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ABSTRACT

Representing interdependencies between the objects of
an object-oriented software application requires design-
time mechanisms for specifying object interrelation-
ships, as well as software constructs for the runtime
maintenance of these relationships. In this paper, we
present a portion of our software engineering research
environment ADAM, (short for Active Design and Anal-
yses Modeling), which incorporates a technique for the
design-time modeling of propagations (our term for the
relationships between interdependent objects). We ex-
amine the ADAM environment’s support for the au-
tomated generation of Ada95 software constructs that
maintain object interdependency at runtime. We focus
on our propagation model’s use of Ada95 tasking con-
structs and protected objects, with an emphasis on the
source level mechanisms through which our model uti-
lizes concurrency. We present constructs required for
an Ada95 distributed propagation model that supports
communication through CORBA.

Keywords
Object-oriented technology, Methods and Techniques,
Ada Language, Distributed, CORBA.

1 INTRODUCTION

Representing dynamic (runtime) interdependencies be-
tween objects is an essential part of using object-
oriented techniques to model the critical software com-
munications found in today’s increasingly complex soft-
ware systems. Current software design methodolo-
gies, software development environments, and computer
aided design (CAD) systems lack the ability to represent
and manipulate these interdependencies, even though
the specific information that must be represented is
often well understood by the designer. Representing
dynamic interdependencies in an object-oriented design
environment focuses on the ability to specify relation-
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ships between objects that are not related ancestrally.
For example, a CAD designer altering the pitch of a gas
turbine engine’s fan blade design may need to consider
the stress where the blade is mounted to the turbine
disk. Changes in the stress (caused by the change in
fan blade pitch) are said to propagate to the attachment
of the fan blade to the disk. Propagation modeling seeks
to represent such interdependency knowledge as an im-
portant part of the design process.

To facilitate our discussion of propagation modeling,
we define the following concepts, and briefly examine
a propagation found in the gas turbine engine fan blade
design domain [9]. We define a propagation to be a soft-
ware construct for specifying relations between two or
more non-ancestrally related objects. Each propagation
is an independent, third-party object that coordinates
the interdependencies between all of the objects in the
propagation.

Objects are interrelated if they need to exchange mes-
sages, via the propagation, in order to maintain their
collective state information consistent with their inter-
dependencies. Two distinct categories exist into which
all of the interrelated object types of a propagation are
partitioned:

1. Source objects: The interrelated objects that col-
lectively determine the conditions under which the
propagation’s control-logic is invoked.

2. Destination objects: The interrelated objects that
do not participate in determining when a propaga-
tion’s control-logic is invoked.

Propagation resolution is the final activity of a prop-
agation, and involves informing the object(s) invok-
ing the propagation as to whether or not the propa-
gation was successful. Propagation-required methods are
those methods that are subject to invocation during the
course of a propagation’s execution.

Figure 1 shows a propagation model for the pitch al-
teration of a gas turbine engine fan blade [9]. In Fig-
ure 1, the boxes represent interrelated object types, and
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Figure 1: Propagation For Fan Blade Pitch Alteration.

the circle represents the propagation entity. The se-
quentially labeled arrows represent the communication,
overseen by the propagation, needed to service the in-
terdependencies between the interrelated objects. As
shown in Figure 1, propagation execution proceeds as
follows:

1. The propagation is initiated by the source object
instance (Fan Blade) being requested to fulfill its
Alter Fan Pitch responsibility. In our example,
the propagation designer has determined that the
Alter Fan Pitch responsibility of the Fan_Blade
instance is interrelated with a destination object,
in this case the Fan_Blade_Attachment instance.

2. The source object responds by launching the
Fan Pitch_Alteration propagation, passing infor-
mation needed by the propagation via the auto-
matically dispatched New_Hold Down Requirement
message.

3. The Fan Pitch Alteration propagation coordi-
nates the activity of the interrelated objects, de-
termining whether the Fan_Blade_Attachment has
adequate hold down capabilities in light of the pro-
posed new pitch of the Fan_Blade instance.

4. The Fan Blade Attachment instance determines
and reports its own ability to hold down the fan
blade (via the Hold Down_Ability message).

