
Ada Rapporteur Group

Ada 2005: Putting it all together

Ada Rapporteur Group

Overview
Pascal Leroy, IBM Rational Software

Ada Rapporteur Group

Ada is Alive and Evolving

Ada 83 Mantra: “no subsets, no supersets”

Ada 95 Mantra: “portable power to the programmer”

Ada 2005 Mantra: “putting it all together”...
Safety and portability of Java

Efficiency and flexibility of C/C++

Unrivaled standardized support for real-time and high-integrity system

Ada Rapporteur Group

Ada is Well Supported

Four major Ada compiler vendors
ACT (GNAT Pro)

Aonix (ObjectAda)

Green Hills (AdaMulti)

IBM Rational (Apex)

Several smaller Ada compiler vendors
DDC-I, Irvine Compiler, OCSystems, RR Software, SofCheck

Many tool vendors supporting Ada
IPL, Vector, LDRA, PolySpace, Grammatech, Praxis, …

Ada Rapporteur Group

ISO WG9 and Ada Rapporteur Group

Stewards of Ada’s standardization and evolution

Includes users, vendors, and language lawyers
Supported by AdaEurope and SIGAda

First official Corrigendum released in 2001

First language Amendment set for Fall 2005

WG9 established overall direction for Amendment

Ada Rapporteur Group

Overall Goals for Ada 2005 Amendment

Enhance Ada’s position as a:
Safe

High performance

Flexible

Portable

Interoperable

Concurrent, real-time, object-oriented programming language

Further integrate and enhance the object-oriented capabilities
of Ada

Ada
2005

Ada Rapporteur Group

Ada 2005: Putting It All Together

Full object-
orientation

Space and time
efficiency

Hard and soft
real-time

Safety

Portability

Interoperability

Active and passive
synchronized interfaces

EDF
scheduling

Building
blocks

Multiple
interface

inheritance

Default static
binding

Ada Rapporteur Group

Safety First

The premier language for safety critical software

Ada’s safety features are critical to making Ada a high-productivity
language in all domains

Amendments carefully designed so as to not open any safety holes

Several amendments provide even more safety, more opportunities
for catching mistakes at compile-time

Ada Rapporteur Group

Portability

Additions to predefined Ada 95 library
Standard package for files and directories

Standard packages for calendar arithmetic, timezones, and I/O

Standard packages for linear algebra

Standard package for environment variables

Standard packages for containers and sorting

Additions for real-time and high-integrity systems
Earliest-deadline first (EDF) and round-robin scheduling

Ravenscar high-integrity run-time profile

Ada Rapporteur Group

Interoperability

Support notion of interface as used in Java, CORBA, C#, etc.
Interface types

Active and passive synchronized interface types integrate O-O
programming with real-time programming

Familiar Object.Operation notation supported
Uniformity between synchronized and unsynchronized types

Support cyclic dependence between types in different packages

Pragma Unchecked_Union for interoperating with C/C++ libraries

Ada Rapporteur Group

Technical Presentations

Object-oriented programming
S. Tucker Taft

Access types
John Barnes

Structure control and limited types
Pascal Leroy

Real-time improvements
Alan Burns

Library stuff
John Barnes

Safety
S. Tucker Taft

Ada Rapporteur Group

Object-Oriented Programming in Ada 2005
S. Tucker Taft, SofCheck Inc.

Ada Rapporteur Group

Overview

Rounding out the O-O Capabilities

Interfaces

Object.Operation Notation

Nested Extension

Generic Constructor

Ada Rapporteur Group

Multiple Inheritance via Interface Types

type NT is new T and Int1 and Int2 withrecord…end record;
Int1 and Int2 are “interfaces”

Declared as: type Int1 is interface;
Similar to abstract tagged null record (no data)
All primitives must be abstract or null

NT must provide primitives that match all primitives of Int1 and Int2
In other words, NT implements Int1 and Int2

NT is implicitly convertible to Int1’Class and Int2’Class, and explicitly
convertible back

and as part of dispatching, of course

Membership test can be used to check before converting back (narrowing)

Int2Int1

NT

T

Ada Rapporteur Group

Example of Interface Types

limited with Observed_Objects;package Observers is -- “Observer” pattern

type Observer is interface;type Observer_Ptr is access all Observer’Class;

procedure Notify
(O : in out Observer;
Obj : access Observed_Objects.Observed_Obj’Class)is abstract;procedure Set_Next(O : in out Observer;

Next : Observer_Ptr) is abstract;function Next(O : Observer) return Observer_Ptr is abstract;
type Observer_List is private;procedure Add_Observer(List : in out Observer_List;

O : Observer_Ptr);procedure Remove_Observer(List : in out Observer_List;
O : Observer_Ptr);function First_Observer(List : in Observer_List)return Observer_Ptr;

Ada Rapporteur Group

Example of Interface (cont’d)

with Observers;
with Observed_Objects;
with Graphics;
package Display3D is -- Three-dim display package.

type View is new Graphics.Drawing3D and Observers.Observer
and Observed_Objects.Observed_Obj with private;

-- Must override the ops inherited from each interface.
procedure Notify

(V : in out View;
Obj : access Observed_Objects.Observed_Obj’Class);

procedure Set_Next(V : in out View;
Next : Observers.Observer_Ptr);

function Next(V : View) return Observers.Observer_Ptr;

not overriding -- This is a new primitive op.
procedure Add_Observer_List(V : in out View;

List : Observers.Observer_list);

Observed_ObjObserver

View

Drawing3D

Ada Rapporteur Group

Synchronized Interfaces

Interface concept generalized to apply to protected and task types

“Limited” interface can be implemented by:
Limited or non-limited tagged type or interface

Synchronized interface

“Synchronized” interface can be implemented by:
Task interfaces or types (“active”)

Protected interfaces or types (“passive”)

Ada Rapporteur Group

Example of Synchronized Interfaces

Example of protected object interface implementing (extending) a
synchronized interface

type Buffer is synchronized interface;
procedure Put(Buf : in out Buffer;

Item : in Element) is abstract;
procedure Get(Buf : in out Buffer;

Item : out Element) is abstract;
protected type Mailbox(Capacity : Natural) is new Buffer with

entry Put(Item : in Element);
entry Get(Item : out Element);

private
Box_State : …

end Mailbox;

Ada Rapporteur Group

Example of Synchronized Interfaces (cont’d)

Example of task interface implementing (extending) a synchronized
interface

type Active_Buffer is task interface and Buffer;procedure Put(Buf : in out Active_Buffer;
Item : in Element) is abstract;procedure Get(Buf : in out Active_Buffer;
Item : out Element) is abstract;procedure Set_Capacity(Buf : in out Active_Buffer;

