
Dr. Huiming Yu
Department of Computer Science
College of Engineering
NC A&T State University
Greensboro, NC 27411
Fax:(336)334-7244
Phone: (336)334-7245
Email: cshmyu@ncat.edu

April 6, 1999

Dear Mr. Taft,

The included paper "An Approach for Extracting Objects in Ada 83 Programs" is for
The SigAda ‘99. The research result does not been submitted elsewhere. If you have any
questions, please do not hesitate to contact me at (336)334-7245.

Thank you for your time and consideration.

Sincerely,

Huiming Yu

An Approach for Extracting Objects in Ada 83 Programs

Yuming Zhou Baowen Xu
Department of Computer Science & Engineering

Southeast University
Nanjing 210096, P. R. China
{adalab, bwxu}@seu.edu.cn

Huming Yu
Department of Computer Science

North Carolina A&T State University
Greensboro, NC27411

cshmyu@ncat.edu

Abstract

In this paper a new approach to extract objects, from legacy systems, that are written
in Ada83 is presented. Different from existing global-based object identification and
type-based object identification approaches, this approach uses features of modules to
classify objects. Several module cohesion metrics are proposed, inheritance relations
among objects are analyzed, and an object extraction algorithm is developed.

Keywords
Object identification, Module cohesion, Inheritance, Ada 83, Ada 95

1. Introduction

There currently exist a large number of legacy systems which are written in Ada 83.
These systems are difficult to understand and maintain because Ada 83 is an object-
based programming language. Redeveloping reliable and equivalent object-oriented
systems in Ada 95 to replace these legacy systems may need several years with high
cost. A quicker solution is to reengineer these legacy systems using object-oriented
features of Ada 95. The authors propose an algorithm that transforms serving tasks
written in Ada 83 into protected objects in Ada 95 to make system maintenance easier
and improve system performance [6].

An object is a collection of attributes and methods. The key of object identification in
programs written in conventional languages is to group related types, data items and
subprograms into one object through analysis of program behaviors. Different
approaches of extracting objects from legacy systems written in conventional
procedural-oriented languages have been developed. In the paper [1] Liu and Widle
propose a global-based object identification approach and a type-based object
identification approach. These approaches map global variables or types to objects’
attributes, and map subprograms referencing these global variables to objects’
methods. In the paper [3] Panos proposes a receiver-based method through which
only modified variables are used to classify subprograms. A common limitation of
those approaches is that data and subprograms in legacy programs are simply grouped
by types or global variables not by module features, and extracted objects may not be
real objects in application domains. Moreover, most object identification approaches
do not extract the potential inheritance relations among objects.

We have developed a new object extraction approach that includes four steps. First, a
graph representing the links that exist among types and subprograms is generated by
the analysis of program behaviors. Second, module cohesion analysis is performed on
the graph to group related types and subprograms into candidate objects. Third,
potential inheritance relations among objects are analyzed and extracted. Finally,
extracted objects are implemented using the object-oriented mechanisms of Ada 95.
This paper is organized as follows. In section 2 a graph representing the relations of
types and subprograms is presented, in section 3 analysis of module cohesion is given,
and in section 4 an object identification algorithm is presented. Concluding remarks
are given in section 5.

2. Relations among Types and Subprograms

In the type-based object identification approach, a topological ordering of types is
defined and used to classify subprograms [1]. However, this type-ordering scheme
assumes that all types in a program are related in terms of the component relationships
(Type t1 is a component type of type t2 only if t1 is used to define t2). In order to
handle this case that some types are not related in terms of the component
relationship, Ogando defines the relative complexity of types, and then those types
with high complexity are used to classify subprograms into a type-based object [4].
We are convinced that different types play different roles in object identification,
therefore, all types contribute to the classification of subprograms. Referring to the
definition of the relative complexity of types in paper [4], the complexity of a type t in
Ada 83 programs is calculated as follows.

 v + l if t is an elementary type
 Complex ∗ Ct’, l + 1 if t is a pointer (Complex > 1) to type t’
 Ct, l = Ct’, l if t is a subtype of type t’
 Ct’, l + 1 if t is a derived type of type t’
 f(Ct1,l + 1,Ct2, l + 1,…, Ctn, l + 1) if t is a composite type composed of
component type ti

where:
• l is the nested depth of type t relevant to its root type,
• v is the complexity of an elementary type,
• Complex represents the degree that the pointer’s complexity affects the

complexity of the types in Ada 83 language,
• f is a function to represent complexity of its component type ti. It is defined as

ΣCti, l+1 if f is a record type composed of component type ti. If t is an array type, f
is defined as dim * 2 * Ct’, l+1, where dim is the dimension of array t and t’ is the
type of the array element.