5. Finally, the propagation communicates the result
of the propagation to the source object via the
Propagation Result message sent to Fan Blade
instance.

The goals of the communications described in this exam-
ple are to insure that if the application state was consis-
tent before propagation launching, then the application
state remains consistent after propagation resolution. In
terms of our example, if the fan blade attachment could
sustain the stress generated by the fan blade with its

initial pitch, then the propagation asserts that the case
with the altered fan blade also meets the stress require-
ments. In order to provide such assurances, information
consistency requires that a propagation terminate after
either ensuring that appropriate alterations have been
made to the interrelated objects (propagation success)
through the use of the propagation-required methods, or
that no alterations have been made (propagation fail-
ure). After propagation resolution, the source object
resumes execution of its original responsibility, perhaps
making use of the resolution result returned by the prop-
agation.

The remainder of this paper is organized as follows.
In Section 2 we examine our approach to propagation
modeling, with an emphasis on the phases of a prop-
agation. In Section 3 we briefly present the ADAM
environment, with a focus on the concept of profiling
and ADAM’s support for integrity constraints. In Sec-
tion 4 we present the propagation-specific code genera-
tion capabilities of the ADAM environment, including
our use of the Ada95 tasking model to achieve concur-
rency within our propagation modeling implementation.
In Section 5 we assess our propagation model’s impact
on specifying object interdependency during the design
process. In Section 6 we examine recent work that has
been done in areas related to propagation modeling. In
Section 7, we present our conclusions, and discuss di-
rections for future research.

2 MODELING PROPAGATION

Our object-oriented propagation model focuses on al-
lowing a designer to specify interdependencies between
design objects. The object-oriented concept of message
passing is relied upon as the primary means of commu-
nication between a propagation’s interrelated objects,
and the propagation constructs we have developed. We
build upon objects with integrity constraints [5], which
allows us to focus on the interdependent activities of
objects without concern for an object’s specific internal
behavior. Our approach allows the internal behavior of
a propagation’s interrelated objects to be modified as
needed during the iterative design process, as an event
distinctly separate from the process of specifying a prop-
agation.

We mandate a protocol of propagation-required behav-
ior so as to standardize the communication between
a propagation and its interrelated objects. The par-
ticular propagation-required behavior for an object de-
pends upon the object’s role in the propagation. The
number of source and destination objects determine the
configuration of a propagation. All of the source ob-
jects of a propagation are endowed with a fixed set
of propagation-required behavior, while the destina-
tion objects are given a subset of a source object’s
propagation-specific behavior requirements.



To aid the designer in specifying the interdependen-
cies between objects, our propagation model provides
constructs for both sequential and conditional message
passing. The sequential message constructs allow a
designer to identify the serial ordering of method in-
vocation between a propagation’s interrelated objects.
In the gas turbine engine fan blade example of Fig-
ure 1, the messages that are exchanged between the
Fan Blade object and the Fan Blade_Attachment ob-
ject while the pitch of the Fan Blade object is being
altered are strictly sequential in their logical flow. The
other basic constructs, the conditional message con-
structs, allow a designer to specify sequences of message
passing that are dependent upon response to queries
made dynamically by the propagation construct. An
example of a conditional message sequence would be
the fan blade example modified such that the length of
the fan blade was the subject of the propagation, rather
than the pitch. When the designer specifies a change in
the length of a fan blade, the propagation entity might
be designed so as to allow an altered fan blade length
only if the new fan blade length does not exceed some
maximal distance, as determined by the radius of the
engine casing, while at the same time the altered stress
placed on the fan blade Attachment by the increase in
length is within the limits specified by the Fan_Blade
object. Due to space constraints, we limit our examina-
tion of propagation constructs to those supporting se-
quential message passing, and refer the interested reader
to a more complex example from the manufacturing do-
main [9)].

As part of our abstraction efforts, we encapsulate the
message passing, overseen by the propagation in servic-
ing the interdependencies between its interrelated ob-
jects, into a trigger' method. This approach allows
the designer to focus on specifying only those inter-
actions between objects that are necessary to main-
tain application-wide information consistency, while the
reusable portions of our model provide the underly-
ing propagation message passing that supports the de-
signer’s trigger method definition.

