
1

Building Tcl-Tk GUIs for HRT-HOOD Systems

Juan Carlos Díaz Martín
Isidro Irala Veloso

José Manuel Rodríguez García

Abstract

This work explores Tcl-Tk 8.0 as a tool to
easily build script based GUIs for Ada95 real-
time systems. Tcl-Tk 8.0 is a library that makes
graphic programming easier, but it suffers
from being not thread-safe. TASH is a thick
binding that allows Ada95 single threaded
code to use Tcl-Tk. An application architecture
is proposed, the deferred server, that provides
transparent use of Tcl-Tk to multithreaded
Ada95 applications vía TASH. We've found
that only a minimal extension to Tcl-Tk 8.0 and
TASH is required to support it, and a
successful prototype has been implemented
based on these ideas. Then, the early
integration of Tcl-Tk graphic user interfaces in
HRT-HOOD designs is investigated and,
unfortunately, we conclude that this is not
possible. However, a HRT-HOOD conform
distributed configuration is outlined where the
user interface becomes a multithreaded remote
service based on the deferred server
architecture.

1. Introduction

User interface has been a neglectic topic in
realtime methodologies in general. However,
both in the industrial and the universitary
areas, watching and controlling the evolution
of the system on development by a friendly
graphic environment is important. A good user
interface can provide a graphic model of the
system evolution, eases its study and
understanding and makes its development a

The authors are with the Departamento de Informática,
Universidad de Extremadura, Escuela Politécnica, Avda.
de la Universidad, s/n, 10071, Cáceres, Spain.
This work was in part supported with U.E. FEDER-II
founds (Proyect S742-F96) and Junta de Extremadura.

E-mail: juancarl@unex.es

more attractive task. This last issue is
particularly important in the universitary
environment, where time is scarce in order to
build a running non trivial system ([Diaz98])
and even more scarce in order to learn and
program on a particular windows system. Here,
Tcl-Tk scripts appears to be a balanced
compromise of power, flexibility and ease of
use. In the industry area, besides, in a true hard
real time system, the pair (System, User
Interface) must be analizable in its temporal
constraints.

This article researches: First, a method to use
Tcl-Tk scripts from concurrent Ada95
applications and, second, to extend the method
to HRT-HOOD systems, by introducing the
user interface early in the design stage in order
the pair (System, User Interface) to be
temporally analizable as a whole. These three
main components are shown in the Fig. 1.

Ada 95

HRT-HOOD

Tcl-Tk

Fig. 1 The main problem components.

As HRT-HOOD automatically translates to
Ada 95, the frontier between both is
represented by a slim broken line.
Unfortunately, Tcl-Tk doesn't directly fit. The
Tcl-Tk fitting problem has two sides, namely,
the concurrent use of Tcl-Tk and the design
restrictictions of HRT-HOOD systems. The
rest of the paper is organized as follows.
Section 2 summarize Tcl-Tk and TASH and
section 3 presents the current work on Tcl-Tk
to make it thread-safe and the impact on this
paper. The Ada95/Tcl-Tk side is addressed in
sections 4 and 5 and the HRT-HOOD/Tcl-Tk

2

one in section 6. Section 7 describes our
current work for making a distributed GUI for
HRT-HOOD systems and section 8 concludes.

2. On Tcl-Tk and Tash

Tcl is a general purpose interpreted command
language that admits specialized extensions,
being Tk the more known and used. Tk enrich
Tcl with a set of commands to use the
underlying graphic platform. This augmented
Tcl is known as Tcl-Tk. Tk's greatest virtue is
probably its ease of use; two or ten lines are
enough to get simple applications going. We
have written Adding.tcl, a Tcl-Tk script
that builds the user interface of Fig. 2 takes 26
lines.

Fig. 2 User interface built by Adding.tcl

Tcl-Tk distinguish between two kinds of
commands, first, Tcl-Tk Built-in commands,
such as button, and, second, user written
commands, such as increase and
decrease, known as Application Specific
Commands.

