Comparative Analysis of Genetic Algorithm Implementations

Robert Soricone
Dr. Melvin Neville

Department of Computer Science
Northern Arizona University
Flagstaff, Arizona
Outline

- Introduction to Genetic Algorithms (GA)
- Problems solved with GA in Ada95
- GA toolkit for Matlab
- Compare implementation and performance
- Refactoring the Ada95 GA
- Application using the Ada95 GA
Genetic Algorithms

- Search method based on principles of evolution and heredity
- Apply principle of Survival of the Fittest to a set of possible solutions
- Goal: produce (hopefully) produce better approximations to solution
- GA process leads to evolution of solutions
Chromosomes

- Encodes a solution to the problem
- Classical GA uses bit strings
 - Alternatives: real values, permutation, decision trees

```plaintext
1011001010
```
Genetic Algorithms

Population → Apply GA Operators → Offspring

Reinsertion → Population → Apply GA Operators → Offspring
 Genetic Operators

- Crossover
 - Exchange information between selected parents
 - Recombined genetic material used to produce offspring
 - Number of segments and length of segments depends on crossover implementation
 - Example: single point crossover

```
1 0 1 1 0 1 0 1 1 0
0 1 0 1 1 0 1 0 1 1
```

```
1 0 1 1 0 0 1 0 0 1 1
```
Genetic Operators

- **Mutation**
 - Compliments the crossover operation
 - Example: Arbitrary swapping of 2 or more values within the chromosome
 - Help introduce variability into the population
Structure of a GA

Procedure Genetic_Alg is
Begin
 generation = 0
 initialize Population
 evaluate Population
 loop
 generation ++
 select individuals
 apply genetic operators
 evaluate new individuals
 replace original population
 exit when criteria met
 end loop
End Genetic_Alg
Evolution of Coefficients

- Coefficients of the power series that represents the sine function are evolved.

- Beginning with the fundamental series:
 - \(\sin(x) = a_0 x^0 + a_1 x^1 + a_2 x^2 + a_3 x^3 + a_4 x^4 + \ldots \)

- Actual answer is known to be:
 - \(\sin(x) = x^1 /1! - x^3 /3! + x^5 /5! - x^7/7! +\ldots \)
Evolution of Coefficients

- Chromosomes encoded with long float
- Crossover accomplished by swapping of sequences between chromosomes
- Mutation implemented by increasing/decreasing random array index values
- Led to functions that could perform within 0.25% of the actual sine values in the range 0 – 90 degrees

\[
\sin(x) = a_0 \cdot x^0 + a_1 \cdot x^1 + a_2 \cdot x^2 + a_3 \cdot x^3 + a_4 \cdot x^4 + a_5 \cdot x^5 + a_6 \cdot x^6
\]
Maximization of a Function

- Maximization of a function of one variable
- Function:
 - $f(x) = x \cdot \sin(10 \cdot \pi \cdot x) + 1.0$
Maximization of a Function

- Chromosomes encoded as bit strings
- Crossover is a swap of two equal-length substrings between two chromosomes
- Mutation is the flipping of the gene’s value from one binary value to the other
- Problem was immediately and accurately solved
Traveling Salesman Problem

- TSP starts with a graph of fully interconnected nodes or towns, where the distances between the towns are measured (a “weighted graph”)
- The problem lies in finding the best route in which each town is visited once and only once in a tour which begins and ends with the same node
- “Best” here is in the sense of lowest total distance measured along the final route
TSP Chromosome Encoding

- Natural value correspond to node ID
- Represents a particular tour of the given graph
- “Order” crossover operator
- Mutation: swapping random elements in chromosome
TSP: Chromosome Value

Value of Chromosome: Sum of distances along path

Distance Matrix

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.023</td>
<td>.984</td>
<td>.343</td>
<td>.651</td>
<td>.876</td>
</tr>
<tr>
<td>2</td>
<td>1.923</td>
<td>.586</td>
<td>.344</td>
<td>.658</td>
<td>.874</td>
</tr>
<tr>
<td>3</td>
<td>3.023</td>
<td>.922</td>
<td>.347</td>
<td>.656</td>
<td>.876</td>
</tr>
<tr>
<td>4</td>
<td>3.023</td>
<td>1.986</td>
<td>1.343</td>
<td>.652</td>
<td>.873</td>
</tr>
<tr>
<td>5</td>
<td>65.23</td>
<td>.1986</td>
<td>6.343</td>
<td>.633</td>
<td>.849</td>
</tr>
</tbody>
</table>
TSP: 225 Node Tour