The Role of Integrity Constraints

Changes to the information maintained within an
object-oriented software application result primarily
from the messages passed between the application’s ob-
jects. The role of propagation modeling is to enforce
information consistency across the entire application, a

IWe build upon the concept of triggering from database re-
search [8] wherein the enforcement of database constraints relies
upon implementation-level triggers. Database triggers automat-
ically take restorative action upon determining that a database
constraint has been violated. In our propagation model, we use
the term triggering to reference the events that occur when a
propagation’s control-logic is invoked to enforce the interdepen-
dent behavior of the source and destination objects.

level of abstraction higher than that of the object-type
level. To achieve application-wide information consis-
tency, propagation modeling requires special behavior
from the objects interrelated in a propagation. We uti-
lize objects endowed with class-level assertions, which
we term integrity constraints (IC)s [5] (further discussed
in Section 3). Our specific requirements are that inter-
related objects:

1. must maintain their own information consistency
(via their internal ICs),

2. must not alter their state information upon receipt
of an IC-violating? message, and

3. must report the receipt of any such IC-violating
message to the governing propagation entity.

The first and second capabilities allow a propagation
to deal abstractly with interrelated object types (OTs),
with the knowledge that the OTs only alter their state
information in response to messages consistent with the
respective OTs internally maintained ICs. The third ca-
pability, reporting the receipt of IC-violating messages,
is used during the course of a propagation to guide the
behavior of the propagation entity, and allows the prop-
agation entity to alter its behavior in response to the
effect it has had on the interrelated OTs.

The Basis for a Propagation Type

To facilitate information consistency across the entire
application, we utilize a propagation type (PT) model-
ing construct [9]. A PT is a mechanism for allowing
a software designer to specify IC-like behavior that oc-
curs across multiple OTs. The PT provides the vehicle
through which the designer specifies the interdependen-
cies between interrelated OTs, and identifies the source
OTs that are consulted in the determination of when to
service these interdependencies. Much like the develop-
ment of the OTs of an application, the development of
a PT is an iterative process wherein a propagation is
refined and redefined as additions/changes are made to
the application.

The role of an instance of a PT, referred to as a propa-
gation entity (PE), within the runtime environment of
a software application includes:

e Enforcing the dynamic behavior, defined via the
PT at design time, of the runtime application.

e Servicing the interdependencies between relevant
portions of an application’s data.

2An IC-violating message is a message received by an object
that requests state changes incompatible with the object’s speci-
fied integrity constraints.



e Notifying the object activating the PE in the case
that the requested changes are not permissible in
terms of the information consistency of the propa-
gation’s interrelated objects.

A many-to-one relationship exists between PEs and
PTs. Each PT can have multiple PEs, activated as
needed by objects during the application’s runtime.
Each PE is associated with the appropriate OT in-
stances at runtime, and interacts with its interrelated
objects via message-passing. It is important to note
that a PE is itself an object instance, and follows the
same scoping and lifetime requirements as the objects
whose interrelationships the PE oversees.

A PE has three distinct phases that it may shift between
during its execution. These phases determine the inter-
nal activity of the PE. A PE changes between phases
explicitly, generally as a result of a message passed to
the PE from one of its interrelated objects. The phases
of a PE are given as:

1. Propagation Initialization: The propagation
initialization phase is a short-duration, transitory
phase in which the PE is associated with the in-
terrelated objects. A unique ID is assigned to each
PE, allowing a source object to distinguish amongst
its association with one PE or another. Unique IDs
also permit the design of applications that require
more than one PE of a given PT to be active at
any one time.

2. Propagation Waiting: After the initialization
phase, the PE automatically enters the propaga-
tion waiting phase. In this long-duration phase,
the PE responds to messages from the associated
source objects. In particular, a source object sends
source-ready messages indicating that the source
object requests that the propagation be triggered.
Upon receipt of a source-ready message, the PE
updates its state table and, depending on the mod-
ified contents of the state table, determines whether
the PE should change to the propagation triggering
phase.