As the Tcl-Tk interpreter can be embedded in a
C program, our approach is to use the Tcl
scripting language in concurrent applications.
The Tcl Tcl_Eval function allows C code to
invoke a Tcl-Tk script. For example, to create
the Fig. 2 "Increase" button from a C program,
we will use:

Tcl_Eval(&Tcl_Interp,
 "button .frame.incr -text Increase \
 -command increase");

where Tcl_Interp is a handle to a Tcl-Tk
interpreter.

Windows System

TASH

Ada95

Tcl-Tk

Fig. 3 TASH, a thick binding Ada95/Tcl-Tk

The Tcl-Tk interpreter is written in C and it's
easy to call it from a C module by Tcl_Eval.
To invoke Tcl-Tk from Ada 95, however, is
rather cumbersome. TASH (from Tcl-Ada-
SHell) is a thick binding Ada95/Tcl-Tk
([West96]). As Fig. 3 shows, TASH provides
Ada95 applications with the whole Tcl-Tk
interface by the packages Tcl and its children.

Callbacks are the Tcl mechanism that
implements the interaction of the user with the
application. In the Tcl-Tk jargon, a callback is
a Tcl command Cmd, either a user extended
command or a Tcl-Tk built-in command, that
is passed into another procedure and is
executed later, perhaps with additional
arguments ([Welc97]). We now introduce the
term user callback. A user callback is defined
as the invocation of an Application Specific
Command written in the host language, either
C or Ada95, by the Tcl-Tk library. Fig. 4
relates commands, languages, callbacks and
user callbacks.

user
callback

Commands

Application Specific Commands

Built-in Commands

Ada95

Tcl-Tk

C

Tcl-Tk

decrease

increase
callback

Fig. 4 Languages, commands and callbacks

3. Related work

The initial goal of this work is to build a
mechanism to enable any Ada95 task to
transparently execute a Tcl-Tk script using
Tcl_Eval. As of this writing, the Tcl-Tk
reentrancy is been addressed by its creators.
The upcomming Tcl-Tk 8.1 release have
reantrant features. It is thread-safe, though in a
rather restricted sense: Each thread can have
it's own interpreters but each interpreter can
only be accessed by only one thread. Thus, it's
true that Tcl_Eval, can be concurrently
invoked from two different threads, but with
(and only with) two separate interpreters. That
means that every Ada95 task in the system that

3

uses a Tcl-Tk GUI should create its own
interpreter before any Tcl_Eval call, whats
complicates programming, but it should not be
a mayor difficulty. In order to share a single
intepreter, the Tcl-Tk 8.1 provides new Tcl C-
level APIs to send commands and scripts to
another thread. Of course, the TASH thick
binding must keep up with the new thread-safe
8.1 features in a concurrent Ada95 application.
Up to that moment, and even later, we think
the monolithic approach of this work can be
useful. Even it is mandatory for those restricted
to use no reentrant Tcl-Tk versions.

4. The deferred server architecture

Service-loop architecture takes the control of
the thread that executes it, what prevents Tcl-
Tk to be invoked from a multithreaded process.
Our effort makes available current Tcl-Tk
implementations to concurrent Ada 95
applications in a transparent way.

service
procedures

Graphic library

Operating system

User
code

Tcl-Tk

event queue

Fig. 5 The Tcl-Tk event queue

In first place, let's analize the Tcl
implementation. An ordinary Tcl-Tk program
consists of a single thread of control that
manages an event queue (Fig. 5), ordered on
priority basis. Each event is a data structure
comming from two sources, the user code,
when Tcl_Eval (Eval under TASH) is
invoked and the graphic library (X-Windows,
for example), on user actions. The event
structure has two fields, an event identifier and
a pointer to a service procedure, either an
internal Tcl routine or an user extended
command. The thread executes the infinite
event-loop Mainloop, whose pseudocode is:

 while(1)
 Do_Event();

Do_Event access to the Fig. 5 event queue
and serves the next event, perhaps by making
an user callback. In this case, the invoked

Ada95 user extended command may call a Tcl-
Tk build-in command, what causes a new
event to be inserted in the queue. When the
queue gets empty, the thread calls the graphic
library, where the whole application gets
blocked waiting for user action. Under the X-
Windows system, for example, the client
library gets blocked on the TCP conection to
the server. On return, data are converted into
events and inserted in the queue.

