specification.

79

also be assigned priorities. Those priorities, along with a
specifiable task dispatching policy, will then be used to determine
how tasks are scheduled.
Standard Java’s lack of a specification for scheduling in these
situations gives it a significant disadvantage as a useful real-time
language. Its arbitrarily specified behavior does not help the
process of developing real-time applications when developers
need to be able to control or at least know how Threads are being
scheduled. The Real-Time Specification for Java [2], though,
extends Java to provide this kind of functionality. It defines a set
of virtual machine improvements and class libraries that can be
used to specify Thread scheduling policies for normal Thread
switching, for how Threads are chosen to acquire an object’s lock
to enter a synchronized region of code, and for how Threads
waiting in a particular object’s wait set are to be chosen for
notification by basically turning the wait set into a wait queue.
SimpleRTJ does not provide this way to define scheduling
policies. The use of Thread priorities in the model railroad
system, though, is only critical for handling the Hall sensor
hardware interrupts. These interrupts must be handled as soon
after they occur as possible and the Events Thread that
SimpleRTJ provides to execute the interrupt handler helps ensure
that it is always given the highest priority of all Threads executing
on the system. Additionally, this interrupt handler is designed so
that it never enters any regions of code where it might be placed
in a wait set or compete against other Threads to enter a
synchronized method. Lastly, thanks to SimpleRTJ, all the other
Threads on the system—which do call synchronized methods and
use the wait, notify, and notifyAll methods—all have the
same priority. So, the fact that standard Java does not specifically
schedule according to priorities in these particular situations is not
a significant issue in the implementation of the model railroad
system. The arbitrarily specified approach to scheduling, though,
is despite the fact that it did not appear to have adverse effects on
the performance of the implemented portions of the model
railroad software.

6.2.2 Priority Inversion
The second of the concerns related to standard Java’s Thread
scheduling is priority inversion. Since MaRTE OS [9] provided an
implementation of the Ada Real-Time Systems Annex [7], the
Ada runtime system automatically took care of limiting the effects
of possible priority inversion in the Ada implementation of the
model railroad software by using a form of priority inheritance.
Each task in Ada is assigned a base priority. This is the priority
level that a developer can give to a task and the priority at which
the task typically executes when it is not in critical regions of
code. But, while the system is executing, the task’s active priority
can be raised above this base priority in situations where a higher-
priority task is waiting on the task to finish executing a critical
region of code. Raising this active priority raises the task’s
effective priority so that it can finish executing in a critical region
as soon as possible, limiting the amount of time that the higher-
priority task has to wait.
Standard Java, though, as defined in The Java Language
Specification [8], does not address priority inversion. As a result,
a high priority Thread executing in a virtual machine that satisfies
this specification could suddenly find itself blocked, waiting to
enter a synchronized method where a lower priority Thread is
executing. If other higher-priority Threads were executing on the

system, then that high-priority Thread would suddenly find itself
blocked for a significant amount of time since the lower-priority
process would be preempted by the other higher-priority Threads.
This results in priority inversion, where the blocked high priority
Thread effectively has the priority of the low priority Thread it is
waiting on.
This is yet another feature useful in real-time applications that
standard Java fails to implement while Ada does. The Real-Time
Specification for Java [2], though, also takes steps to address this.
It provides a means by which to limit priority inversion among
Threads competing to enter synchronized methods by using a
form of priority inheritance when a particular Thread scheduling
policy provided by the specification is enabled.
Because SimpleRTJ is based more on standard Java, it also lacks
the means by which to limit the effects of priority inversion. This,
though, is also not a critical issue for the model railroad software
because of the way it is designed. We gave all tasks in the system
the same priority. The only exception to this was the interrupt
handler that processes the Hall sensor interrupts. In the Ada
implementation, this interrupt handler got priority over other tasks
because it was a native hardware interrupt handler. In SimpleRTJ,
this interrupt handler is executed by SimpleRTJ’s Events Thread,
which has priority over all other Threads executing in the virtual
machine. Combining this with the fact that this interrupt handling
Thread is never allowed to execute where it could potentially
block, the situation will never occur where a higher priority
Thread will have to wait for one of the other lower priority
Threads to get out of a critical region. Consequently, SimpleRTJ
is sufficient for the model railroad project in this respect even
though it does not address priority inversion. Had we the need to
assign different priorities to Threads, though, this drawback of
SimpleRTJ could have been a problem.