Capacity : in Natural) is abstract;

Example of task type implementing a task interface

task type Postal_Agent is new Active_Buffer withentry Put(Item : in Element);entry Get(Item : out Element);entry Set_Capacity(Bag_Capacity : in Natural);entry Send_Home_Early; -- An extra operation.end Postal_Agent;

Ada Rapporteur Group

Interfaces and Null Procedures

No bodies permitted for primitive operations of interfaces
Must specify either “is abstract” or “is null”

This rule eliminates much of complexity of multiple inheritance

Declaring procedure as “is null” is new in Ada 2005

Useful for declaring a “hook” or a “call-out” which defaults to a no-op

Ada Rapporteur Group

Interfaces and Null Procedures (cont’d)

May be used to specify:
A primitive procedure of a tagged type or interface, e.g.:

procedure Finalize(Obj : in out Controlled) is null;

As default for formal procedure of a generic, e.g.:
generic

with procedure Pre_Action_Expr(E : Expr) is null;
with procedure Post_Action_Expr(E : Expr) is null;
with procedure Pre_Action_Decl(D : Decl) is null;
…

package Tree_Walker is

Ada Rapporteur Group

Object.Operation Syntax

More familiar to users of other object-oriented languages

Reduces need for extensive utilization of “use” clause

Allows for uniform reference to dispatching operations and class-
wide operations, on pointers or objects

Ada Rapporteur Group

Example of Object.Operation Syntax

package Windows is
type Root_Window is abstract tagged private;
procedure Notify_Observers(Win : Root_Window’Class);
procedure Display(Win : Root_Window) is abstract;
...

end Windows;

package Borders is
type Bordered_Window is new Windows.Root_Window with private;
procedure Display(Win : Bordered_Window);
...

end Borders;

procedure P(BW : access Bordered_Window’Class) is
begin

BW.Display; -- Both of
BW.Notify_Observers; -- these “work”.

end P;

Ada Rapporteur Group

Nested Type Extensions

Ada 95 requires type extension to be at same “accessibility level” as
its parent type

i.e., cannot extend a type in a nested scope

Ada 2005 relaxes this rule
Can extend inside a subprogram, task, protected, or generic body

Still may not extend formal type inside generic body because of
possible contract violations

• Actual type might have additional operations requiring overriding
Checking performed on function return and allocators

• May not create heap object or function result that might outlive
type extension

Enables instantiation of generic containers in nested scopes, even if
they use finalization, streams, or storage pools

Ada Rapporteur Group

Access Types
John Barnes of Anonymous Access, UK

Ada Rapporteur Group

Pointers Are Like Fire

“Playing with pointers is like playing with fire. Fire is perhaps the
most important tool known to man. Carefully used, fire brings
enormous benefits; but when fire gets out of control, disaster
strikes.”

Uncontrolled pointers can similarly rampage through your program

Ada access types are nice and safe

But Ada 95 is perhaps too rigid
Too many conversions

Ada 2005 is more flexible but keeps the security

Ada Rapporteur Group

Overview

More anonymous access types
Not just as access parameters (and discriminants)

Constant and null control
More uniform rules

Anonymous access to subprogram types
For downward closures etc

Ada Rapporteur Group

Recap 95

All access types are named except for access parameters

type Animal is tagged
record

Legs : Integer;
…

end record;
type Acc_Animal is access Animal; -- Named.

procedure P(Beast : access Animal); -- Anonymous.

Ada Rapporteur Group

95 Constant and Null

Named

Can be constant or variable
access T

access constant T

access all T

Have null as a value

Anonymous

Can only be variable
access T

-- implies all

Do not have null as a value

Not exactly orthogonal

Ada Rapporteur Group

Not Null Everywhere

type Acc_Animal is not null access all Animal'Class;

-- An Acc_Animal must not be null and so must be initialized
-- (otherwise Constraint_Error).

type Pig is new Animal with … ;
Empress_of_Blandings : aliased Pig := … ;

My_Animal : Acc_Animal := Empress_Of_Blandings'Access;

Ada Rapporteur Group

Null Exclusion

Advantage of null exclusion is that no check is needed on a
dereference to ensure that the value is not null

So

Number_Of_Legs : Integer := My_Animal.Legs;

is faster

Ada Rapporteur Group

Constant & Null in Access Parameters

We can write all of the following

1 procedure P(Beast : access Animal);
2 procedure P(Beast : access constant Animal);
3 procedure P(Beast : access all Animal);

4 procedure P(Beast : not null access Animal);
5 procedure P(Beast : not null access constant Animal);
6 procedure P(Beast : not null access all Animal);

Note that 1 and 3 are the same (compatibility)

Ada Rapporteur Group

Anonymous Access Types

As well as in
access parameters

access discriminants

In 2005 we can also use anonymous access types for
components of arrays and records

renaming

function return types

but not for scalar variables (potential accessibility problem)

Ada Rapporteur Group

As Array Components

type Horse is new Animal with … ;

type Acc_Horse is access all Horse'Class;
type Acc_Pig is access all Pig;

Napoleon, Snowball : Acc_Pig := … ;
Boxer, Clover : Acc_Horse := … ;

Animal_Farm: constant array (Positive range <>) of
access Animal’Class :=
(Napoleon, Snowball, Boxer, Clover);

Ada Rapporteur Group

As Record Components

type Noahs_Ark is
record

Stallion, Mare : access Horse;
Boar, Sow : access Pig;
Cockerel, Hen : access Chicken;
Ram, Ewe : access Sheep;

end record;

But surely Noah took actual animals into the Ark and not just their
addresses…

Ada Rapporteur Group

Linked List

Can now write

type Cell is
record

Next : access Cell;
Value : Integer;

end record;

No need for incomplete declaration

Current instance rule changed to permit this

Ada Rapporteur Group

For Function Result

Can also declare

function Mate_Of(A : access Animal'Class)
return access Animal'Class;

We can then have

if Mate_Of(Noahs_Ark.Ewe) /= Noahs_Ark.Ram then
-- Better get Noah to sort things out!

end if;

Ada Rapporteur Group

Type Conversions

We do not need explicit conversion to anonymous types
They have no name anyway

Most access type declarations are as components, few are scalar
variables

So most objects can be of anonymous type

This means fewer explicit conversions in OO programs

Ada Rapporteur Group

Access to Subprogram

Remember Tinman?