In the shown classic Tcl-Tk architecture, the
only existing thread takes control, calling the
Ada95 Application Specific Commands on
user actions. Our purpose is the opposite:
Multiple user threads call the Tcl-Tk facilities
when needed, i.e., in any time, the Tcl_Eval
function should be invoked by any thread in
order to the interpreter to execute a command.
Of course, this goal impose to get rid of the
Tcl-Tk infinite service loop. The trouble is that
each call to the interpreter has the efect of
inserting a new event in the queue and, without
the service loop, nobody serves the events. The
queue grows endlessly.

Our approach to this issue is to dedicate an
aditional periodic thread to test and serve the
event queue. We pursue not to change the Tcl-
Tk event queue model, but rather to chage the
way of using it. We have worked on the Tcl-Tk
8.0 version of the library. Two routines have
been added to it: Test_Events and
Do_Events. Besides, Test_Events and
Do_Events have been added to the original
TASH interface in order to be invoked from
Ada95.

Test_Events is a fast function that inspects
both the event queue and the X-Windows
server connection. If there are data in the
connection or events in the queue,
Do_Events is called. Do_Events reads all
the data in the connection, transforms it in Tcl-
Tk events, inserts them in the queue and,
finally, serves them. Thus, Test_Events
and Do_Events avoid the blocking service
loop provided by the Tcl-Tk. The user code
don't use them. Under the new architecture, a
new thread tests both the event queue and the
server connection on periodic basis. This
thread is a dedicated periodic task,
TASH_Handler, whose implementation is:

4

package TASH_Handler is
 pragma Elaborate_Body;
end TASH_Handler;

with TASH_Controller;
package body TASH_Handler is

 task TASH_Handler_Th is
 pragma Priority(T_H_PRIORITY);
 end TASH_Handler_Th;

 task body TASH_Handler_Th is
 T: Time;
 Period: Time_Span := T_H_PERIOD;
 begin
 T := Clock;
 loop
 if Test_Events then
 Do_Events;
 end if;
 T := T + Period;
 delay until (T);
 end loop;
 end TASH_Handler_Th;

end TASH_Handler;

The delay until sentence gives the
periodic caracter to the task and allows the
scheduling of other activities. The period of the
task depends on the responsiveness desired
from the user interface. The more responsive
the application, the smaller the period.
Anyway, keeping Test_Events fast, the
periodic thread interferes a minimum with the
rest of the system. The service loop
architecture has the advantage of serving the
events immediately. Under the proposed
design, however, the events wait for
TASH_Handler to activate. The application
tasks use TASH, being unaware of TASH_
Handler. Besides, the Ada95 application
tasks see the same interface to the Tcl-Tk
script than the classic single-threaded one
addressed by TASH. Because of its nature,
from now on, we´ll name this design as the
deferred server (Fig.6).

TASH_
Handler

Tcl-Tk

TASH

Ada95
user tasks

Fig. 6 The deferred server (I)

5. The reentrancy problem

The periodic thread of Fig. 6 solves the service
loop problem posed in section 5. The
reentrancy problem, however, still remains.
Tcl-Tk 8.0 is the typical non thread-safe third

party library used by threaded applications.
Concurrent invocations of the Tcl-Tk interface
cause the reentrance in the Tcl-Tk library.
The general strategy to yet keep on using Tcl-
Tk is to consider the library as a big monolithic
monitor.