6.3 Memory Management
Another one of the weaknesses standard Java has as a real-time
language is the way that standard Java virtual machines manage
memory. While the runtime environments for Ada and other
languages like C and C++ make use of a runtime stack on which
any type of data can be stored, the vast majority of interesting
data in a Java application can only be allocated dynamically from
a heap. “Primitive” types like integers, floating point values,
boolean values, and object pointers can go on Java’s runtime
stack. Any compound data types, though, must be implemented as
objects which must reside in memory allocated from Java’s heap.
This makes writing a useful Java application virtually impossible
without using dynamic memory allocation. For life-critical
embedded systems prohibited from using dynamic memory for
safety reasons, this makes using standard Java altogether
impossible.
Moreover, while a Java program can create objects on demand, it
cannot explicitly destroy them. Instead, it has to rely on the Java
garbage collector to destroy any objects that are no longer in use.
This lack of control over memory deallocation is potentially a
significant inconvenience in implementing real-time applications.
Firstly, the application is not able to destroy unused objects at
will. As a result, unused objects may take up memory for some
time after they could have been destroyed explicitly at a
convenient, predetermined moment. Secondly, while the garbage
collector removes these objects, it interferes in the operation of
the Threads executing in the virtual machine.

80

For a hard real-time system, this means that the handling of any
external events needing immediate attention might be preempted
by the garbage collector. If the garbage collector happens to
interrupt normal execution at the wrong moment for too long,
then hard real-time deadlines may pass. While one can probably
perform some sort of worst-case execution time analysis on both
the garbage collector and hard real-time code to ensure that the
garbage collector will not cause missed deadlines, the existence of
the garbage collector most certainly does not make this analysis
any easier.
These concerns are of such importance in the implementation of
real-time systems, though, that they are being actively addressed
in the Real-Time Java community. Despite the lack of attention
given to safety-critical systems in current Java specifications,
preliminary efforts are underway at the OpenGroup to set aside a
subset of the Real-Time Specification for Java that can be tested
to such a standard that it can be deemed reliable enough for use in
safety-critical systems [1].
Additionally, the J Consortium and the Real-Time Java Working
Group are working on a specification for Real-Time Core
Extensions [10] to Java that help address concerns about memory
management. It allows developers of the real-time portions of a
Java application to declare objects as stackable. The space for
these stackable objects is allocated from the run-time stack and, as
a result, is not managed by the garbage collector. The Real-Time
for Java Expert group is also addressing these same concerns in
their Real-Time Specification for Java [2]. While objects would
still be allocated dynamically, this specification allows special
kinds of real-time Threads to exclusively use forms of non-heap
memory not managed by the garbage collector. As a result, the
garbage collector would not be allowed to preempt these real-time
Threads.

6.4 Bit-Shifting Operations
A general issue with the Java language that I encountered while
implementing the model railroad software is how it performs bit
shifting operations. An important part of developing embedded
systems is writing low-level drivers that provide the application
with an interface to the hardware of the target system. Often, the
implementation of these drivers involves reading or changing
single bits in primitive data types such as bytes or words.
In its syntax for record declarations, Ada provides a convenient
way to access these single bits. Using Ada, a programmer can
define a record and then map its components onto particular bits
of a byte or word that is used to internally represent that record
within the computer. Once such a bit map is defined, the compiler
then handles all the operations needed to read and modify the
desired bits.
Java provides no such way to do this. Instead, one has to use
Java’s bit shifting and bit masking operations to implement the
same functionality. This by itself is no huge inconvenience
although the implementation is less straightforward. One can still
obtain the same functionality provided by Ada by using these bit
manipulation operations.
What makes using Java’s bit manipulations for this purpose
frustrating, though, is a combination of two behaviors. One is that
all bit shifting and bit masking operations are done on either 32-
bit int or 64-bit long integer types. This means that an 8-bit
byte or 16-bit short integer value is first cast to a 32-bit int

integer before the operation is performed. The second behavior is
that these 32-bit int and 64-bit long integer types in Java are
signed integer types.
This can cause what seems like unexpected results when using a
right unsigned bit shift operation to access single bits in byte or
short integer values. One would hope that a right unsigned bit
shift operation performed on a negative byte value would
introduce zeros on the left-hand side of the byte despite its
negatively-signed value. This, though, is not what happens.
Before a shifting operation is performed on a negative byte, that
byte is first converted to a negative 32-bit integer. Then, when
the bit shifting operation is performed, the ones in the upper bits
of this negative 32-bit integer are shifted to the right into the
lower eight bits. When the result is cast back to a byte, we find
that the unsigned shift operation effectively produced a signed
right shift.
But, however inconvenient and unexpected this may seem, there
is a way to work around it. Instead of performing just an unsigned
right bit shift on the byte using an expression like the following:

(byte)(byteValue >>> 2)

one first has to mask out the upper 24 bits of the intermediate 32-
bit integer value before shifting to obtain the desired result:

(byte)((byteValue & 0xFF) >>> 2)

This fix is relatively simple. It still, though, is a bothersome
inconvenience that is another potential source for errors—
especially when developing low-level drivers that require
arithmetic on values obtained using the unsigned right bit shift
operation.

6.5 Class “Elaboration”
One final issue with Java concerns what The Java Language
Specification [8] requires of Java compilers in the application
compilation process. In Ada, one can write initialization code for
packages that is automatically executed by the runtime
environment when the application is started. This initialization
code is executed during a process called package elaboration. In
Java, one can declare static final (constant global class-
wide) “variables” whose values must be initialized—either with
primitive type values or object instances created by calling on
other class’s object constructors. The Java virtual machine must
then initialize the values of these constants before it starts
executing a Java application. So in effect, the virtual machine
must perform the equivalent of “elaborating” these classes. While
an Ada compiler is required to check such code to make sure that
circular package dependencies will not produce unintended results
when elaboration occurs, the Java compiler does not provide this
type of checking.
Problems related to this issue caused considerable amount of
consternation while developing the Java version of the electric
model railroad software. Fortunately, most of the circular class
dependency issues could be resolved by looking at which places
in the Ada version of the software had circular dependencies and
carefully designing the corresponding Java classes to prevent any
problems. Despite these efforts, though, once the number of
classes in the project grew beyond a certain point, the Java
application all of a sudden would started acting like some of its
class constants were not being initialized. Upon further
exploration, they in fact really were not being initialized, and,

81

oddly, this was happening both for classes that did depend on
other classes and classes that did not.
So unfortunately it became apparent that it was not safe to assume
that the virtual machine could correctly “elaborate” classes at
startup. There is a way, though, to work around this problem
without relying on a compiler that requires careful thinking. First,
one has to move all statements in each class that initialize the
class’s constants to a class-wide initialize method in the
class. Then, the main program must explicitly call each class’s
initialize method before using them. Further, the order in
which it calls them must be such that it ensures that all classes a
particular class depends upon are initialized before that class itself
is initialized. Of course, this unfortunately prohibits one from
declaring the global “constants” in the affected classes as final
since the compiler will not allow values to be assigned to any
final variables other than those assigned to them right where
they are declared. Only after taking these steps, though, would
everything finally initialize correctly and behave properly.
I should also note that, since this particular initialization problem
appeared in classes that did not depend upon any other classes,
part of this particular problem could possibly have been with
SimpleRTJ and not with Java virtual machines in general. To
know for sure, I would have had to perform more testing using
other virtual machine implementations to see if the exact same
behavior could be duplicated. But nevertheless, this does not
discount the fact that extra care must be taken with Java to avoid
circular class dependencies because neither the compiler nor the
virtual machine may detect them.

7. CONCLUSION
From practical experience with UNI Real-Time Systems model
railroad project, Java has shown both merits and drawbacks as a
language for implementing real-time embedded systems.

Firstly, despite the fact that Java virtual machines interpret
bytecodes instead of directly executing machine code, Java
operating environments appear to have the raw performance
needed to support real-time applications as long as the virtual
machine is efficient enough and the target system is fast enough.
But, considering Java’s inefficiencies with implementing entry
barriers and its arbitrary Thread scheduling in particular
situations, a more complete implementation of the model railroad
software would have provided a more definitive answer on the
adequacy of Java’s performance for the complete real-time
system.

Additionally, Java provides two language features that are
particularly useful in implementing the model real-time embedded
railroad system. These features are the ability to provide an
interface to target-system-specific resources through native
methods and direct integrated language support for concurrency
available through Thread objects and synchronized methods.