3. Propagation Triggering: The propagation trig-
gering phase is another short-duration, transitory
phase in which the PE attempts to service the in-
terdependencies between its objects. After invok-
ing the interdependency control-logic, the PE auto-
matically returns to the propagation waiting phase.

In servicing the interdependencies between the desig-
nated portions of the application’s data, our propaga-
tion model requires a PE to have the ability to restore
its interrelated objects to their pre-propagation states.

It is our view that a PE’s triggering events should not
proceed further if, during an interdependency-related
message passing sequence, an interrelated object reports
the receipt of the IC-violating message. In this case, al-
though the particular OT reporting the receipt of a IC-
violating message is internally consistent, the state of
the application when viewed from an inter-object per-
spective may have become inconsistent. Our approach
to the PE’s receipt of an IC-violating message during
the course of propagation triggering is to:

1. require the propagation model to halt the PE’s trig-
ger method’s message passing sequence,

2. restore all of the interrelated objects to their re-
spective pre-propagation states, and

3. communicate to the activator of the PE that the
propagation failed due to an interrelated object’s
receipt of an IC-violating message.

A PE considers entering its triggering phase only in re-
sponse to the receipt of a source-ready message from
one (or more) of its source objects, since the receipt of
a source-ready message is the only event that can cause
a PE’s state to be modified in a manner that would in-
dicate that the PE should trigger. After the receipt of
a source-ready message, a PE can be queried as to its
status. The status of a propagation includes whether
the propagation was successful, failed, or is still waiting
for collective agreement from the source OT instances
over whether to trigger. In the case of a failed propa-
gation, which occurs when an interrelated OT instance
receives an IC-violating message, the PE’s status will
also include the identity of the OT instance reporting
the IC violation. Such querying provides the applica-
tion with detailed information regarding the status of
a propagation. In support of such querying, each PE
maintains state information on its most recent response
to a source-ready message. We identify the possible
propagation states as:

1. Prop_Waiting: The PE has not entered its trigger-
ing phase since being initially created or reset.

2. Prop_Success: The PE has successfully completed
its triggering phase, and has serviced the interde-
pendencies between its objects without any object
reporting the receipt of an IC-violating message.

3. Prop_Failure: The PE has unsuccessfully com-
pleted its triggering phase due to an interre-
lated object having reported the receipt of an IC-
violating message. The states of all of the interre-
lated objects are identical to their pre-propagation
states.



Upon receipt of a message from a source object indi-
cating the object’s willingness to participate, the PE
determines whether or not to enter its transitory trig-
gering phase. This determination is made through the
PE’s inspection of its source-ready state table. If the PE
does enter the triggering phase, the PE reports either
prop_success or prop_failure depending on whether any
IC-violating messages were reported by the interrelated
objects during the PE’s triggering phase. Otherwise, if
the PE does not elect to enter its triggering phase, the
PE reports that it has remained in the waiting phase.

The Role of Objects in Propagation

In Section 1 we defined the source and destination OTs
of a propagation. We now more thoroughly examine
these categories. The source OTs of a propagation are
those OTs that collectively determine the conditions un-
der which a propagation enters its triggering phase. Our
view of the source objects is that the propagation only
triggers if all of the source objects are in agreement as
to whether the propagation should fire. Towards this
end, each source object communicates, to its associated
PE, the source object’s readiness to participate in the
propagation through the following messages:

1. Source Ready: The source object is ready to par-
ticipate in the propagation.

2. Source Unready: The source object is not ready to
participate in the propagation.

3. Source Failure: The source object will not be-
come ready to participate in the propagation.

The Source_Ready message is used by a source object to
positively indicate the object’s readiness for the propa-
gation control-logic to be invoked. The PE’s receipt of a
Source_Ready message does not necessarily mean that
the propagation control-logic will be invoked, but rather
causes the PE to analyze, given the updated readiness
of the source object passing the ready message, whether
all of the sources are now ready for the PE to enter
the triggering phase. The Source Unready message is
used by the source object to indicate to an associated
PE that the source object is not ready to participate
in the propagation. The PE, in response to the receipt
of a Source Unready message, updates its state table
appropriately. The Source Failure message provides
a mechanism through which the PE may fail without
ever having attempted to service the interdependencies
between its objects. Because source OTs may be defined
as participating in any number of PEs, source objects
additionally require the ability to identify the PEs with
which they have been associated.

