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Introduction

    Multiple processor embedded system implementations are almost required for the expanding
responsibilities of embedded systems, but modern interfaces for distributed processing can
introduce an excessive amount of overhead for the current speed of embedded processors. 
CORBA, COM, TCP/IP and such interfaces may be appropriate for client/server based systems
where the system can be plugged into the wall.  For many embedded and low cost systems, they
introduce a level of overhead which dramatically limits the functionality of the actual application
software.  A less overbearing solution for information sharing within an embedded
multiprocessor solution is to use shared memory resources to communicate between the
processes.   This technique usually incurs very little overhead (depending on shared bus
hardware speeds and memory access times), but requires a high level of responsibility and
discipline from developers when coding these versions of systems.  The Ada language has very
good support for an individual process using shared memory, but very little built in support for
multiple applications within a system.  Thus, the responsibility falls once again on developers to
ensure proper data transfer and access between processes on separate processors.    This paper
intends to propose an initial solution to the problems of data synchronization between processes.

Problem Discussion

    Embedded software often uses hardware partitioning to separate different functionality for a
variety of reasons.   Sometimes, the partitions are for functional purposes: the I/O software
would reside on a processor and communicate to a CPU to analyze data and communicate to the
user interface software which resides on specialized display hardware.  Partitioning also may
occur to separate critical functions from less critical functions to ensure continuous operation of
critical functions, especially in a safety critical environment where verification weighs heavily
into the cost of developing software.  Partitioning may just be a result of the growing needs for
an application resulting in the need for more processing power.  From a different angle, software
must often specify data at exact locations to talk to special peripheral devices through registers or
specialized memory.  Whatever the reasons, the different partitions are required to
communicate.  When shared memory is used for communications, a process must declare data
elements in the shared memory address range in order to pass data, state information, commands
or whatever the application requires.  Within the Ada language, two methods exist jump out to
perform this synchronization:

• Representation Clauses - specification to the compiler as to the exact address in which a



data item is going to be located.

• Compiler Options - specification to the compiler/linker as to the general data
environment in which data is going to be located.

These techniques are very useful constructs, but are problematic for maintenance and simulation
when using multiple executables.

    The representation clause has the distinct advantage that the location of the data is static, and
therefore the size of the code and data required by the application does not affect the placement
of data in memory.  This is very helpful for communicating with devices that have a set memory
location according to the memory map and also for easy debugging when symbolic debugging is
not available.  For example, a memory register is very likely to have the same address for a piece
of hardware for the lifetime of the application on that hardware.  Thus, hard coding the address
of the data object in memory is very positive for these purposes.  Representation clauses require
the developers to attach to the code the exact location in which the data is going to be stored. 
This means that if the separate applications have different relative data locations, separate code is
needed for the multiple processes.

Process A
   IO_Process_State : State_Info;
   for IO_Proccess_State use at 16#60_0F3D#;

Process B
   IO_Process_State : State_Info;
   for IO_Proccess_State use at 16#90_0F3D#;

This means that two versions exist for each package that must be synchronized, and if you
consider simulation, it may mean four!  While representation clauses are much better for specific
data structures, they are not a general solution to large amounts of shared data.

  For data items in shared memory, the exact address of the item is not very important or even
desirable.  If you hard code a record structure and the size of the record changes, the address of
the next element in memory may be required to shift to accommodate.  As an alternative, open
space may be left between data items, but this results in large amounts of unused memory
locations and may still not solve this problem.  A solution to exact addressing is the use of
compiler options to specify the data environment in which the shared variable is to be located.

compile code_file.ada /DENV = 96

The compile option tells the compiler where the data from the package should be stored in
memory by giving it the name of a data environment.  This has the advantage that the compiler
can modify the position of data items according to their size, and the data items are then adjusted
accordingly within the desired address range.  This is helpful for locating general data in the
correct location, but once again, the position of data items is dynamic.  The other executables
will be required to synchronize their version of the data items to the exact mapping.  This often is
achieved by sharing the same compiler, linker and code for all processes, but this is a big
limitation, and assumes the tool outputs are identical for the same data structures in different
contexts.  Similar to representation clauses, the compiler options must be tracked and maintained
for each of the separate processes.  Different from representation clauses, the required



synchronization is normally maintained in a separate physical location from the code.  It is very
easy for a developer may forget to include the compiler options.  This adds complexity to
development, integration and maintenance of a system, by adding to the files and code items
which must be controlled and maintained.  An error in compiler options can be just as critical as
one in code, and is often much more difficult to find for inexperienced developers.  Each of these
techniques have their advantages, but they also have distinct disadvantages in multiprocessor
implementations.