5.1 The first design attempt

A concurrent application may use the Pthreads
interface to support the concurrency. In such a
case, the monolithic monitor is implemented as
a wrapper on every library access. For
example, a multithreaded C program could use
Tcl-Tk as follows:

pthread_mutex_lock(TclTk_Mutex);
Tcl_Eval(&Interp, "My_Command");
pthread_mutex_unlock(TclTk_Mutex);

Fortunately, Ada95 applications using TASH
can solve the reentrancy problem much more
cleanly (Fig. 7).

TASH_
Handler

Tcl-Tk

Ada95
user tasks

TASH_Controller

TASH

Fig. 7 The deferred server (II)

The key is to introduce a protected object,
TASH_Controller, that encapsulates the
whole TASH interface.
with Tcl;
with Tcl.Tk;
package TASH_Controller is
 protected Agent is
 procedure Tcl_Init(...);
 procedure Tcl_CreateCommand(...);
 procedure Tcl_Eval(...);
 procedure Tk_Init(...);
 ...
 procedure Do_Events(...);
 procedure Test_Events(...);
 private
 ...
 end Agent;

 procedure Tcl_Init(...)
 renames Agent.Tcl_Init;
 procedure Tcl_CreateCommand(...);
 renames Agent.Tcl_CreateCommand;
 procedure Tcl_Eval(...);
 renames Agent.Tcl_Eval;
 procedure Tk_Init(...)
 renames Agent.Tk_Init;
 ...
 procedure Do_Events(...);
 renames Agent.Do_Events;
 procedure Test_Events(...);

5

 renames Agent.Test_Events;
end TASH_Controller;

package body TASH_Controller is
 protected body Agent is
 procedure Tcl_Init(...) is
 begin
 Tcl.Tcl_Init(...);
 end Tcl_Init;
 ...
 end Agent;
end TASH_Controller;

Unfortunately, this attempt of solving the
reentrancy problem is faulty. Under a Tcl-Tk
interface, the user interacts the system through
user callbacks. The rest of this section shows
that user callbacks lead to deadlock.

Fig. 8 shows a very simple embedded system,
a heater, whose control goal is to keep the
water temperature as close as possible to the
r(t) desired reference.

Computer

Temperature
sensor

r(t)

y(t)

u(t)
Heater

Fig. 8 The heater control system

A Tcl-Tk heater GUI would consist of:

1 A temperature sensor, represented by a Tk
widget and updated on periodic basis.

2 An alarm widget that get raised on a critical
temperature level.

3 The operator of the system sets the
reference temperature r(t) by a scale
widget.

The set of user interface primitives used by an
application should be provided in a package
object segregated form the rest of the
application. From now on, we'll name this
object User_Interface (Fig. 9).

TASH_
Handler

Tcl-Tk

Ada95
user tasks

TASH

TASH_Controller

User_Interface

Fig. 9 The deferred server (III)

For example, the heater user interface
primitives are Update_Temp, used to update
the temperature widget, and Show_Alarm,
used to trigger the alarm widget.

The User_Interface package would be:

with TASH_Controller;
package User_Interface is
 procedure Initialice_UI(...);
 procedure Update_Temp(...);
 procedure Show_Alarm(...);
end User_Interface;

Associated to the scale widget there is an
Ada95 user extended command,
Set_Ref_Cmd, invoked by Do_Events on
user scale events. Set_Ref_Cmd, and in
general any user extended command, has two
fields of activity as Fig. 10 shows. First, the
user code, to update the Ada95 real time
variable that holds the reference temperature.
The Application Specific Commands should be
the only place where operator updates global
control variables of the system. Second, the
Tcl-Tk library, to show the new reference
value on the screen. Set_Ref_Cmd uses also
TASH_Controller, as User_Interface
entries do.

The question is where to implement the
Application Specific Commands, as
Set_Ref_Cmd. The Ada95 Application
Specific Commands aren't ever called from
any Ada95 code, but only from the Tcl-Tk
library as callbacks. Thus, to put its interface in
the specification of User_ Interface is
harmless, but useless. Our solution is to put
them all in a separate package,
User_Commands as xx_Cmd functions (Fig.
10).