Starting tour length: 1,575,904.000000
Final tour length: 126445.9336

1/4/2005 SIGAda 2004
TSP: 237 Node Tour

Starting tour length: 11969.209961

Final tour length: 1069.562134
TSP: 662 Node Tour

Starting tour length: 53434.769531

Final tour length: 2729.069580
GA in Ada95: Main Data Structures

- Population: Linked list of list nodes
- Each node holds an access to chromosome type
- Members selected from list processed by genetic operators
GA in Ada95: Main Data Structures

- Priority queue (binary heap) holds new offspring
- Sort key for the priority queue is the value of the chromosome
- Provide convenient access to best performers of the generation
Core Packages

- Formal package allows for the composition of multiple generic packages
- One package is used as a parameter of another package to maintain a consistent hierarchy
 - Chromosome is generic with respect to array type (chromosome encoding)
 - Nodes for the list and heap are instantiated with chromosome package
 - Lists/heap instantiated with the new nodes
 - GA instantiates all of the above packages
Problem-Specific Packages

- Crossover and mutation packages are also instantiated.
- Crossover and mutation operators are tightly coupled with interpretation of chromosome.
- Current design requires rewriting operators for new problems.
- Search for GA “toolkit” that may simplify changing problems.
Matlab

- Numerical scripting language
- Part of integrated computing environment: graphics, visualization tools and the Matlab scripting language
- Data structures & operations pre-made for matrices, linear algebra
- Toolboxes added later for specific problem domains
Natural Selection TSP Demo

- www.natural-selection.com
- Example of using GA to solve TSP
- Population, node distances held in matrix
- Chromosomes encoded with integer values for node ID
225 Node Graph Comparison

<table>
<thead>
<tr>
<th>Distance from optimal</th>
<th>Ada95 GA</th>
<th>Matlab GA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 15%</td>
<td>40</td>
<td>22</td>
</tr>
<tr>
<td>Less than 10%</td>
<td>40</td>
<td>8</td>
</tr>
<tr>
<td>Less than 5%</td>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>Less than 1%</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Optimal</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
TSP Demo: 225 Node Tour

Final tour length: 130480.0
Matlab GA Toolbox

- University of Sheffield
 - http://www.shef.ac.uk/~gaipp/ga-toolbox/
- Collection of m-files (Matlab script) which implement functions in a GA
- Toolbox developed for control engineering applications
- Provides framework for experimenting with GA
Toolbox Data Structures

- Matlab essentially supports only one data type: rectangular matrix of real or imaginary numbers
- Chromosome population contained in matrix, each row corresponding to unique individual

\[
\begin{array}{c}
\text{Chromosome 1} \\
\text{Chromosome 2} \\
\vdots \\
\vdots \\
\text{Chromosome n}
\end{array}
\]
Test Functions

\[f(x) = x^2 \]

\[f(x) = |x| \]

\[f(x) = x^2 - 10\cos(2\pi x) \]
Test Function Results

<table>
<thead>
<tr>
<th>GA</th>
<th>Avg. Bouts/SD</th>
<th>Avg. Time/SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1: Ada</td>
<td>3.8/.95</td>
<td>.13/0.0</td>
</tr>
<tr>
<td>#1: Matlab</td>
<td>28.75/9.68</td>
<td>14.32/.22</td>
</tr>
<tr>
<td>#2: Ada</td>
<td>11.9/2.27</td>
<td>.11/.02</td>
</tr>
<tr>
<td>#2: Matlab</td>
<td>28.05/8.9</td>
<td>14.37/.15</td>
</tr>
<tr>
<td>#3: Ada</td>
<td>8.85/2.68</td>
<td>.12/.04</td>
</tr>
<tr>
<td>#3: Matlab</td>
<td>13.6/5.12</td>
<td>11.93/.14</td>
</tr>
</tbody>
</table>
Matlab Conclusions

- Implementation
 - Other chromosome encoding schemes possible
 - User provides algorithm, crossover, mutation
 - Less work involved in writing new procedures

- Performance
 - Matlab script is interpreted, Ada95 compiled
 - Ada95 GA better equipped to escape locally optimal solutions
Flexible GA

- Ada95 GA provides same abstractions as Matlab GA
 - Data structures, utility packages provided
 - User implements chromosome, crossover, mutation, objective function
- Generics allow for change of chromosome encoding through instantiation
- Three problems already implemented, user can extend existing types for new problems
- http://astrogeology.usgs.gov/Projects/flexible_ga
GIS TSP Module
GIS TSP Module
GIS TSP Module
GIS TSP Module