It should be noted that the complexity of an array type is closely related to its
dimension rather than its element number, and that an array type of one dimension is
more complex than a record type composed of only one component type. Therefore,
the complexity of an array type t is defined as dim ∗ 2 ∗ Ct’, l+1. In this paper, for
simplicity the complexity of generic types in Ada 83 is not considered. The following
example illustrates the use of the complexity function Ct, l of type t.

 type GENDER is (FEMALE, MALE);

 type HEIGHT_CM is range 0..300;
 type PERSON is record
 SEX : GENDER;
 NAME : STRING;
 HEIGHT : HEIGHT_CM := 0;
 end record;

 type BUS is record
 DRIVE : PERSON;
 SEATS : POSTITIVE;
 end record;

The complexity of BUS is calculated as follows.

 CBUS, 0 = CPERSON, 1 + CPOSITION, 1

 = CSTRING, 2 + CHEIGHT-CM, 2 + CGENDER, 2 + (1 + v)
 = (2 + v) + (2 + v) + (2 + v) + (1 + v)
 = 7 + 4 ∗ v

A subprogram may be considered as a black box that performs the transformation
from its formal parameters to a return value. In Ada 83, subprograms can access
global variables directly. Therefore, the function of a subprogram is related to the
types of its formal parameter(s), its return value and global variables referenced by the
subprogram. We use a graph to represent the relations that exist among types and
subprograms, and call it a ST (Subprogram-Type) graph. Assume that SSubp is the set
of subprograms and Stype is the set of types, then the ST graph for this program can be
formally defined as follows:

Definition: ST graph
A graph G = (N, E) is a ST graph if N = SSubp ∪ Stype and E={(p, t) | p ∈ Ssubp ∧ t ∈
Stype ∧ t ∈ T, where T is the set of types of global variables referenced by p, the return
value and formal parameters of subprogram p}, and Ct, 0 is the weight of edge (p, t).

Obviously, the nodes of a ST graph fall into two categories: subprogram nodes and
type nodes. For each subprogram node p and type node t of the ST graph, we define
Sp-t(p) and St-p(t) as:
Sp-t(p) = { t | t ∈ Stype ∧ (p, t) ∈ E }
St-p(t) = { p | p ∈ SSubp ∧ (p, t) ∈ E }

Actually, a ST graph is a bipartite graph. In Ada 83 programs, the links existing
among subprograms and types are represented by the graph. The simplest object
identification approach is to find all isolated sub-graphs of the ST graph in legacy
systems. Each sub-graph is a candidate module to be an object. However, this method
does not produce satisfactory results. Sometimes it may group subprograms, which
belong to logically different objects, into one object. For example, assume there is a
subprogram Push_Stack(S: in out Stack_Type; Elem: in
Elem_Type) and a subprogram Enter_Queue(Q: in out Queue_Type;
Elem: in Elem_Type) in a program. Both subprograms are on the same sub-
graph of the ST graph because of the common type Elem_Type. According to the
object identification method that each isolated sub-graph is to be a candidate object,

Push_Stack and Enter_Queue will be grouped into the same object. Sometimes
attributes belonging to logically different objects may also be grouped into the same
object. For example, if there exists a subprogram Init(S: in out
Stack_Type; Q: in out Queue_Type) that initializes Stack object and
Queue object, then type Stack_Type and Queue_Type exist in the same sub-
graph of the ST graph because of the subprogram Init. The object identification
method by finding all isolated sub-graphs will group these types to the same object.
The object identification approach presented in this paper based on module cohesion
metrics overcomes its limitations.