Destination objects do not play a role in determining
whether the propagation enters its triggering phase, and

participate in the propagation only to the extent that
their states are subject to alteration during the PE’s
triggering phase. OTs may participate as sources in
some PTs and/or as destinations in other PTs.

3 PROPAGATION CODE GENERATION

In this section, we briefly present the software engi-
neering research environment in which our propagation
model is embedded. We then use our model to develop
the previously discussed propagation found in the gas
turbine engine fan blade example. Finally, we examine
the propagation-specific Ada 95 source code generated
by our modeling environment.

A Context For Propagation Modeling

ADAM (short for Active Design and Amnalyses
Modeling) is an object-oriented design model and en-
vironment that is utilized both as a research testbed
and for teaching undergraduate software engineering at
The University of Connecticut [2]. ADAM supports an
object-oriented design model that is tightly integrated
into the environment, with the semantic scope, con-
tent, and context of each modeling construct clearly
defined. There are no specific programming language
dependencies in ADAM; design choices are made via
menus, browsers, etc., and text is directly entered by
the designer using forms and browsers. The environ-
ment stresses language independence by focusing on
design and allowing code to be automatically gener-
ated in a variety of target languages, including, Ada 83,
Ada 95, GNU C++, Ontos C++, a dialect of Common LISP
and Eiffel. ADAM supports an incremental and it-
erative approach to the design process by allowing de-
sign data to be stored persistently in the Ontos object-
oriented database system.

One of the key concepts and constructs of ADAM is
the profile [2]. This modeling construct tracks the pur-
pose and intent of the different design choices and com-
ponents in an application. Profiling occurs through-
out the design and development process to promote the
understandability of the solution, to insure its compli-
ance with the requirements, and to provide feedback
and guidance in its refinement.

An ADAM modeling of the object types (OTs) used
in the gas turbine fan blade application appears in
Figure 2. In Figure 2, five object types appear: the
Blade OT, which represents an abstraction for vari-
ous types of blades, the Fan Blade OT, which inherits
from the Blade OT, the Connector OT, an abstraction
for various fasteners, and the Fan Blade Attachment
and Z_Fitting OTs, both of which inherit from the
Connector OT.

The ADAM environment’s integrity constraint (IC)
construct [5] spans both programming (typing) and
database (derived value) requirements for integrity in
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Figure 2: Fan Blade Object Types.

an object-oriented design model. The ADAM environ-
ment takes the view that ICs are restricted to act ex-
clusively within an OT and define the values that an
attribute may take. An IC applies to a single instance
of an OT, hence the behavior of an IC is encapsulated
within a single object. A constraint may not involve the
private data items of two separate instances even if the
two instances are of the same OT.

ADAM utilizes the information provided during the
design process via profiles to create implementation
classes that correspond to user-defined object types. Al-
though ADAM supports the generation of source code
in multiple languages, this paper focuses on the gener-
ation of Ada95 source code. When Ada95 is selected as
ADAM’s targeted generation language, a type encapsu-
lated within a package is produced for each user-defined
object type, and both a protected object and a task type
is produced for each propagation type (PT).

We use the design of the gas turbine fan pitch al-
teration propagation described in Figure 1 to exam-
ine message passing in propagations. The fan pitch
propagation involves a single source OT, Fan Blade
and a single destination OT, Fan Blade Attachment,
both of which appear as leaf nodes in Figure 2. We
now turn our attention towards the process through
which the designer of the Fan_Pitch_Alteration prop-
agation embeds the desired propagation control-logic
for use in the triggering phase. The first message
(Alter Fan Pitch) is an external request made of
the Fan_Blade OT to alter its fan pitch, which in
turn launches the propagation. The second mes-
sage, New Hold Down Requirement, is passed from
the Fan Blade object to the Fan Pitch_ Alteration
PT. In Figure 3, the designer is in the process of
adding the third message, Verify Hold Down_Ability,
from the Fan_Pitch_Alteration PT to the Fan Blade
Attachment OT.
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Figure 3: The Sequential Message Profile.