Proposed Solution

    In general, using shared memory means the developers need to know a great deal about the
physical representation of data between the processes and may be required to maintain multiple
address ranges to make the system perform correctly.  When system performance depends on
processor interaction, many of the benefits of using Ada are lost.  If you are lucky, the processes
will not function at all.  If you are not, you will have an application that seems to function but is
riddled with intermittent problems that are difficult and expensive to find, though most often
very easy to solve with the correct address or compiler option.   A better mechanism is to provide
support within the language to utilize the benefits of strong typing and variable access even
between separate processors.  A very simple solution to these problems is to provide a method
within the language to specify that data variables are going to be used in a shared area, but to let
the tool support provide the actual mechanism for the synchronization.  Since this is quite
experimental, the best implementation at this point for synchronization would occur as a set of
pragmas.

pragma Synchronize (<Object, (<Object2, <Object3 ...),
<Data_Environment);

• Object - declares the variable being synchronized.

• Data_Environment - declares the memory element in which the variable is being
placed (more later).

pragma Shared_Access (<Object, <Application, <Access_Rules);

• Object - declares the variable being synchronized.

• Process - declares an executable in which the access rules are being defined.

• Access_Rules - declares the rule(s) which apply to access of the Object. These
rules may include such items as read-only access.

The Synchronize pragma is used to notify the compiler that a data item should be located in a
non-standard address location.  The compiler will use the declared Data_Environment, and
other tool information to be discussed later, to place the variable in the correct location.  The
Shared_Access pragma is an addition to the basic data placement, to limit the access to data
items depending on the application at hand.  This is not intended to provide mutual exclusion to
data access at this point, but can be used to create read-only data within on application which is
writable in another application, and share common source code.  The pragmas can thus be used
in a single, shared piece of code which, in turn, can be used in multiple applications.



package IO_State is
   IO_Process_State : State_Info;
   pragma Synchronize (IO_Process_State, IO_and_Master_Shared_Memory);
   pragma Shared_Access (IO_Process_State, Main_IO, Author);
   pragma Shared_Access (IO_Process_State, Main_Master, Read_Only);
end IO_State;

This implementation is not to imply that shared memory items should be made in packages
specification, but is only to provide a simple example of usage.  The shared element may actually
be in multiple variables or package bodies, etc.  They key to this implementation, all of the intent
is located in one location.  The variables are declared and the notion of alternative storage is
coexistent in code, without the exact details of the storage location.   The development
environment tool set is responsible for determining the context and thus the location of the data
structure, not the developer.

Tool Implementation

    The pragma make code implementation very simple, but the tools required to support this are
not necessarily trivial.   The compiler and linker are given the responsibility for a system of
executables, memory, devices, and processors and how they are allowed to interact, which is not
information traditionally available to the tools.  Therefore a method must be created to enable the
developer to input the hardware layout and basic software architecture to the compiler/linker. 
The method of input is implementation dependent, but it seems reasonable to propose a base set
of required information from the tool to enable the required functionality of the pragmas.

with System;

package Sync_Info is
-- Define potential types for compiler usage in pragma Sync.
-- This information most likely would be multiple packages, but done
-- here in one for presentation simplicity.

    type String_Access is access String;

--------------------------------------------------
    type Executable is tagged record
        Identifier    : String (1..100);
        Start_Address : System.Address;
        Add_Checksum  : Boolean;
        -- This could be extended to allow the user to define their checksum.
    end record;
    type Executable_Access is access Executable;

    type Executables;
    type Executables_Node is access Executables;
    type Executables is record
        Unit : Executable_Access;
        Next : Executables_Node;
    end record;

--------------------------------------------------
    type Memory is tagged record
        Identifier    : String (1..100);
        Start_Address : System.Address;



        End_Address   : System.Address;
    end record;
    type Memory_Access is access Memory;

    type RAM is new Memory with null record;
    type RAM_Access is access RAM;

    type ROM is new Memory with record
        Software : Executables;
    end record;
    type ROM_Access is access ROM;

    type Accessable_Memory;
    type Accessable_Memory_Node is access Accessable_Memory;
    type Accessable_Memory is record
        Unit : Memory_Access;
        Next : Accessable_Memory_Node;
    end record;

    type Accessable_RAM;
    type Accessable_RAM_Node is access Accessable_RAM;
    type Accessable_RAM is record
        Unit : RAM_Access;
        Next : Accessable_RAM_Node;
    end record;

    type Accessable_ROM;
    type Accessable_ROM_Node is access Accessable_ROM;
    type Accessable_ROM is record
        Unit : ROM_Access;
   end record;        Next : Accessable_ROM_Node;

    -- A list of ROM may or may not be sensible, but is not excluded.

--------------------------------------------------
    type Peripheral_Device is record
        Identifier    : String (1..100);
        Start_Address : String_Access; -- System.Address;
    end record;
    type Peripheral_Access is access Peripheral_Device;

    type Accessable_Peripherals;
    type Accessable_Peripheral_Node is access Accessable_Peripherals;
    type Accessable_Peripherals is record
        Unit : Peripheral_Access;
        Next : Accessable_Peripheral_Node;
    end record;

--------------------------------------------------
    type Processor is tagged record
        Identifier            : String (1..100);
        Available_RAM         : Accessable_RAM;
        Available_ROM         : Accessable_ROM;
        Available_Peripherals : Accessable_Peripherals;
    end record;

end Sync_Info;



The implementation takes on some fairly simple layers:
 

• The Executables which are in the system.  The builds are identified through a unique
textual name and are located in ROM at some given starting address.   As an advanced
feature, the user may also be given the option of adding a checksum to the end of the
executable for purposes of health monitoring.