3. Module Cohesion Analysis

In OO systems, a class is a module that is a collection of related types and operations.
Module Cohesion refers to the degree of interdependence among components of a
module. Module Coupling refers to the degree of dependence among modules. A
good software design should obey the principle of high cohesion and low coupling. In
the object identification of legacy systems, high cohesion objects can be extracted,
therefore the performance and maintenance of the equivalent systems transformed by
reengineering of legacy systems are improved. Although a number of object
identification approaches have been proposed, a new approach that considers module
cohesion and coupling is necessary. In this section, module cohesion metrics are
proposed to quantify the level of cohesion of objects extracted from Ada 83 programs.

3.1 Module Cohesion Metrics

Assume a function named MTint, which is applied to a ST graph of a module, gives
the intersection types of the types of global variables referenced by subprograms,
formal parameters and the return value of all subprograms of the module, such that
 MTint(G)= ∩ p∈Ssubp Sp-t(p)

Based on the definition of MTint of a module, module cohesion metrics is developed.
It is described as follows.

Definition: Module tightness
Module tightness Tightness(G) of a module is defined as a division of the sum of
complexity degrees of types in MTint(G) by the sum of complexity degrees of types in
Stype, where G is the ST graph of the module.

 Σt ∈ MTint(G) (Ct, 0 ∗ |St-p(t)|)
 Tightness(G) =
 Σt ∈ Stype(G) (Ct, 0 ∗ |St-p(t)|)

High module tightness reflects that the degree of intersection among the types of
global variables referenced by subprograms, formal parameters and return values of
subprograms of a module is high, or that the sum of complexity degrees of types that
intersect is high. High module tightness certainly means that the degree of
interdependence among subprograms of the module is high, i.e., cohesion of the
module is high. Obviously, when MTint(G) = Stype, module tightness has maximum
value 1.

Definition: Module overlap
Module overlap Overlap(G) of a module is defined as the average value of the sum of
complexity degrees of types in MTint(G) divided by the sum of complexity degrees of
types in Sp-t(p) for each subprogram p, where G is the ST graph of the module.

 Σt ∈ MTint(G) Ct, 0

 Overlap(G) = (1/|SSubp|) ∗ Σp ∈ Ssubp

 Σt ∈ sp-t(p) Ct, 0

High overlap means that the degree of intersection among types in MTint(G) and Sp-

t(p) for each subprogram of the module is high. Therefore, high module overlap also
shows a high cohesion.

Both module tightness and module overlap provide measurements to evaluate the
degree of interdependence among the components of a module. Based on these
metrics, we can provide a precise guidance to extract objects from legacy systems that
are written in Ada 83.

In order to extract objects with high cohesion from legacy systems we need to judge
which subprograms should be grouped into the same object. Effects on cohesion from
adding a subprogram to or deleting a subprogram from a module are discussed in the
following two subsections.

3.2 Effects on Cohesion from Adding a Subprogram to a Module

That a module has a ST graph G will be named as original module. Add a subprogram
p’ to the original module, the new module will have a corresponding ST graph G’ and
it is named as result module. Based on the definitions of MTint, module tightness and
module overlap, the following lemmas are easy to be deduced.

 Lemma 1

 Σt ∈ MTint(G) ∩ Sp-t(p’)Ct, 0 − Σt ∈ MTint(G) −(MTint(G) ∩ Sp-t(p’))(Ct, 0 ∗ (|Sp-t(p’)|)

 >=
 Σt ∈ Sp-t(p’)Ct, 0

 Tightness(G)

 ⇔ Tightness(G’) ≥ Tightness(G)

Lemma 2

 Σt ∈ MTint(G’)Ct, 0 Σt ∈ MTint(G’)Ct, 0

 ≥ (|Ssubp| +1) ∗ Overlap(G) − Σp ∈ Ssubp

 Σt ∈ Sp-t(p’)Ct, 0 Σt ∈ Sp-t(p’)Ct, 0

 ⇔ Overlap(G’) ≥ Overlap(G)

When a subprogram p’ is added to the original module, Lemma 1 shows us that the
module tightness of the result module increases iff the value of the sum of complexity

degrees of the types in MTint from the result module to the original module divided by
the sum of complexity degrees of the types in Sp-t(p’) is larger than the module
tightness of original module. By Lemma 2, module overlap of result module may go
up or down, depending on the function relation of MTint of the result module, |Ssubp|
and the module overlap of the original module.