But, despite these strengths, Java has a number of significant
drawbacks. One of these is the low-level nature of the methods
that Java provides to implement entry barriers for conditional
synchronization on regions of mutual exclusion. These make
implementing entry barriers more computationally expensive,
complicated, and error-prone than doing the same in Ada.
Standard Java also lacks a specification for how to schedule
Threads waiting to enter synchronized methods and choosing the

next Thread to notify in an object’s wait set when the notify
method is called. Ada’s specification does address scheduling
behavior in equivalent situations.

Compared to Ada, standard Java also leaves much to be desired in
its method of memory management, which relies almost
exclusively on dynamic memory allocation and a garbage
collector that may interfere with the predictable execution of
threads. Java additionally provides a less convenient way to
access single bits in primitive data types through bit shifting and
bit masking operations, and using the unsigned right bit shift
operation to access these bits in primitive types smaller than 32-
bit integers can produce what seems like unexpected behavior.
This makes the implementation of low-level drivers requiring
access to single bits of data more obfuscated. Finally, Java lacks
an equivalent to Ada’s elaboration checking for the code that
initializes classes at application startup. This has the potential to
cause unexpected behavior in a Java application if class
dependency circularity is not carefully considered.

While these last two issues are mainly just inconveniences and
can be worked around with some thought, the issues with
arbitrary Thread scheduling and Java’s memory management
model make Java less than ideal as a language for use in real-time
applications. These drawbacks, combined with the work currently
being done by the J-Consortium, the OpenGroup, and the Real-
Time Java Expert Group show that Java is more of a work in
progress as a real-time language. They reinforce the importance,
though, of the current efforts being put forth by these groups in
the Real-Time Java community to provide real-time extensions to
Java that solve these issues and make Java a more viable and
reliable alternative for implementing real-time embedded systems.

8. REFERENCES
[1] Bergmann, Joe. Safety Critical JSR Draft 2 R3. The Open

Group. http://www.opengroup.org/rtforum/uploads/40/
2932/SafteyCriticalJSRDraft2_r3.doc (accessed on
20 Sep 2003).

[2] Bollella, Gregory (ed.). The Real-Time Specification for
Java. Addison-Wesley, Boston, MA, 2000.

[3] Brosgol, Benjamin M. “A Comparison of the Concurrency
and Real-Time Features of Ada 95 and Java.” SIGAda ‘98
Proceedings. Association for Computing Machinery, Inc.,
1998, 175-192.

[4] Burns, Alan, and Andy Wellings. Real-Time Systems and
Programming Languages. Pearson Education Limited, New
York, NY, 2001.

[5] Developer’s Guide to Simple Real Time Java. RTJ
Computing Pty. Ltd. http://rtjcom.com/files/
simplertj-1.4.0-doc.zip (accessed on 20 Sep 2003).

[6] DoubleTalk Voice Synthesizers. RC Systems, Inc.
http://www.rcsys.com/dt.htm (accessed on 10 Aug 2003).

[7] Ada 95 Reference Manual. Intermetrics, Inc., Cambridge,
MA, 1995. International Standard ISO/IEC 8652:1995.

[8] Joy, Bill (ed.). The Java Language Specification, Second
Edition. Addison Wesley, Boston, MA, 2000.

82

[9] MaRTE OS Home Page. http://marte.unican.es/ (accessed on
11 Aug 2003).

[10] Real-Time Core Extensions. J Consortium, Cupertino, CA,
2000. http://www.j-consortium.org/rtjwg/rtce.1.0.14.pdf
(accessed on 20 Sep 2003)

[11] Real-Time Embedded Systems Lab. Computer Science
Department, University of Northern Iowa.
http://www.cs.uni.edu/~mccormic/RealTime/ (accessed on
10 Aug 2003).

[12] Real-Time Java. Real-Time for Java Expert Group.
http://www.rtj.org/ (accessed on 10 Aug 2003).

[13] Simple Real Time Java, The. RTJ Computing Pty. Ltd.
http://www.rtjcom.com/ (accessed on 10 Aug 2003).

[14] Source For Java Technology, The. Sun Microsystems, Inc.
http://java.sun.com/ (accessed on 11 Aug 2003).

[15] TimeSys Java – Reference Implementation. TimeSys.
http://www.timesys.com/index.cfm?hdr=java_header.cfm&
bdy=java_bdy_ri.cfm (accessed on 7 Sep 2003).

[16] Welcome to Ada Core Technologies. Ada Core
Technologies. http://www.gnat.com/ (accessed on
10 Aug 2003).

83