Ada 83 had no requirement for subprograms as parameters of
subprograms

Considered unpredictable since subprogram not known statically

We were told to use generics
It will be good for you

And implementers enjoy generic sharing

Ada Rapporteur Group

Ada 95 Introduced…

Simple access to subprogram types

type Integrand is access function(X : Float) return Float;

function Integrate(Fn : Integrand; Lo, Hi : Float) return Float;

To integrate √x between 0 and 1 we have

Result := Integrate(Sqrt'Access, 0.0, 1.0);

Works OK for simple functions at library level

Ada Rapporteur Group

Problem

But suppose we want to do

⌠1 ⌠1

⎮ ⎮ xy dx dy
⌡0 ⌡0

That is do a double integral where the thing to be integrated is itself
an integral

We can try…

Ada Rapporteur Group

Consider This

with Integrate;
procedure Main is

function G(X : Float) return Float is
function F(Y : Float) return Float is -- F is nested in G.
begin

return X*Y; -- Uses parameter X of G.
end F;

begin
return Integrate(F'Access, 0.0, 1.0); -- Illegal in 95.

end G;

Result: Float;
begin

Result := Integrate(G'Access, 0.0, 1.00; -- Illegal in 95.
…

end Main;

Ada Rapporteur Group

Cannot Do It

Accessibility problem

We cannot take 'Access of a subprogram at an inner level to the
access type

The access type Integrand is at library level

G is internal to Main and F is internal to G

We could move G to library level but F has to be internal to G
because F uses the parameter X of G

Ada Rapporteur Group

Anon Access to Subprogram

Ada 2005 has anonymous access to subprogram types similar to
anonymous access to object types

The function Integrate becomes

function Integrate
(Fn : access function (X : Float) return Float;
Lo, Hi : Float) return Float;

The parameter Fn is of anonymous type

It now all works

Ada Rapporteur Group

Embedded Profile

function Integrate
(Fn : access function (X : Float) return Float;
Lo, Hi : Float) return Float;

Note how the profile for the anonymous type is given within the
profile for Integrate

No problem

Ada Rapporteur Group

Other Uses

Access to subprogram types also useful for

Searching

Sorting

Iterating

Examples later in Container library

Ada Rapporteur Group

Not Null, etc.

Access to subprogram types can also have all the exciting things
that apply to access to object types

not null, constant

Anonymous access to subprograms as components, renaming, etc.

Also access protected…
not null access protected procedure(…)

in Real-Time Systems annex

Ada Rapporteur Group

Conclusions

Access type are more flexible than ever before
But still safe

Access to subprogram types enable algorithms parameterized by
subprograms to be written without the generic sledgehammer

Ada Rapporteur Group

Structure Control and Limited Types
Pascal Leroy, IBM Rational Software

Ada Rapporteur Group

Overview

Multi-package type structures

Access to private units in private parts

Instantiating generics with private types

Partial parameter lists for formal instantiations

Making limited types useful

Ada Rapporteur Group

Visibility and Program Structure

Huge changes with respect to visibility in Ada 95

Introduction of hierarchical library units
Public and private children

Intended to support large-scale structuring with enough flexibility for
all application needs

… but one problem has remained…

Ada Rapporteur Group

Multi-Package Cyclic Type Structures

Impossible to declare cyclic type structures across library package
boundaries

Each type must be compiled before the types that depend upon it!

Problem existed in Ada 83, but more prominent in Ada 95

Hierarchical library units and tagged types favor a model where
each library unit represents one abstraction of the problem domain

Workarounds are awkward
Mutually-dependent types have to be lumped in a single library unit…

… or unchecked programming has to be used

Ada Rapporteur Group

The Cyclic Type Conundrum

with Department;package Employee istype Object is tagged private;procedure Assign_Employee (Who : in out Employee.Object;
To_Department : in out Department.Object);privatetype Object is taggedrecord

Assigned_To : access Department.Object;end record;end Employee;

with Employee;package Department istype Object is tagged private;procedure Choose_Manager (For_Department : in out Department.Object;
Who : in out Employee.Object);privatetype Object is taggedrecord

Manager : access Employee.Object;end record;end Department;

Illegal circularity!

Ada Rapporteur Group

Solution: Limited With Clauses

Gives visibility to a limited view of a package
Contains only types and nested packages

Types behave as if they were incomplete

Cycles are permitted among limited with clauses
Imply some kind of “peeking” before compiling a package

Tagged incomplete type
Incomplete type whose completion must be tagged
May be used as parameter and as prefix of ’Class

No syntax for declaring a limited view: implicitly created by the
compiler

Ada Rapporteur Group

Example of a Limited View

package Department is
type Object is tagged;

end Department;

with Employee;
package Department is

type Object is tagged private;
procedure Choose_Manager (For_Department : in out Department.Object;

Who : in out Employee.Object);
private

type Object is tagged
record

Manager : access Employee.Object;
end record;

end Department;

Implicit!

Ada Rapporteur Group

Solving the Cyclic Type Conundrum

package Department istype Object is tagged;end Department;

limited with Department;package Employee istype Object is tagged private;procedure Assign_Employee (Who : in out Employee.Object;
To_Department : in out Department.Object);privatetype Object is taggedrecord

Assigned_To : access Department.Object;end record;end Employee;

with Employee;package Department istype Object is tagged private;procedure Choose_Manager (For_Department : in out Department.Object;
Who : in out Employee.Object);privatetype Object is taggedrecord

Manager : access Employee.Object;end record;end Department;

Implicit!

Ada Rapporteur Group

Language Design Principles

A hard problem to solve in Ada!
Seven different proposals studied by the ARG

Avoid “ripple effect”
Adding or removing a with clause from a unit changes the legality of
some other unit that depends on it

Maintenance headache and incomprehensible errors

Implementation difficulties

Significant because the addition or removal of a with clause may
create or remove cycles

The rules avoid ripple effects, but the user can ignore the details

Ada Rapporteur Group

Language Design Principles and Restrictions

Detect errors early
References to types declared in limited views checked at compile time

Limited view must be constructible from purely syntactic information
Constructs that require name resolution are not part of the limited view
Package renamings and instantiations
Tagged-ness may be determined syntactically

Limited with clauses used to resolve circularities, not to restrict
visibility

Limited with clause not allowed if there is already a normal with clause
Limited with clause not allowed on a body
Limited with clause not allowed with use clauses

Ada Rapporteur Group

Incomplete Types and Dereferencing

Access types declared using the limited view are access-to-incomplete
Would not be very useful because of the restrictions on incomplete types

Become access-to-complete in the presence of a nonlimited with clause

limited with Department;
package Employee is

…privatetype Object is taggedrecord
Assigned_To : access Department.Object;end record;end Employee;

with Department;package body Employee is
An_Employee : Employee.Object := …;
Her_Department : Department.Object := An_Employee.Department.all;
…end Employees;