TASH_
Handler

Tcl-Tk

Ada95
user tasks

TASH

TASH_Controller

User_
Interface

User_
Commands

Fig. 10 The deferred server (IV)

Needless to say, the Tcl-Tk library has to know
the address of each xx_Cmd function in order
to invoke it. For example, the Ada95 code

6

shows how the main procedure pass the
address of Decrease_Cmd to the Tcl-Tk
library. User_Commands needs a method,
Create_User_Command, that let Tcl-Tk
know about every xx_Cmd function and is
invoked by User_Interface as part of its
initialization. For the heater system, for
example, the definition of User_Commands
would be as follows:
with TASH_Controller;
package User_Commands is
 procedure Create_User_Command(
 Interp : Tcl_Interp);
end User_Commands;

package body User_Commands is
 package C renames Interfaces.C;
 package CreateCommands is new
 Tcl.Ada.Generic_Command(Integer);

 function Set_Ref_Cmd (
 ClientData : in Integer;
 Interp : in Tcl_Interp;
 Argc : in C.Int;
 Argv : in CArgv.Chars_Ptr_Ptr
)return C.Int;
 pragma Convention(C, Set_Ref_Cmd);

 function Set_Ref_Cmd(
 ClientData : in Integer;
 Interp : in Tcl_Interp;
 Argc : in C.Int;
 Argv : in CArgv.Chars_Ptr_Ptr
)returns C.int is
 begin
 -- 1. Update the Ada95 Reference
 -- Temperature global variable
 -- 2. Show the Reference in the
 -- screen via TASH
 end;

 procedure Create_User_Command(
 Interp : Tcl_Interp) is
 begin
 -- Create Ada95 App. Specific Commands
 -- One entry per User Extended Command
 CreateCommands.Tcl_CreateCommand(
 Interp, "Set_Reference",
 Set_Ref_Cmd'access, 0, NULL);
 end;
end User_Commands;

TASH_Handler

User_CommandsPk

User_InterfacePk

Ada95

C

TASH_ControllerPr

TASH

1
3

Create_User_Cmd

Initialize

Show_Alarm
Update_Temp 2

Fig. 11 First design attemp. Succsessful case

Let's see a first working example (Fig. 11):

1. When an Ada95 task decides the
temperature widget must be updated, the
Update_Temp user interface primitive is
invoked.

2. Update_Temp use the TASH interface
encapsulated in the TASH_Controller
to introduce an event in the queue (the
operator doesn't still see any change on the
screen).

3. TASH_Handler wakes up and invokes
Test_Event, what causes the invocation
of Do_Event to serve the event introduced
in the step 2, as expected. The new
temperature value appears on the screen.

TASH_Handler

User_CommandsPk

User_InterfacePk

Ada95

C

TASH_ControllerPr

TASH

Do_Events

Graphic server
Connection

Click data

1

3

2

Create_User_Cmd

Set_Reference_Cmd

4

Initialize

Show_Alarm
Update_Temp

Fig. 12 First design attemp. Faulty case

Fig. 12 illustrates a second example where a
user callback takes place:

1. The operator sets the reference temperature
through the scale widget via mouse. The
graphics library sends the data to the
connection (again, the operator doesn't still
see any change on the screen).

2. Eventually, TASH_Handler wakes up
and invokes Test_Event, what causes
the invocation of Do_Event to read the
connection, make an event and serve it.

3. To serve the event, Set_Ref_Cmd is
invoked as an user callback.

4. When Set_Ref_Cmd tries to use TASH
to put the value on the screen, finds the
TASH_Controller protected object
closed by the current thread. A deadlock
has happened. The first try has failed.

5.2 A second design attempt

One solution to the deadlock problem is
Application Specific Commands to bypass the
protection of TASH_Controller by directly
invoking TASH. This impose to provide a
double interface to TASH, the protected one,

 cmd := CreateCommands.Tcl_CreateCommand(
 Interp, "decrease",
 Decrease_Cmd'access, 0, NULL);

7

TASH_Controller, and the unprotected
one, TASH (Fig. 13).