The foreground of Figure 3 gives the ADAM Sequential
Message Profile dialog box. The Sequential Message
Profile allows the propagation designer to enter the se-
quential order of the message being passed between the
propagation and the interrelated object. In Figure 3,
the designer has indicated that the third message in the
propagation sequence is Verify Hold Down_Ability,
which is passed from the Fan_ Pitch_Alteration PT to
the Fan Blade_Attachment OT. Figure 4 shows the final
ADAM screen after the Fan Pitch Alteration propa-
gation has been fully modeled with all five of the re-
quired sequential messages.
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Figure 4: Completed Fan_Pitch_Alteration Prop Model.

4 ADA95 PROPAGATION CONSTRUCTS
In this section, we examine the propagation-specific
Ada95 source code automatically generated by the
ADAM environment. ADAM’s automatic source code
generation capabilities rely upon the information com-
municated to ADAM by the designer through the
ADAM profiles used to create Figures 2, 3, and 4. In
this paper, we limit our source code discussion to the
task and protected object Ada95 constructs that imple-
ment behavior common to all propagations



1 TASK TYPE FanPitchTaskType IS

2 ENTRY Associate(FanBlade_in : IN OUT FanBladeType;

3 FanBlAttach_in : IN OUT FanBlAttachType;

4 PropIdDameon : IN OUT PropIdDameonType) ;
5 ENTRY SrcReady (FanBlade_in : IN OUT FanBladeType;

6 FanBlAttach_in : IN OUT FanBlAttachType;

7 PropResult : IN OUT PropResultType);

8 END FanPitchTaskType;

Figure 5: Fan Pitch Prop Task Specification.

Our propagation model supports concurrency in the
runtime servicing of an application’s propagation-
related events. The ADAM environment supports such
concurrency by generating Ada95 task constructs within
which the behavior specific to each propagation is en-
capsulated. Figure 5 gives the specification for the task
type produced by ADAM for our fan pitch alteration
propagation example. As shown in Figure 5, each task
has an Associate and SrcReady entry. The Associate
entry is used by the propagation entity as part of the
propagation initialization phase described in Section 2,
while the SrcReady entry supports a propagation’s wait-
ing phase and triggering phase.

Figure 6 gives the body of the FanPitchTaskType. The
Trigger operation (lines 4-13 of Figure 6) constitutes
a major portion of a propagation’s triggering phase.
The Trigger operation houses the specific communi-
cation required between the source and destination ob-
jects (here the FanBlade and the FanBladeAttachment
instances), as indicated by the designer via the ADAM
environment (Figure 4). Note that each operation in-
voked in lines 9-12 of the Trigger operation raises a
PropExceptionif the operation requests that the object
being acted upon would violate an integrity constraint
by fulfilling the operation.

Upon activation of a fan blade propagation task [1], as
part of the initialization phase, the propagation waits
for the required association between a fan blade object
and a fan blade attachment object. Lines 15-20 of Fig-
ure 6 give the definition of the Associate task entry,
which requests a unique identifier for the propagation
thread and then passes the identifier to each source in-
stance (in this case the FanBlade object). Lines 21-38
of Figure 6 show the general behavior of a propaga-
tion. The propagation thread waits, at the open select
alternative in line 23, for a SrcReady rendezvous. The
SrcReady entry is used by the interrelated objects to in-
dicate that the source object of the propagation thread
is ready for invocation of the the interrelated behavior
between the source and destination objects. Once the
propagation thread accepts the SrcReady rendezvous
and enters the triggering phase, the propagation vali-
dates that the source object is same source object with
which the propagation has been associated. Deep copies

1 TASK BODY FanPitchTaskType IS

4  PROCEDURE Trigger(FanBlade : IN OUT FanBladeType;

5 FanBlAttach : IN OUT FanBlAttachType) IS
6 HoldDownReq : HoldDownReqType;

7 HoldDownAbilityResult : HoldDownAbilityResultType;

8 BEGIN -- Trigger

9 HoldDownReq := NewHoldDownReq(FanBlade) ;

10 VerifyHoldDownAbility(FanBladeAttach, HoldDownReq) ;
11 HoldDownAbilityResult := HoldDownAbility(FanBladeAttach);
12 PropResult (FanBlade, HoldDownAbilityResult);