Assume MTint(G) ⊆ Sp-t(p’), we can deduce corollary 1 from Lemma 1 and Lemma 2.

Corollary 1
 Σt ∈ MTint(G)Ct, 0

 (1) Overlap(G) ≤ ⇒ Overlap(G’) ≥ Overlap(G)
 Σt ∈ Sp-t(p’)Ct, 0

 Σt ∈ MTint(G)Ct, 0

 (2) Tightness(G) ≤ ⇒ Tightness(G’) ≥ Tightness(G)
 Σt ∈ Sp-t(p’)Ct, 0

Obviously, Overlap(G’) ≥ Overlap(G) and Tightness(G’) ≥ Tightness(G) if MTint(G)
= Sp-t(p’).

3.3 Effects on Cohesion from Deleting a Subprogram from a Module

Deleting a subprogram from a module has a reverse effect on cohesion compared to
adding a subprogram to a module. Assume p’ is the subprogram deleted from a
module. Lemma 3 and 4 can be easily deduced from the definitions of module
tightness, module overlap and MTint.

Lemma 3

 Σt ∈ MTint(G)Ct, 0 − Σt ∈ MTint(G’) − MTint(G)(Ct, 0 ∗ (|Sp-t(p’)|)

 ≤ Tightness(G)
 Σt ∈ Sp-t(p’)Ct, 0

 ⇔ Tightness(G’) ≥ Tightness(G)

Lemma 4

 Σt ∈ MTint(G’)Ct, 0 Σt ∈ MTint(G’)Ct, 0

 ≤ Σp ∈ Ssubp − (|Ssubp| −1) ∗ Overlap(G)
 Σt ∈ Sp-t(p’)Ct, 0 Σt ∈ Sp-t(p’)Ct, 0

 ⇔ Overlap(G’) ≥ Overlap(G)

Both lemma 3 and 4 provide an evaluation of the effect on cohesion by deleting
subprograms from a module, and thereby show which subprograms should be deleted
from a module in order to increase module cohesion.

Assume MTint(G) = MTint(G’), we can deduce corollary 2 based on Lemma 3 and 4.

Corollary 2
 Σt ∈ MTint(G)Ct, 0
 (1) Overlap(G) ≥ ⇒ Overlap(G’) ≥ Overlap(G)
 Σt ∈ Sp-t(p’)Ct, 0

 Σt ∈ MTint(G)Ct, 0
 (2) Tightness(G) ≥ ⇒ Tightness(G’) ≥ Tightness(G)
 Σt ∈ Sp-t(p’)Ct, 0

4. Inheritance Analysis among Objects

Different from other procedure-oriented languages, Ada 83 provides encapsulation
and abstract data types through the facilities of packages and private types. The set of
operations defined for a subtype of a given type includes the operations defined for
the type. A derived type declaration defines a new type whose characteristics are
derived from a parent type. For each basic operation of the parent type, there is a
corresponding basic operation of the derived type. For each derivable subprogram of
the parent type, there is a corresponding derived subprogram for the derived type [5].
Therefore, a subtype implicitly inherits the operations of its base type and a derived
type implicitly inherits the derivable operations of its parent type. In addition, we may
define new operations on subtypes and derived types. In Ada, type definition is
separated from program modularization. The definitions of types and operations of an
object are encapsulated by means of packages. Through analysis of the subtype and
derived type relation among object types, we can extract inheritance relations among
objects. The following is an example.

package Person_Package is
 type PERSON(Sex: GENDER) is
 record
 Birth: DATE;
 Sex: GENDER;
 Father: PERSON_NAME;
 Mother: PERSON_NAME;

 case Sex is
 when MALE =>
 Wife: PERSON_NAME;
 when FEMALE =>
 Husband: PERSON_NAME;
 end case;
 end record

 procedure GetBirth
 (In_Person: in PERSON;
 rth_Day : out GENDER);
 …
end Person_Package;