This with clause …

… makes this dereference legal

Ada Rapporteur Group

Overview

Multi-package type structures

Access to private units in private parts

Instantiating generics with private types

Partial parameter lists for formal instantiations

Making limited types useful

Ada Rapporteur Group

Visibility and Program Structure (again)

Huge changes with respect to visibility in Ada 95

Introduction of hierarchical library units
Public and private children

… but another problem has remained…

Ada Rapporteur Group

Access to Private Units in Private Parts

Private child packages allow decomposition and hiding of the
implementation details

Not visible to the outside world

Only private packages and bodies can reference a private child

Often convenient for public packages to use implementation details
without making them visible

Impossible to use a private unit in declarations appearing in the
private part of a public package

Ada Rapporteur Group

Solution: Private With Clause

Private with clause gives visibility to a unit, but only at the beginning
of the private part

private package App.Secret_Details istype Inner is …;
… -- Various operations on Inner, etc.end App.Secret_Details;

private with App.Secret_Details;package App.User_View istype Outer is private;
… -- Various operations on Outer visible to the user
-- Type Inner may not be used here.privatetype Outer isrecord

Secret : Secret_Details.Inner;
…

end record;
…end App.User_View;

Ada Rapporteur Group

Overview

Multi-package type structures

Access to private units in private parts

Instantiating generics with private types

Partial parameter lists for formal instantiations

Making limited types useful

Ada Rapporteur Group

Instantiating Generics with Private Types

A private type may be used as a component of an array or a record
Even before the type is complete

It may not be used to instantiate a generic
Not before the type is complete

Problematic for using fancy containers

type Window is tagged private;
type Windows is array (Positive range <>) of Window; -- Fine.

type Window is tagged private;
package Vectors_Of_Windows is

new Ada.Containers.Vectors (…, Windows, …); -- Nope!

Ada Rapporteur Group

Solution: Partial Package Instantiations

Package instantiations may (but need not) come in two parts

Partial instantiation may use private types
Exports entities that “look private”
Cannot be used to create objects, compute expressions, etc.

Full instantiation given later after the type has been completed

type Window is tagged private;
package Vectors_Of_Windows is

new Ada.Containers.Vectors (…, Window, …) with private;
…

private
type Window is tagged record … end record;
package Vectors_Of_Windows is

new Ada.Containers.Vectors (…, Window, …);

Ada Rapporteur Group

Overview

Multi-package type structures

Access to private units in private parts

Instantiating generics with private types

Partial parameter lists for formal instantiations

Making limited types useful

Ada Rapporteur Group

Formal Packages and Parameter Lists

Ada 95 introduced formal packages as parameters of generics
Encapsulate several generic formal parameters
Reduced the need for long, hard-to-maintain, parameter lists

Each formal package may put requirements on its instantiation
parameters

Either “anything goes”: <> as actual parameter part
Or “specify all the details”: explicit names and values given for all the
parameters

No way to impose “partial requirements”

Ada Rapporteur Group

Solution: Partial Parameter Lists

Ada.Containers.Vectors
Index_Type, Element_Type, “=” on Element_Type

Ada.Containers.Doubly_Linked_Lists
Element_Type, “=” on Element_Type

Generic function to convert a vector into a list
Vector and list must agree on the Element_Type and the “=” operator
Anything goes for Index_Type

generic
with package Lists is new Ada.Containers.Doubly_Linked_Lists (<>);with package Vectors is new Ada.Containers.Vectors

(Index_Type => <>,
Element_Type => Lists.Element_Type,
“=” => Lists.“=”);function Convert (V : Vectors.Vector) return Lists.List;

Ada Rapporteur Group

Overview

Multi-package type structures

Access to private units in private parts

Instantiating generics with private types

Partial parameter lists for formal instantiations

Making limited types useful

Ada Rapporteur Group

Making Limited Types Useful

Limited types prevent copying of values
Have limitations unrelated to copying

Aggregates not available: no full coverage checking

Functions cannot be used to construct values of limited types
Can only return existing global objects: not too useful
Mysterious “return by reference” mechanism

Limited types are unnecessarily hard-to-use
Restrictions do not improve safety
Types often made nonlimited to avoid running into difficulties

Lift unnecessary restrictions while preserving safety
In particular, prevent copying of values

Ada Rapporteur Group

Solution: Aggregates for Limited Types

Aggregates only allowed for initialization, not general assignment
Must be built in place

New syntax for components for which no value can be written
Tasks, protected objects
Also causes default initialization if a default value was given in the
declaration

protected type Semaphore is …;type Object is limitedrecord
Guard : Semaphore;
Value : Float;
Finished : Boolean := False;end record;type Ptr is access Object;

X : Ptr := new Object'(Guard => <>, -- A new Semaphore.
Value => 0.0,
Finished => <> -- Gets False.
);

Ada Rapporteur Group

Solution: Functions Returning Limited Types

Again, only allowed for initialization

New form of return statement to build an object directly in its final
resting place

No copying of the result of the function

function Random_Object return Object is
use Ada.Numerics.Float_Random;
Gen : Generator;

begin
Reset (Gen);
return New_Object : Object do

New_Object.Value := Random (Gen);
New_Object.Finished := New_Object.Value > 0.5;

end return;
end Random_Object;

Ada Rapporteur Group

Real-Time Improvements
Alan Burns, University of York

Ada Rapporteur Group

Overview

Ravenscar

Support for control over execution time

Timing Events

Dynamic ceiling priorities for Protected Objects

Support for additional scheduling/dispatching

Ada Rapporteur Group

The Ravenscar Profile

A subset of the Ada tasking model
Silent on the sequential part of the language

Restrictions designed to meet the real-time community requirements
for

Determinism

Schedulability analysis

Memory-boundedness

Execution efficiency and small footprint

Suitability for certification

Ada Rapporteur Group

The Ravenscar Profile

The Ravenscar Profile is a powerful catalyst for the promotion of
simple and effective language-level concurrency

Crucial to critical applications

One end of the road to greater expressive power

Ada Rapporteur Group

Ravenscar

Profile uses a set of Restrictions
Max_Task_Entries => 0

Max_Protected_Entries => 1

No_Abort_Statements

No_Asynchronous_Control

No_Dynamic_Priorities

No_Implicit_Heap_Allocations

No_Task_Allocators

No_Task_Hierarchy

Ada Rapporteur Group

Ravenscar

New restriction identifiers
Max_Entry_Queue_Length => 1

No_Calendar

No_Dynamic_Attachment

No_Local_Protected_Types

No_Protected_Type_Allocators

No_Relative_Delay

No_Requeue_Statements

No_Select_Statements

No_Task_Attributes_Package

No_Task_Termination

Simple_Barriers

Ada Rapporteur Group

Ravenscar

New pragma:
pragma Detect_Blocking

Dispatching
FIFO_Within_Priorities

Ceiling_Locking

New pragma for defining a profile:
pragma Profile();