TASH_
Handler

Tcl-Tk

Ada95
user tasks

TASH_Controller

User_
Interface

User_
Commands

TASH

Fig. 13 The deferred server (V)

Under the double interface facility, step 4
doesn´t occasion deadlock because now the
thread gets only once through the protection of
TASH_Controller. Fig. 14 shows it.

Ada95

C

Graphic
server
connection

Click data

1

3

3

Set_Ref_Cmd

Do_Events

2

TASH_HandlerUser_InterfacePk

Initialize

Show_Alarm
Update_Temp

User_CommandsPk

Create_User_Cmd

4

TASH_ControllerPr

TASH

TASHPk

TASH

Fig. 14 Second design attemp

Though it seems clear that the double interface
is not the ideal solution to the reentrancy
problem introduced by user callbacks, it also
seems there is not a better one.
Notwithstanding, Ada95 applications keep
well structured because the solution exhibites a
useful property: User_Commands only
invokes the raw TASH interface, while User_
Interface only invokes the protected
TASH_Controller one. Fig. 13 shows the
definitive deferred server architecture.

A well known case study, the mine control
system ([Burn96]), has been implemented with
a Tcl-Tk GUI built upon the deferred server
model. We have used Linux 2.0.X, GNAT
3.10p and Tcl-Tk 8.0. Fig. 15 shows a snapshot
of the GUI.

Fig. 15 The Mine Control System Tcl-Tk GUI

6. The HRT-HOOD approach to the
deferred server

HRT-HOOD is a well known objet based
design metodology that helps in building
reliable big realtime systems ([Burn95],
[Burn96]). Each HRT-HOOD terminal object
has an automatic translation to an Ada95
package with timming attributes. The resulting
running system is a concurrent set of Ada95
tasks. Non-terminal objects are called active,
while there are four kinds of terminal objects:
Passive, protected, cyclic and sporadic. As an
example, the heater system of Fig. 8 is
described in HRT-HOOD terms in Fig. 16. Its
user interface has been encapsulated in the
Operator_Console active object.

A Heater

A Operator_Console

A Temperature

C Sensor

Set_Ref

Pr Reference

Get
Set

Pr Resistence

On_Off

Update_Temp

Show_Alarm

PAER

PSER

ASER

ASER

ASER

PAER

Fig. 16 A first HRT-HOOD design of the heater system

HRT-HOOD requires that the operations on a
object delay the invoking thread for a bounded
time only. Therefore, the Tcl-Tk written
Operator_Console object enforce this
rule with operations restricted to be ASER
(Asynchronous Execution Request).

8

Thought HRT-HOOD objects have a direct
mapping to Ada95 code, HRT-HOOD
specifications ([Burn95]) seems not to be
binded to any specific implementation.
Therefore, general purpose third-party
libraries, such as Tcl-Tk, are not prohibited
components in the implementation of any
object. What is only relevant is to enforce the
HRT-HOOD design restrictions, such as
syncronization or timing. The deferred server
is a method of encapsulating Tcl-Tk in Ada95
objetcs that can be used by a concurrent
application. The question, therefore, is if,
without loss of generality, the deferred server
architecture can be used to implement the
HRT-HOOD Operator_Console object of
Fig. 16. In the afirmative case, every HRT-
HOOD system using a deferred server Tcl-Tk
user interface would match Fig. 17.

TASH TASH_Controller

TASH_
Handler

User_
Commands

HRT-HOOD
tasks

Tcl-Tk

User_
Interface

Fig. 17 Hipothetical HRT-HOOD system based on the
deferred server architecture

The implementaton of Fig. 17 poses the
operating system problem. To achieve
predecibility, the HRT-HOOD tasks should
live alone, without operating system support.
Tcl-Tk, however, need a X-Windows and a
Unix box. In order to guarantee predecibility to
the real-time tasks, Fig. 18 shows a distributed
configuration, where the X-Windows server is
moved to other dedicated machine or X-
terminal. Now the operating system disappears
from the real-time system and the network
adapter is controlled by HRT-HOOD objects
implemented conforming to the low level
programming Ada95 facilities ([Burn96]).