Figure 1

with Person_Package;
package Man_Package is
 subtype MAN is PERSON(MALE);
 procedure GetWifeName(In_Man : in MAN;
 WifeName : out PERSON_NAME);
 …
end Man_Package;

Figure 2

with Person_Package;
package Woman_Package is
 type WOMAN is new PERSON(FEMALE);
 procedure GetHusbandName(In_Woman: in WOMEN;
 HusbandName: out PERSON_NAME);
 …
end Woman_Package;

Figure 3

Type MAN is a subtype of type PERSON and type WOMAN is a derived type of type
PERSON. Both types MAN and WOMAN in effect “inherit” the operations of the type
PERSON. In our method, we identify this kind of “inheritance” among objects through
identifying the subtype or derived type relations among object types. This kind of
inheritance allows operations of an object to be inherited by another object but
doesn’t allow new attributes to be added. Another kind of “inheritance” which
supports attributes addition of objects should also be identified. Figure 4 is a simple
example.

with Person_Package;
package Man_Package is
 type MAN is record
 Self: PERSON_PACKAGE.PERSON(MALE);
 …
 end record;
 procedure GetWifeName(In_Man: in MAN;
 WifeName : out PERSON_NAME);
 …
end Man_Package;

Figure 4

Now, type MAN doesn’t inherit operations of the PERSON type. However, Self is a
field of MAN and therefore the MAN type can indirectly call operations of PERSON by
Self. Semantically, it is possible that there exist inheritance relations among those
types. Our new approach identifies these two kinds of “inheritance” among objects.
Then they may be transformed using OO mechanisms of Ada 95.

In order to identify the possible “inheritance” relations among objects in a program,
we define a sub-graph corresponding to a given type node on the ST graph.

Definition For a type node t on a ST graph G = <N, E> of a module, construct a sub-
graph Gt = <Nt, Et> of the ST graph G such that
(1) Nt = PPt ∪ TTt, where PPt = St-p(t) and TTt = ∪ p ∈ St-p(t) Sp-t(p).
(2) ∀e = <pn, tn> ∈ E, if pn, tn ∈ Nt then e ∈ Et.

For a type t, the sub-graph Gt is generated by clustering together all subprograms
related to t and all types related to those subprograms. Among all types in TTt, the
type t is considered to be the object type of the module corresponding to the ST graph
G. Therefore, we use type t to identify the possible inheritance relation among objects
according to the following rules.

Rule 1 For sub-graph Gt1 = <Nt1, Et1> and Gt2 = <Nt2, Et2> of a ST graph G, if type t2
is a subtype or a derived type of type t1, then the object corresponding to sub-graph
Gt2 inherits from the object corresponding to sub-graph Gt1.

Rule 2 For sub-graph Gt1 = <Nt1, Et1> and Gt2 = <Nt2, Et2> of a ST graph G, if t1 is
the type of one component of type t2, then the object corresponding to sub-graph Gt2

inherits from the object corresponding to sub-graph Gt1.

5. Object Extraction Algorithm

There exist coincidental connections and spurious connections on the ST graph of a
module. Coincidental connections are caused by subprograms that implement several
functions, and each function logically belongs to a different object. Spurious
connections are caused by subprograms that implement specific system operations by
directly accessing the attributes of more than one object. Splitting a subprogram that
causes coincidental connections to different subprograms, each subprogram logically
implementing a function, can eliminate coincident connections.

We have developed an algorithm to extract objects with high cohesion from legacy
Ada 83 systems. In this algorithm a step value STEP is used to quantify the informal
concept of high cohesion. STEP can be defined based on statistics. For a legacy
system written in Ada 83, we construct the ST graph and calculate module cohesion
of sub-graph Gt for each type node t. Each subprogram in the intersection of
subprogram nodes of these sub-graphs determines which module it should belong to.
These sub-graphs that have common type nodes determine if they should be merged.
The input to this algorithm is a legacy Ada 83 program and the output is a set of
objects with high cohesion.