Ada Rapporteur Group

The Ravenscar Profile

The profile corresponds to:
pragma Task_Dispatching_Policy (FIFO_Within_Priorities);pragma Locking_Policy (Ceiling_Locking);pragma Detect_Blocking;pragma Restrictions (

Max_Entry_Queue_Length => 1,
Max_Protected_Entries => 1,
Max_Task_Entries => 0,
No_Abort_Statements,
No_Asynchronous_Control,
No_Calendar,
No_Dynamic_Attachment,
No_Dynamic_Priorities,
No_Implicit_Heap_Allocations,
No_Local_Protected_Objects,
No_Protected_Type_Allocators,
No_Relative_Delay,
No_Requeue_Statements,
No_Select_Statements,
No_Task_Allocators,
No_Task_Attributes_Package,
No_Task_Hierarchy,
No_Task_Termination,
Simple_Barriers);

Ada Rapporteur Group

Examples of Use

task type Cyclic (Pri : System.Priority;
Cycle_Time : Positive) is

pragma Priority (Pri);
end Cyclic;

task body Cyclic is
Next_Period : Ada.Real_Time.Time;
Period : constant Ada.Real_Time.Time_Span :=

Ada.Real_Time.Microseconds (Cycle_Time);
-- Other declarations.

begin
-- Initialization code.
Next_Period := Ada.Real_Time.Clock + Period;
loop -- Wait one whole period before executing.

delay until Next_Period;
-- Non-suspending periodic response code.
-- May include calls to protected procedures.
Next_Period := Next_Period + Period;

end loop;
end Cyclic;

-- 2 task objects of this type.
A_Cyclic_Task : Cyclic (20,200);
Another_Cyclic_Task : Cyclic (15,100);

Ada Rapporteur Group

Examples of Use

-- A suspension object SO is declared in a visible library unit
-- and is set to True in another (releasing) task.task type Sporadic (Pri : System.Priority) ispragma Priority (Pri); end Sporadic;

task body Sporadic is
-- Declarations.begin
-- Initialization code.loop

Ada.Synchronous_Task_Control.Suspend_Until_True (SO);
-- Non-suspending sporadic response code.end loop; end Sporadic;

An_Event_Triggered_Task : Sporadic (17);

Ada Rapporteur Group

Examples of Use

protected type Event (Ceiling : System.Priority) isentry Wait (D : out Data); procedure Signal (D : in Data); private
-- Ceiling priority defined for each object.pragma Priority (Ceiling);
Current : Data; -- Event data declaration.
Signalled : Boolean := False; end Event;

protected body Event isentry Wait (D : out Data) when Signalled isbegin
D := Current;
Signalled := False; end Wait; procedure Signal (D : in Data) isbegin
Current := D;
Signalled := True; end Signal; end Event;

Ada Rapporteur Group

Examples of Use

Event_Object : Event (15);

task Event_Handler is
pragma Priority (14); -- Must be not greater than 15.

end Event_Handler;

task body Event_Handler is
-- Declarations, including D of type Data.

begin
-- Initialization code.
loop

Event_Object.Wait(D);
-- Non-suspending event handling code.

end loop;
end Event_Handler;

Ada Rapporteur Group

Execution Time Support

Monitor the task execution time

Fire an event when a task execution time reaches a specified value

Allocate and support budgets for groups of tasks

Ada Rapporteur Group

Monitoring Task Execution Time

Every task has an execution time clock

Clock starts sometime between creation and start of activation

Clock counts up whenever the task executes

Accuracy, metrics and implementation requirements defined

Ada Rapporteur Group

Monitoring Task Execution Time (cont’d)

with Ada.Task_Identification;with Ada.Real_Time; use Ada.Real_Time;package Ada.Execution_Time is
type CPU_Time is private;
CPU_Time_First : constant CPU_Time;
CPU_Time_Last : constant CPU_Time;
CPU_Time_Unit : constant :=

implementation-defined-real-number;
CPU_Tick : constant Time_Span;

function Clock
(T : Ada.Task_Identification.Task_ID

:= Ada.Task_Identification.Current_Task)return CPU_Time;

-- Subprograms for + etc, < etc, Split and Time_Of.

private
... -- Not specified by the language.end Ada.Execution_Time;

Ada Rapporteur Group

Triggering

In fault tolerance and other high integrity applications there is a need
to catch task overruns

For some algorithms a fixed time is allocated to a task for some
iterative process

Basic model is to define:
A timer that is enabled, and

A handler that is called (by the run-time) when a task’s execution time
clock become equal to some defined value

The handler is a not null access to protected procedure

Ada Rapporteur Group

Triggering (cont’d)

package Ada.Execution_Time.Timers is
type Timer (T : access Ada.Task_Identification.Task_ID) islimited private;type Handler is not null access protectedprocedure (TM : in out Timer);

Min_Handler_Ceiling : constant System.Any_Priority :=
<Implementation Defined>;

procedure Arm (TM: in out Timer;
Interval : Time_Span; H : Handler);procedure Arm (TM: in out Timer;
Abs_Time : CPU_Time; H : Handler);procedure Disarm(TM : in out Timer);

function Timer_Has_Expired(TM : Timer) return Boolean;function Time_Remaining(TM : Timer) return Time_Span;

Timer_Error : exception;
Timer_Resource_Error : exception;

end Ada.Execution_Time.Timers; -- There is a private part.

Ada Rapporteur Group

Budget Scheduling

A number of schemes, including those that use servers allow a
group of tasks to share a budget

The budget is usually replenished periodically

The scheme support fires a handler when budget goes to zero
The tasks are not prevented form executing

But this can be programmed

or priorities changes to background, or whatever…

Ada Rapporteur Group

Budget Scheduling (cont’d)

package Ada.Execution_Time.Group_Budgets istype Group_Budget is limited private;
type Handler is not null access protectedprocedure(GB : in out Group_Budget);

type Task_Array is array(Natural range <>) of
Ada.Task_Identification.Task_ID;

Min_Handler_Ceiling : constant System.Any_Priority :=
<Implementation Defined>;

procedure Add_Task(GB: in out Group_Budget;
T : Ada.Task_Identification.Task_ID);procedure Remove_Task(GB: in out Group_Budget;
T : Ada.Task_Identification.Task_ID);function Is_Member(GB: Group_Budget;

T : Ada.Task_Identification.Task_ID) return Boolean;function Is_A_Group_Member(
T : Ada.Task_Identification.Task_ID) return Boolean;function Members(GB: Group_Budget) return Task_Array;