13 END Trigger;

14 BEGIN -- Task Body FanPitchTaskType
15 ACCEPT Associate(FanBlade_in : IN OUT FanBladeType;

16 FanBlAttach_in : IN OUT FanBlAttachType;

17 PropIdDameon : IN OUT PropIdDameonType) DO
18 PropIdDameon.GetUniquePropID(UniquePropID) ;

19 SetSrcIdent (FanBlade_in, UniquePropID, SRC1);

20 END Associate;

21 LooP

22 SELECT

23 ACCEPT SrcReady(FanBlade_in : IN OUT FanBladeType;

24 FanBlAttach_in : IN OUT FanBlAttachType;
25 PropResult : IN OUT PropResultType) DO
26 Validate (FanBlade_in);

27 ... copy source/destination for possible restoration
28 Trigger (FanBlade_in, FanBlAttach_in);

29 PropResult := Success;

30 EXCEPTION

31 WHEN PropException =>

32 ... restore original source and destination

33 PropResult := Failure;

34 END SrcReady;

35 OR

36 terminate;

37 END SELECT;

38 END LOOP;
39 END FanPitchTaskType;

Figure 6: Fan Pitch Prop Task Body.

of the the source and destination objects are then made
for use in the event that the Trigger operation requests
IC-violating behavior of any of the interrelated objects.
The Trigger operation is then attempted, which re-
sults in the propagation thread returning a success in-
dication to the invoker (line 29) if the interrelationships
desired by the designer have been maintained. Con-
versely, if IC-violating behavior is attempted during the
Trigger invocation, the propagation thread (lines 30-
33) restores the source and destination objects to their
pre-propagation states, and a propagation failure mes-
sage is sent to the invoker of the propagation. The prop-
agation thread then re-enters the waiting phase.

Figure 7 shows the declaration for the protected ob-
ject type PropIdDameonType. The PropIdDameonType
allows our propagation model to provide a unique iden-
tity to each propagation created. A unique iden-
tity is required by each propagation instance so that
each propagation can distinguish the specific object
instances with which the propagation is associated.
The PropIdDameonType is a protected object, with
a protected procedure GetUniquePropID. The pro-
tected procedure GetUniquePropID (line 2 of Fig-
ure 7) provides exclusive read-write access to the data
UniquePropIDStore of the protected object. Our use of



1 PROTECTED TYPE PropIdDameonType IS

2 PROCEDURE GetUniquePropID (NewID : OUT PropIDType) ;

3 PRIVATE

4 UniquePropIDStore : PropIDType := PropIDType’First;
5 END PropIdDameonType;

Figure 7: Prop Ident Dameon Protected Object Type.

a protected action [1] for the generation of a propagation
identifier ensures the production of a unique identifier
for each propagation instance within an application as
part of the propagation initialization phase described in
Section 2.

5 ANALYSIS

Our propagation model provides a design-time abstrac-
tion that focuses on the interrelationships between ob-
ject types, as well as the ability to transfer interdepen-
dencies recognized at design-time to the implementation
of the software system. Our use of Ada95’s protected
objects and tasking constructs provide support for the
modeling of propagations so that the various phases of
the propagation process can proceed concurrently. Our
propagation-type construct provided a natural candi-
date for the introduction of concurrency into our model,
via the Ada95 tasking constructs. Upon construction,
a propagation entity requires non-serial communication
with each of its source objects.