The main shortcoming of this approach is that
Tcl-Tk and the X client library must be
modified in order to support the operating
system services by themselves. This posibility
has been explored. The single line Tcl script

TASH TASH_Controller

TASH_
Handler

User_
Interface

User_
Commands

HRT-HOOD
tasks

Tcl-Tk

UNIX

X-Window s
serverX-Window s client

HRT-HOOD netw ork driver

Fig. 18 Distributed HRT-HOOD/Tcl-Tk system (I)

#!/usr/bin/tclsh
puts stdout "Hello, world"

makes 18 different system calls and a total
number of 86. The 26 lines Tcl-Tk script
Adding.tcl that builds Fig. 2 GUI makes
25 different system calls and a total number of
488 ones. It's true that the system is now fully
analizable in its temporal requirements, but
Tcl-Tk and the client component of X-
Windows entrust functionality to the operating
system that is difficult to assume by
themselves and the Ada95 run-time system.

A Operator_Console

U_I_Ops

Pa User_Interface

U_I_Ops

Pa TASH

TASH

Pr TASH_Controller

TASH

C TASH_Handler

Pa User_Commands

Create_User_Cmd
User_Ext_Cmds

Fig. 19 A faulty HRT-HOOD design of the Tcl-Tk User
Interface

The operating system problem, however, is not
the only one. The Fig. 19 is a refinement of
Operator_Console into terminal objects.
As can be infered by the objects names and
relations, the goal of this decomposition is to
map automatically into the Ada95 deferred
server architecture proposed in previous
sections. Some design and implementation
problems can be identified on it:

9

First, HRT-HOOD terminal objets must be
temporally analizable. A HRT-HOOD
protected object has two attributes, the ceiling
priority and the worst case execution time
(WCET). The last one is the worst case
execution time of its slower operation and
determines the bloking imposed to the
invoking tasks. As the HRT-HOOD protected
object TASH_Controller is implemented
as the Tcl-Tk library, to wich it guarantees
mutual exclusion, its very difficult to
determine its WCET parameter, due to the
unpredictable operating system time response.

Second, HRT-HOOD specification ([Burn95],
pg. 29) explitely "forbids passive (or protected)
objects to use each other in a cyclic manner".
Tcl-Tk user callbacks necessarily introduce a
cycle between User_Commands and TASH.

Third, HRT-HOOD specification ([Burn95],
pg. 30) explicitely sets that passive objects can
only invoke operations on passive objects.
Passive User_Interface invokes protected
TASH_Controller.

X-Windows

User_
Commands

Tcl-Tk

User_
Interface

HRT-HOOD
client stub

HRT-HOOD
tasks

multithreaded
server stub

Unix

TASH_
Handler

TASH
TASH_Controller

Fig. 20 Distributed HRT-HOOD/Tcl-Tk system (II)

The above run-time analisys and the inherent
violations of HRT-HOOD rules described
above make clear that to embed Tcl-Tk in a
HRT-HOOD system is not possible. Therefore,
other alternatives must be explored. Fig. 20
shows a distributed configuration where the
deferred server goes to a second machine, as a
remote service to the HRT-HOOD system. The
interface definition of this service consists of
the user interface primitives of the real-time
system. As Fig. 20 shows, the HRT-HOOD
tasks are substituted in the server side by a
multithreaded server stub.