…

Ada Rapporteur Group

Budget Scheduling (cont’d)

…
procedure Replenish (GB: in out Group_Budget; To : Time_Span);
procedure Add(GB: in out Group_Budget; Interval : Time_Span);
function Budget_Has_Expired(GB: Group_Budget) return Boolean;
function Budget_Remaining(GB: Group_Budget) return Time_Span;

procedure Set_Handler(GB: in out Group_Budget; H : Handler);
function Current_Handler(GB: Group_Budget) return Handler;
procedure Cancel_Handler(GB: in out Group_Budget;

Cancelled : out Boolean);

Group_Budget_Error : exception;
private

-- Not specified by the language.
end Ada.Execution_Time.Group_Budgets;

Ada Rapporteur Group

Timing Events

A means of defining code that is executed at a future point in time

Does not need a task

Similar in notion to interrupt handing (time itself generates the
interrupt)

Again a handler is used

Ada Rapporteur Group

Timing Events (cont’d)

package Ada.Real_Time.Timing_Events is
type Timing_Event is limited private;
type Timing_Event_Handler

is access protected
procedure(Event : in out Timing_Event);

procedure Set_Handler(Event : in out Timing_Event;
At_Time : Time; Handler: Timing_Event_Handler);

procedure Set_Handler(Event : in out Timing_Event;
In_Time: Time_Span; Handler: Timing_Event_Handler);

function Is_Handler_Set(Event : Timing_Event)
return Boolean;

function Current_Handler(Event : Timing_Event)
return Timing_Event_Handler;

procedure Cancel_Handler(Event : in out Timing_Event;
Cancelled : out Boolean);

function Time_Of_Event(Event : Timing_Event) return Time;
private
... -- Not specified by the language.

end Ada.Real_Time.Timing_Events;

Ada Rapporteur Group

Example of Usage

protected Watchdog is
pragma Interrupt_Priority (Interrupt_Priority'Last);
entry Alarm_Control;

-- Called by alarm handling task.
procedure Timer(Event : in out Timing_Event);

-- Timer event code.
procedure Call_in;

-- Called by application code every 50ms if alive.
private
Alarm : Boolean := False;

end Watchdog;

Fifty_Mil_Event : Timing_Event;
TS : Time_Span := Milliseconds(50);

Set_Handler(Fifty_Mil_Event, TS, Watchdog.Timer’Access);

Ada Rapporteur Group

Example of Usage (cont’d)

protected body Watchdog isentry Alarm_Control when Alarm isbegin
Alarm := False;end Alarm_Control;

procedure Timer(Event : in out Timing_Event) isbegin
Alarm := True;end Timer;

procedure Call_in isbegin
Set_Handler(Fifty_Mil_Event, TS, Watchdog.Timer'access);
-- Note, this call to Set_Handler cancels the previous call.end Call_in;end Watchdog;

Ada Rapporteur Group

Dynamic Ceilings

A new attribute for any protected object: ’Priority

This attribute can be read and assigned to within the body of a PO
(only)

The effect of any change to the ceiling of the PO takes effect at the
end of the current protected action

Ada Rapporteur Group

Scheduling and Dispatching

Ada provides a complete and well defined set of language primitives
for fixed priority scheduling

But fixed priority scheduling is not the only scheme of interest

The amendment to Ada allows the language to define other
schemes

The authority of the language definition is needed to sanction there
schemes

Ada Rapporteur Group

Dispatching Policies

Fixed Priority
Still the main dispatching policy

Some changes to Annex D needed to allow the following:
Non-preemptive
• Non_Preemption_Within_Priority

Round Robin

EDF

Mixed policies within a partition

Ada Rapporteur Group

Dispatching Package

package Ada.Dispatching is
pragma Pure(Dispatching);
Dispatching_Policy_Error : exception;

end Ada.Dispatching;

Ada Rapporteur Group

Round Robin

A common policy in non-real-time systems and in some real-time
schemes requiring a level of fairness

Require a simple scheme with the usual semantics

If the defined quantum is exhausted during the execution of a
protected object then the task involved continues executing until it
leaves the protected object

A support package is provided

Ada Rapporteur Group

Round Robin (cont’d)

with System;
with Ada.Real_Time;
package Ada.Dispatching.Round_Robin_Dispatching is
Default_Quantum : constant Ada.Real_Time.Time_Span :=

<implementation-defined>;
procedure Set_Quantum(Pri : System.Priority;

Quantum : Ada.Real_Time.Time_Span);
procedure Set_Quantum(Low,High : System.Priority;

Quantum : Ada.Real_Time.Time_Span);
function Actual_Quantum

(Pri : System.Priority) return
Ada.Real_Time.Time_Span;

function Is_Round_Robin (Pri : System.Priority) return
Boolean;

end Ada.Dispatching.Round_Robin_Dispatching;

Ada Rapporteur Group

Deadlines and EDF Scheduling

The deadline is the most significant notion in real-time systems

EDF – Earliest Deadline First is the scheduling policy of choice in
many domains

It makes better use of processing resources

EDF or FP?
a long and detailed debate

but in reality both are needed

Ada Rapporteur Group

Support for Deadlines

Introduction of a new library package

Relative deadline means relative to task’s release
complete talk in 30 minutes

Absolute deadline means point on time line
complete talk by 12.30

Usually deadline means absolute deadline

Ada Rapporteur Group

Support for Deadlines (cont’d)

with Ada.Task_Identification;
use Ada.Task_Identification;
with Ada.Real_Time;
package Ada.Dispatching.EDF_Dispatching is

subtype Deadline is Ada.Real_Time.Time;
Default_Deadline : constant Deadline :=
Ada.Real_Time.Time_Last;

procedure Set_Deadline(
D : Deadline;
T : Task_ID := Current_Task);

function Get_Deadline(
T : Task_ID := Current_Task)
return Deadline;

procedure Delay_Until_And_Set_Deadline(
Delay_Until_Time : Ada.Real_Time.Time;
TS : Ada.Real_Time.Time_Span);

end Ada.Dispatching.EDF_Dispatching;

Ada Rapporteur Group

Catching a Deadline Overrun

loop
select
delay until Deadlines.Get_Deadline;
-- Deal with deadline overrun.

then abort
-- Code.

end select;
-- Set next release condition
-- and next absolute deadline.

end loop;

Ada Rapporteur Group

EDF Scheduling

Need to define EDF ordered ready queues

Need to support preemption-level locking for effective use of
protected objects

Ideally uses existing PO locking

Ideally can be used with fixed priority scheduling

Ada Rapporteur Group

Baker’s Protocol

Under Fixed Priority scheduling, priority is used for:
Dispatching

Controlled access to resources eg Pos

Under Baker’s protocol
Dispatching is controlled by absolute deadline

Preemption levels used for resources

Ada Rapporteur Group

Baker’s Protocol

Basic algorithm
A newly released task can preempt the currently executing task iff:

• Its deadline is earlier
• Its preemption-level is greater than that of the highest locked

resource

Ada Rapporteur Group

Bounding Blocking

If preemption levels are assigned according to relative deadline then
we can have:

Deadlock free execution

Maximum of one block per invocation

Hence same properties as priority ceiling protocol for FP systems
i.e., Ada’s existing model for POs

Ada Rapporteur Group

Dispatching Rules for EDF

Use a task’s base priority to represent preemption level

Assigned PO ceiling priorities (preemption levels) in the usual way
execution within a PO is at ceiling level

Order ready queues by absolute deadline

Ada Rapporteur Group

Which Queue to Join?