The use of objects with integrity constraints is critical to
our propagation model. Our model effectively elevates
the concept of integrity constraints from a matter inter-
nal to individual objects to a level at which consistency
can be maintained at the multi-object level. Borrowing
the concept of transaction rollback from database the-
ory [8], our manner of handling IC-violating messages
requires halting the triggering sequence, and restoring
all of the interrelated objects to their respective pre-
propagation states. Note that the former state of the
source and destination objects are maintained by the PE
for use in such a rollback situation. Other approaches
exist, such as allowing the IC-consistent changes made
to interrelated objects prior to the receipt of the IC-
violating message to remain after the propagation ter-
minates. Another approach might allow a propagation
to continue execution after the receipt of an IC-violating
message report from an interrelated object, effectively
allowing all IC-consistent alterations to occur. We find
both of these approaches incompatible with our goal of
application-wide information consistency, since neither
guarantees that the application remains in a consistent
state when viewed from an application-wide perspective.
With our approach to the handling of IC-violating mes-
sages reported during the propagation triggering phase,
if the application was consistent (from an inter-object
viewpoint) prior to the propagation, then after the prop-

agation completes, the application remains consistent
regardless of whether the propagation itself was suc-
cessful or not. In the case of a successful propagation,
all interdependent object-state alterations are accom-
plished under the guidance of the PE. In the case of
a failed propagation, no interrelated objects states are
altered as the net effect of the propagation.

6 RELATED WORK

Efforts in modeling the interdependencies between en-
tities in the object-oriented development of a software
system have focused on either the specification or im-
plementation phases of software development. As part
of the specification phase, the Unified Modeling Lan-
guage (UML) [4] provide for the identification of object
types involved in propagations, represented as “Interac-
tion Diagrams”. Like our propagation model, interac-
tion diagrams support the identified during the anal-
ysis of a problem. Unlike like our approach, UML
provides no provisions for carrying the identified ob-
ject interaction through to the design or implementa-
tion phases of the software life-cycle. The Mediator [10]
approach allows modularization of how software compo-
nents work together into “mediators” which represent
the behavioral relationships between independent com-
ponents. Although similar to our work, the Mediator
approach does not provide a precise mechanism through
which a designer may specify interrelated message pass-
ing between objects, nor does it provide a mechanism
to resolve system state inconsistency resulting from IC-
violating message passing.

Progress has been made at the programming lan-
guage level to provide programmers with the tools
needed to better resolve consistency maintenance issues.
The APPL/A [11] language adds the concept of pro-
grammable triggers to Ada 83. The programmable trig-
gers of APPL/A provide a mechanism through which
programmers may capture portions of inter-object rela-
tionships during implementation. Similarly, the R++
language [6] extends C++ with path-based rules that
are triggered by changes to monitored objects. These
path-based rules can be used to express multi-object
methods that enforce invariance between multiple ob-
jects. Missing from the approaches taken by APPL/A
and R++, as well as the related areas of database trig-
gers, alerters and transactions [8], is a means through
which the designer may specify which objects interact,
when they interact, and precisely how the interaction
takes place.

7 CONCLUSIONS

We have presented our research efforts on the expan-
sion of the capabilities of the object-oriented paradigm
to support application-wide information consistency, by
providing a model through which we may specify the in-
terdependencies between design objects. As part of this



effort, we have detailed ADAM, the object-oriented de-
sign environment within which our propagation model
is embedded and presented a formalized object-oriented
propagation design model. We examined our basis for a
propagation-type, which included the phases and states
that a propagation-type enters during its duration. We
investigated the role of interrelated objects with re-
spect to a propagation’s execution, emphasizing the ad-
ditional behavior requirements placed on objects by our
propagation model. Such characterizations of propaga-
tion modeling are required as initial work towards a dis-
tributed model that communicates through CORBA [7].
We are currently developing a propagation-tailored IDL
description to provide the foundation for CORBA-based
propagation communication.

Another area of future work involves the extended-
access of a propagation, with regard to its implicit in-
volvement with other design objects. It is apparent that
cycles may exist in chains of propagation-required mes-
sage passing. It should be noted that the presence of
a cycle does not necessarily indicate a poorly designed
propagation. An interrelated object may need to query
a second object during the course of propagation trig-
gering, and the second object’s response to this query
may well be dependent upon the receipt of further, am-
plifying, information from the first object. While such
behavior can currently be specified with our propaga-
tion model, further investigation is needed into a way
to determine the conditions under which chains can be
detected, and a means through which the ADAM en-
vironment can determine which of these chains require
resolution by the propagation’s designer.
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