Algorithm
(1)Initializes STEP to a step value and set list OverStep empty.
(2)For each type t of the ST graph, compute module cohesion of the corresponding
sub-graph Gt. If its module cohesion is larger than STEP, add Gt to list OverStep.
(3)∀Gt1, Gt2∈ OverStep, where t1 and t2 are in the intersection of type nodes of Gt1

and Gt2.
a) If module cohesion of the sub-graph Gt generated by merging Gt1 and Gt2 is larger
than STEP, then Gt1 and Gt2 are removed from OverStep and Gt is added to OverStep.
Regenerate a new ST graph, with t1 and t2 being merged into a new type t.
b) If module cohesion of the sub-graph Gt generated by merging Gt1 and Gt2 is less

than STEP, split those subprograms that cause coincidental connections and remove
those subprograms that cause spurious connections from both Gt1 and Gt2.
(4) Go to (2), until when ∀Gt1, Gt2∈ OverStep, either type t1 or t2 is in the
intersection of type nodes of Gt1 and Gt2 or neither is in.
(5) ∀Gt1, Gt2∈ OverStep, assume the intersection of their corresponding subprogram
nodes is Set, we use G’t1, G’t2 to represent the sub-graphs generated by removing
nodes in Set and corresponding edges from Gt1, Gt2 respectively. ∀p ∈ Set, p is added
to G’t1 if one of the following three conditions holds:
a) the cohesion of G’t1 increases and the cohesion of G’t2 decreases when p is added,
b) the increment of cohesion G’t1 is larger than the increment of cohesion G’t2 when p
is added,
c) the decrement of cohesion G’t1 is larger than the decrement of cohesion G’t2 when p
is added.
Remove Gt1, Gt2 from OverStep and add G’t1, G’t2 to OverStep.
(6) Go to (5), until when ∀Gt1, Gt2∈ OverStep, the intersection of the subprogram
nodes in Gt1 and Gt2 is empty.
(7) Each sub-graph Gt ∈ OverStep is encapsulated into an object. Extract the
inheritance relations among objects in terms of rule 1 and 2 presented in the last
section.

6. Conclusions

As module cohesion and coupling are the fundamental aspects of software design,
there are a few object identification methods extracting objects from procedure-
oriented systems using module features, we develop a new approach that is based on
module cohesion for extracting objects from legacy Ada 83 systems. This approach
focuses on the extraction of objects with high cohesion. Several module cohesion
metrics are presented and effects on module cohesion from adding subprograms to or
deleting subprograms from a module are analyzed. Considering the features of types
in Ada 83, we analyze the relations among objects and develop rules on how to
extract inheritance relations among objects. Traditional object identification methods
based on types or global variables may group subprograms or types logically
belonging to different objects into the same object and they don’t consider the
extraction of inheritance relation among objects. Our solution overcomes these
limitations. We are currently extending our approach to couple metrics.

7. Acknowledgements

The authors gratefully acknowledge the contributions of Xiaoyu Zhou, Banqing Li,
Lujun Zhang and Guilan Dai in the preparation of this paper.

References

[1] Liu, S. S. and Wilde, N. (1990), “ Identifying objects in a conventional procedural
language ”, in Proceedings of the Conferences on Software Maintenance, 266-271,
November 1990.
[2] G. Canfora, A. Cimitile and M. Munro, C. J. Taylor, “Extracting Abstract Data
Types from C Programs: A Case Study(,” 1063-6773/93 IEEE.
[3] Panose. Livadas and Theodore Johnson, “ A New Approach to Finding Objects
in Programs,” Software Maintenance: Research and Practice, vol. 6. 249-260(1994).

[4] Roger M. Ogando, Stephen S. Yau , Sying S. Liu and Norman Wilde, “An Object
Finder for Program Structure Understanding in Software Maintenance,” Software
Maintenance: Research And Practice, Vol . 6, 261-283 (1994).
[5] ANSI/MIL-STD-1815A-1983(ISO 8652-1987), Reference Manual for the Ada
Programming Language, 1983
[6] Bangqing Li, Baowen Xu, and Huiming Yu, “Transforming Ada Severing Tasks
Into Protected Objects”, Proceedings Of Acm Sigada Annual International
Conference, November 8-12, 1998.