Define a ready queue at priority level p as being busy if a task has
locked a PO with ceiling p – denote this task as T(p)

A newly released task S is added to highest priority busy ready
queue p such that deadline of S is earlier than T(p) and base priority
of S is greater than p

If no p exist put S on Priority’First

Ada Rapporteur Group

Properties

Task S is always placed on a priority level below that of the ceiling
priority of any PO it uses

Implements Baker’s protocol

Splitting the priority range into FP and EDF allows both to work
together

Ada Rapporteur Group

Example

Following slide has one cyclic task of a simple system of 5 tasks
with preemption levels 1..5

Dispatched by:

pragma Task_Dispatching_Policy (FIFO_Within_Priorities);

Ada Rapporteur Group

Example (cont’d)

protected X is – one of 3 POspragma Priority(5);
-- Definitions of subprograms.private
-- Definition of internal data.end X;

task A ispragma Priority(5); -- Period andend A; -- relative deadline equal to 10ms.

task body A is
Next_Release: Ada.Real_Time.Time;begin
Next_Release := Ada.Real_Time.Clock;loop
-- Code, including call(s) to X.
Next_Release := Next_Release +

Ada.Real_Time.Milliseconds(10);delay until Next_Release;end loop;end A;

Ada Rapporteur Group

Example (cont’d)

task A ispragma Priority(5);pragma Relative_Deadline(10);end A;

task body A is
Next_Release: Ada.Real_Time.Time;begin
Next_Release := Ada.Real_Time.Clock;loop
-- Code, including call(s) to X.
Next_Release := Next_Release +

Ada.Real_Time.Milliseconds(10);
Deadlines.Set_Deadline(Next_Release +

Ada.Real_Time.Milliseconds(10));delay until Next_Release;end loop;end A;
----------pragma Task_Dispatching_Policy

(EDF_Across_Priorities);

Ada Rapporteur Group

task body A is
Next_Release: Ada.Real_Time.Time;

begin
Next_Release := Ada.Real_Time.Clock;
loop

-- code, including call(s) to X
Next_Release := Next_Release +

Ada.Real_Time.Milliseconds(10);
Deadline.Delay_Until_And_Set_Deadline

(Next_Release,
Ada.Real_Time.Milliseconds(10));

end A;

Example (cont’d)

Ada Rapporteur Group

Mixed Dispatching

Ada now allows different dispatching policies to be used together in
a controlled and predictable way

Protected object can be used to communicate across policies

pragma Priority_Specific_Dispatching(
policy_identifier,
first_priority_expression,
last_priority_expression);

Ada Rapporteur Group

FIFO

FIFO

FIFO

EDF

EDF

EDF

RR
Low Priority

High Priority

Ada Rapporteur Group

Splitting the Priority Range

pragma Priority_Specific_Dispatching
(Round_Robin_Within_Priority,1,1);

pragma Priority_Specific_Dispatching
(EDF_Across_Priorities,2,10);

pragma Priority_Specific_Dispatching
(FIFO_Within_Priority,11,24);

Ada Rapporteur Group

Conclusions

The amendment to Ada has significantly extended the facilities
available for programming real-time systems

Ravenscar, execution time control, timing events, dispatching

The requirements for these changes have come from the series of
International Real-Time Ada Workshops

Ada is now considerable more expressive in this area than any other
programming language

Ada Rapporteur Group

Library Stuff
by Ye Olde Librarian

Ada Rapporteur Group

Overview

Vectors and matrices (13813++)

Directories

Environment variables

More string subprograms

Wider and wider

Containers

Time zones and leap seconds

Ada Rapporteur Group

Vectors and Matrices

Incorporates missing stuff from ISO/IEC 13813

Generic packages
Ada.Numerics.Generic_Real_Arrays

Ada.Numerics.Generic_Complex_Arrays

These contain various arithmetic operations +, -, * acting on vectors
and matrices

Also Transpose, Conjugate, etc. all as in 13813

Plus
Linear equations

Inverse, determinant, eigenvalues and vectors

Ada Rapporteur Group

Simple Arithmetic

Given vectors x, y, z and square matrix A
To perform the mathematical computation y = Ax + z

We simply write

X, Y, Z : Real_Vector(1 .. N); -- Types from
A : Real_Matrix (1 .. N, 1 .. N); -- Generic_Real_Arrays.
…
Y := A * X + Z; -- Ops from ditto.

All works perfectly – designed by Numerics Rapporteur Group in the
previous century

Ada Rapporteur Group

Solve Linear Equations

Again if y = Ax + z, to compute x given A, y and z,

That is x = A-1(y – z)

We write

X := Solve(A, Y – Z);

Ada Rapporteur Group

Also

To invert a matrix

B := Inverse(A);

To compute determinant

Det := Determinant(A);

To find eigenvalues

Values := Eigenvalues(A); -- Symmetric/Hermitian

Ada Rapporteur Group

Overall Goals

To incorporate the features of 13813

To provide a foundation for bindings to libraries such as the BLAS
(Basic Linear Algebra System)

To make simple, frequently used, linear algebra operations
immediately available without fuss

Ada Rapporteur Group

Directories

package Ada.Directories provides
Directory and file operations

File and directory name operations

File and directory queries

Directory searching

Operations on directory entries

Enables one to mess about with file names, extensions and so on

They tell me it is jolly good for Unix and Windows

Ada Rapporteur Group

Environment Variables

package Ada.Environment_Variables

Enables one to peek and poke at OS variables

Ada Rapporteur Group

More String Subprograms

Problems with 95

Conversions between Bounded_String and String and between
Unbounded_String and String are required rather a lot

Ugly & inefficient

Thus searching part of a bounded or unbounded string requires
converting to String first