User callbacks are problematic. What does
happen when a user extended command

accesses a real-time variable? Now the HRT-
HOOD system is not only a client of Tcl-Tk
services, but it becomes a server of its real-
time variables, monitorized and controlled by
the operator. Notwithstanding, the
Operator_Console object gets much
lighter that the one of Fig. 19. It implements
the client stub by taking the control of the
network adapter. Its operationes are ASER in
order to bound the delay imposed to real-time
tasks: They return when the packet has been
put in the network. It also implements the real-
time variables service stub by introducing a
thread that listen in the network adapter for
real-time requests. As an example, Fig. 21
shows the operator console object for the
heater system.

A Operator_Console

A Temperature

Ref_Temp

S

ASER
by
interrupt

Start

Callback_Server

Callback_Op_Code

Pr Network_Adapter

Update_Temp

Show_Alarm
ASER

ASER

Update_Temp

Show_Alarm

PAERD

PAERD

Get_FramePSER

Callback_Op_Parm

Fig. 21 A second HRT-HOOD design of the Tcl-Tk User
Interface

7. Work under way

Whether the deferred server arquitecture has
been implemented and tested by itself in a
centraliced way, as a remote service of a HRT-
HOOD system, not yet. The main problem to
be solved is the communication protocol.
TCP/IP is a good ellection in the Tcl-Tk side,
but may be considered big and heavy in a
HRT-HOOD side. Three possibilities are been
explored. First, buiding an analizable TCP/IP
server active object in the HRT-HOOD system
based on the Minix user space implemented
TCP/IP server. Second, to unload the HRT-
HOOD side from any communication protocol
by faking the Tcl-Tk side inserting/discarding
the frames TCP/IP stuff. Third, use a much
ligther network protocol, FLIP ([Tane95]).

10

8. Conclusions

First, the problem of using the Tcl/Tk scripting
language in mutithreaded Ada95 applications
has been studied and a solution has been
proposed: the deferred server architecture, that
demands a little extension to Tcl-Tk/TASH. A
complex enough classic example, the mine
control system, has been implemented to test
these ideas with success. Second, the
integration of Tcl/Tk in HRT-HOOD systems
has been explored. The reentrant nature of Tcl-
Tk and its mechanism of callbacks takes us to
conclude that is not possible to buid a stand
alone true hard HRT-HOOD system with a
Tcl-Tk user interface. Finally, a distributed
approach to the Tcl-Tk GUI that relies on the
deferred server model, however, seems
promising. This distributed architecture has
been presented and its problems posed. Work
is in progress in order to gain experience on it
and to achieve the goal of developing true
HRT-HOOD systems with Tcl-Tk script based
user interfaces.

9. References

[Barn95] Barnes, J., Programing in Ada95,
Addison-Wesley, 1995.

[Burn95] Burns, A. and Wellings, A., HRT-
HOOD: A Structured Design
Method for Hard Real-Time Ada
Systems, Elsevier, 1995.

[Burn96] Burns, A. and Wellings, A., Real-
Time Systems and Programing
Languages, Addison-Wesley, 1996.

[Diaz98] Díaz Martín, J.C., Irala Veloso, I.,
"Prácticas de Sistemas de Tiempo
Real en la Uex. Integración de Tcl-
Tk en HRT-HOOD", Jenui'98,
Actas del congreso, pp. 166-172,
Escola d'Informática d'Andorra.
Sant Juliá de Lória, Andorra, July,
9-10, 1998

[IEE96] IEEE, "Information Technology -
Portable Operating System
Interface (POSIX)- Part 1: System
Application Program Interface
(API) [C Language], IEEE Std
1003.1, 1996 Edition, (1996).

[Oust94] Ousterhout, John, Tcl and the Tk
Toolkit, Addison-Wesley, Reading,
MA, 1994.

[Tane95] Tanenbaum, A. S., Distributed
Operating Systems, Prentice-Hall,
1995.

 [Welc97] Welch, B., Practical Programming
in Tcl & Tk, Prentice-Hall, 1997.

[West96] Westley, T., “TASH: Tcl Ada
Shell, An Ada/Tcl Binding”, ACM
SIG Ada Ada Letters, 1996.