• The Memory devices which are available in the system.  Memory units are identified
through a unique textual name, and data is provided for the range addresses for that
memory device.   ROM memory units are extended to include a list of executables which
are going to be resident on that ROM device.

• The Peripheral devices which are available in the system.  The devices are identified
through a unique textual name and a starting address for the device.   The assumption is
the user will create a data structure to represent the available features (registers, buffers,
queues, etc.), and the tool will provide the placement of the data structure at the defined
starting location for the device.

• The Processors which are available in the system.  The devices are identified through a
unique textual name and lists of access to other pieces in the system.  The processor has a
definition of which devices it has access to, which RAM devices can be written, which
ROM devices are readable, and by default, the executables available on the ROM
devices.

Given this information, the compiler should not be able to assure that all of the data structures in
the series of executables are all synchronized to the same addresses, and assuming the same type
is being used, the same representation of data.  This could potentially have the side effect of
reducing the need for user specification for the representation of data for inter-processor data
items when common types are used!

The compiler still has to receive the data from the user to complete implementation however. 
The data ideally would be entered using some vendor provided GUI to draw the system such as:



The user can recreate the hardware layout in the tool and provide the appropriate information
defined above via pop-up boxes.  As an alternative a scripting mechanism could be provided (see
the following example), but the GUI would provide a very concrete picture of data interactions
and system capabilities.

Sample Code Implementation

    To aid in the understanding and proposed scope of the change, a small example will be used to
show the net effect of pragma Synchronize.  Since the functionality being performed is not
significant to this discussion, only the data items being synchronized are discussed.  The data
item is declared followed by the pragma.

Activity_Indicator : Integer;
pragma Synchronize (Activity_Indicator, "Health_Area");

Even without access to the inner workings of the compiler, the desired effect of pragma
Synchronize can be simulated by manipulating the source code to replace the pragma with a
representation clause.  A small program has been provided to search code files and replace any
occurrences of pragma Synchronize with the appropriate representation clause.  Like the
compiler, the tool must have access to the desired addresses in order to complete the
representation clause.  This information is entered by the user through a simple script enough to
satisfy a trivial case.  The format of the script is as follows:

Device : Start = 16#0000#



Device : Health_Area = 16#0B0E#
Device : Other = 16#6DA3_2BAD#

For this implementation, only the peripheral device mechanism is being used to provide an
absolute address for the given data location.  Since the device mechanism is only intend to place
a single data structure at a specific item, it is the easiest implementation for this example.  The
tool reads the script and adds the address to the representation clause.  After completing the code
is modified to the following:

Activity_Indicator : Integer;
--    pragma Synchronize (Activity_Indicator, "Health_Area");
-- The following line is tool generated.  The actual line
-- is in the comment above.  Do not edit by hand!
for Activity_Indicator use at 16#0B0E#;

This tool is overly simplified and not very flexible (the format of the code and script must be
very exact).   By implementing the synchronization as a pragma instead of a real code
replacement, all of the build information (e.g. data structure sizes) is accessible greatly
enhancing the flexibility and capability of data synchronization.

Conclusion

    While it is preferable to use more modern approaches of distributed programming, it is
undeniable that they are often too costly for implementation in embedded software applications.  
This does not mean, however, the language can not support a technique for distributed
programming that is quick, efficient, and maintainable, even while limited.  The use of a pragma
enables vendors to selectively implement or ignore the requirements of the low level
functionality, depending on the market serviced.  The pragma enables those users which require
low level programming assistance to create code which is portable between simulation and target
environments through the assistance of tool support.    The technology seems feasible and can be
easily upgraded to more modern distributed programming methods, given the correct software
architecture and programming techniques.  By extending the available synchronization
environment to include 'User defined' data elements could be synchronized through any of the
distributed programming techniques, but still maintain the concept of remote data.  This pragma
provides a helpful step up from the historical techniques for multiprocessor data synchronization,
and a possibly a link to modern methods.  It is also helpful for handling specialized hardware
which will continue regardless of distributed programming techniques.   While the primary
benefits of the pragma are not as much technical as they are managerial.  Saving time by
reducing the copies of source code, and enabling easier simulation environments and more
reliable portability between simulation and target environments is a huge advantage.  If a
developer can produce source code which will be identical in simulation and target, and between
different partitions, the development and verification costs can be dramatically reduced, as well
as cycle times.  The pragma seems to be a helpful addition to the language and welcome support
for the beleaguered low level programmers.
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