So further subprograms added

Ada Rapporteur Group

Further Index Subprograms

With additional parameter From such as

function Index (Source: in Bounded_String;
Pattern: in String;
From: in Positive;
Going: in Direction := Forward;
Mapping: in Maps.Character_Mapping := …)
return Natural;

Also with Source of types String and Unbounded_String

And Index_Non_Blank

Ada Rapporteur Group

More

Function and procedure Bounded_Slice and Unbounded_Slice
Avoid conversions to type String

A new package Ada.Text_IO.Unbounded_IO
Also avoids conversions to String

(not for Bounded_IO because of generic complexity)

And functions Get_Line for Ada.Text_IO
The existing procedures are awkward

Ada Rapporteur Group

More Identifier Freedom

Ada 83 – identifiers in 7-bit ASCII
boy, devil, goat

Ada 95 – identifiers in 8-bit Latin-1
garçon, dæmon, chèvre

Ada 2005 – identifiers in 16-bit BMP++
мальчик, демон, коза

Сталин : access Pig renames Napoleon;
Πεγασυς : Horse;

Ada Rapporteur Group

Wider and Wider

Ada 83 has
Character and String

Ada 95 also has
Wide_Character and Wide_String

Ada 2005 also also has
Wide_Wide_Character and Wide_Wide_String

Ada Rapporteur Group

Containers

This should be a whole lecture in itself

A package Ada.Containers plus lots of children
Ada.Containers.Vectors

Ada.Containers.Doubly_Linked_Lists

Ada.Containers.Hashed_Maps

Ada.Containers.Ordered_Sets
• also indefinite versions of the above

Ada.Containers.Generic_Array_Sort
• and constrained version

Ada Rapporteur Group

Vectors & Lists

Uniform approach, many routines common, thus

Elements can be referred to
By cursor

Insert, Append, Prepend, Delete, etc.

Various searching, sorting and iterating procedures, e.g.,

procedure Iterate
(Container : in Vector/List;
Process : not null

access procedure (Position : in Cursor));

Note anonymous access to subprogram parameter

Ada Rapporteur Group

Maps & Sets

Uniform approach, many routines common, thus

Elements can be referred to
By cursor

Insert, Delete etc (not Append, Prepend)

Also iterating procedure (not searching, sorting)

procedure Iterate
(Container: in Maps/Sets;
Process: not null access procedure (Position: in Cursor));

Ada Rapporteur Group

General Array Sorting

generic
type Index_Type is (<>);
type Element_Type is private;
type Array_Type is array (Index_Type range <>)

of Element_Type;
with function ″<″(Left, Right: Element_Type)

return Boolean is <>;
procedure Ada.Containers.Generic_Array_Sort

(Container: in out Array_Type);

Ada Rapporteur Group

Overall Goals

Provide the most commonly required data structure routines

Use uniform approach where possible so that conversion is feasible

Make them reliable
thou shalt not corrupt thy container

Ada Rapporteur Group

More Calendar

Three children of calendar
Ada.Calendar.Time_Zones
Ada.Calendar.Arithmetic
Ada.Calendar.Formatting

Why not just one child package?
To be honest -

No sensible name - Ada.Calendar.More_Stuff not appropriate

Main goals
Deal with time zones and leap seconds

Ada Rapporteur Group

But

Everyone will appreciate

type Day_Name is (Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday, Sunday);

function Day_Of_Week(Date: Time) return Day_Name;

Also, Year_Number is extended

subtype Year_Number is Integer range 1901 .. 2399;

Another 300 years. Long live Ada!!

Ada Rapporteur Group

The End of Me

Gosh it must be nearly time for lunch

But first an important message from Tucker on safety

Ada Rapporteur Group

Safety in Ada 2005
S. Tucker Taft, SofCheck, Inc.

Ada Rapporteur Group

Ada 2005 Safety-Related Amendments

Syntax to prevent unintentional overriding or non-overriding of
primitive operations

Catch spelling errors, parameter profile mismatches, maintenance
confusion

Standardized Assert pragma
Assertion_Policy pragma determines how Assert is handled by
implementation (Check, Ignore, …)

Standardized Unsuppress pragma

Standardized No_Return pragma
Identifies routines guaranteed to never return to point of call

Ada Rapporteur Group

Ada 2005 Safety-Related Amendments (cont’d)

Availability of “not null” and “access constant” qualifiers for access
parameters

Standardized high-integrity “Ravenscar” profile

Handlers for unexpected task termination

Ada Rapporteur Group

Control of Overriding

Can specify that an operation is overriding an inherited primitive operation

Can specify that an operation is not overriding any inherited primitive

Can specify nothing, which is the current situation, where overriding is
allowed, but not required

type File_Stream is new Root_Stream_Type with private;
overriding
procedure Read(Stream : in out File_Stream;

Item : out Stream_Element_Array;
Last : out Stream_Element_Offset);

not overriding
procedure Read_All(Stream : in out File_Stream;

Content : out Unbounded_String);

Ada Rapporteur Group

Control of Overriding (cont’d)

Specifying “overriding” protects against spelling errors, wrong order
or types of parameters, etc.

Specifying “not overriding” protects against unintentional overriding
Can be particularly important in generics

Ada Rapporteur Group

Control of Overriding (cont’d)

For a generic, “not overriding,” if specified, must be true both:
When the generic (template) is compiled

When the generic is instantiated

generic
type Node is new Base with private;

package Linked_Lists is
type List_Element is new Base with private;
not overriding
function Next(LE : access constant List_Element)
return access List_Element’Class;

not overriding
procedure Set_Next(LE : access List_Element;

Next : access List_Element’Class);

Ada Rapporteur Group

Safety-Related Pragmas

pragma Assert(X /= 0, “cot(0) not defined”);

Already supported by most Ada 95 compilers

Now can be used portably

pragma Assertion_Policy(Check);

Standardized way to control enforcement of Assert pragmas

“Check” and “Ignore” are language-defined policies
• Implementation may define additional policies

Ada Rapporteur Group

Safety-Related Pragmas

pragma Unsuppress(Overflow_Check);

Ensure that algorithm that depends on constraint check will work
properly, even in presence of Suppress pragmas

pragma No_Return(Fatal_Error);

Identify procedure that never returns to point of call

Improves static analysis possible for compiler or other tools

Raises Program_Error if procedure attempts to return

Ada Rapporteur Group

Safety Is Our Most Important Product

Ada is the premier language for safety critical software

Ada’s safety features are critical to making Ada such a high-
productivity language in all domains

Amendments to Ada carefully designed so as to not open any new
safety holes

Several amendments provide even more safety, more opportunities
for catching mistakes at compile-time

Safety
Certified

Ada Rapporteur Group

It Really is Time for Lunch

