
113

Building Tcl-Tk GUIs for HRT-HOOD Systems
Juan Carlos Díaz Martín Isidro Irala Veloso José Manuel Rodríguez García

Departamento de Informática, Universidad de Extremadura. Avda. de la Universidad, s/n, 10071, Cáceres, Spain.

34 927 257265
juancarl@unex.es

34 927 257265
iirala@unex.es

34 927 181092
jmrodri@unex.es

1. ABSTRACT
This work explores Tcl-Tk 8.0 as a building
tool for script-based GUIs in Ada95 real-time
systems. Tcl-Tk 8.0 is a library that makes
graphic programming easier, but it suffers
from being non-thread-safe. An application
architecture is proposed, the deferred server,
which provides transparent use of Tcl-Tk to
multithreaded Ada95 applications via TASH,
a thick binding that allows Ada95 single-
threaded code to use Tcl-Tk. We find that only
a minimal extension to Tcl-Tk 8.0 and TASH
is required to support it, while a successful
prototype has been implemented based on
these ideas. Likewise, the early integration of
Tcl-Tk graphic user interfaces in HRT-HOOD
designs is examined; unfortunately, in this
respect, we conclude that this is not feasible.
However, a HRT-HOOD conform distributed
configuration is outlined in wich the user
interface becomes a multithreaded remote
service based on the deferred server
architecture.
1.1 Keywords
Real time systems, User interfaces, Tcl-Tk, HRT-HOOD.

2. INTRODUCTION
User interface is generally a neglectic topic in real time
methodologies. Yet, both in industry and high education,
monitoring and supervising the evolution of the system
under development through a friendly graphic environment

is important. A good user interface can provide a graphic
model of the system evolution; it also facilitates its study
and familiarization, and it makes its development a more
attractive task. This last issue is particularly important in
the university environment, where there is generally little
time to build a running non-trivial system ([3]); it is even
harder to learn and program on a particular windows
system. Here, Tcl-Tk scripts seem to be a balanced
compromise of power, flexibility and ease of use. In the
industrial side area, in a true hard real time system, the pair
(System, User Interface) must be analizable in its temporal
constraints.

This paper presents the following: Firstly, a method to use
Tcl-Tk scripts from concurrent Ada95 applications, and,
secondly, an extension of the method to HRT-HOOD
systems, by introducing the user interface early in the
design stage to make the pair (System, User Interface)
temporally analizable as a whole. The three main
components are shown in the Fig. 1.

Ada 95

HRT-HOOD

Tcl-Tk

Fig. 1 The main problem components.

As HRT-HOOD automatically translates to Ada 95, the
frontier between both is represented by a slim broken line.
Unfortunately, Tcl-Tk doesn’t directly fit. The Tcl-Tk
fitting problem has two sides, namely, the concurrent use of
Tcl-Tk, and the design restrictictions of HRT-HOOD
systems.

The rest of the paper is organized as follows: Section 2
summarizes Tcl-Tk and TASH, and section 3 presents the
current work on Tcl-Tk to make it thread-safe and its
impact on our work. The Ada95/Tcl-Tk side is addressed in
sections 4 and 5, and the one dealing with HRT-
HOOD/Tcl-Tk, in section 6. Section 7 describes our current
work for making a distributed GUI for HRT-HOOD
systems. Finally, conclusions are presented in section 8.

This work was in part supported with U.E. FEDER-II founds
(Proyect S742-F96) and Junta de Extremadura.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGAda’99 10/99 Redondo Beach, CA, USA
© 1999 ACM 1-58113-127-5/99/0010...$5.00

114

3. ON TCL-TK AND TASH
Tcl is a general purpose interpreted command language that
admits specialized extensions, being Tk the most known
and used. Tk enriches Tcl with a set of commands for using
the underlying graphic platform. This augmented Tcl is
known as Tcl-Tk. Tk’s greatest virtue is probably its ease of
use; two or ten lines are enough to make simple
applications run.

Fig. 2 User interface built by Adding.tcl

Code 1 is a Tcl-Tk script that builds the user interface of
Fig. 2.

Code 1 Adding.tcl: A Tcl-Tk script

Code 1 Adding.tcl: A Tcl-Tk script (Cont.)

The application starts when, at the command line, the Tcl-
Tk interpreter is invoked:

$ wish adding.tcl

Wish is the Tcl-Tk interpreter, supplied with the Tcl-Tk
distribution. Clicking the "Increase" and "Decrease" buttons
changes the counter placed between them. These buttons
are created in lines 7-8 and 9-10. Each click triggers the
corresponding procedures increase (lines 26-30) and
decrease (lines 35-39). Code 1 allows us to distinguish
between two kinds of commands; first, Tcl-Tk Built-in
commands, such as button, and, secondly, user written
commands, such as increase and decrease, known as
Application Specific Commands.

As the Tcl-Tk interpreter can be embedded in a C program,
our approach is to use the Tcl scripting language in
concurrent applications. The Tcl Tcl_Eval function
allows C code to invoke a Tcl-Tk script. For example, to
create the Fig. 2 "Increase" button from a C program, we
will use:

Tcl_Eval(&Tcl_Interp,
 "button .frame.incr -text Increase \
 -command increase");

where Tcl_Interp is a handle to a Tcl-Tk interpreter.

Windows System

TASH

Ada95

Tcl-Tk

Fig. 3 TASH, a thick binding Ada95/Tcl-Tk

The Tcl-Tk interpreter is written in C. It is easy to call it
from a C module by Tcl_Eval. However, to invoke Tcl-
Tk from Ada 95, is rather cumbersome. TASH (from Tcl-
Ada-SHell) is a thick binding Ada95/Tcl-Tk ([8]). As Fig. 3
shows, TASH provides Ada95 applications with the whole
Tcl-Tk interface by the packages Tcl and its children.
Code 2 shows the use of TASH. It is the Ada95 replica to
the Tcl script Code 1:

1 #! /usr/bin/wish
2 wm title . Adding
3 frame .menu -width 50 -height 10
4 button .menu.exit -text Exit \
5 -command exit
6 frame .frame -width 50 -height 40
7 button .frame.incr -text Increase \
8 -command increase
9 button .frame.decr -text Decrease \
10 -command decrease
11 label .frame.lab -text { }
12 pack .menu -fill x -expand true \
13 -side top
14 pack .menu.exit -side right
15 pack .frame -fill both -expand true \
16 -side top
17 pack .frame.incr -side right
18 pack .frame.decr -side left
19 pack .frame.lab
20
21 set count 0
22 #====================================
23 # increase --
24 #====================================
25 #Show the increased value of count
26 proc increase { } {
27 global count
28 incr count
29 .frame.lab configure -text $count
30 }

31 #====================================
32 # decrease --
33 #====================================
34 #Show the decreased value of count
35 proc decrease { } {
36 global count
37 incr count -1
38 .frame.lab configure -text $count
39 }

115

Code 2 Adding.adb: Embedding Tcl in Ada95

Code 2 Adding.adb: Embedding Tcl in Ada95 (Cont.)

Callbacks are the Tcl mechanism that implements the
interaction of the user with the application. In the Tcl-Tk
jargon, a callback is a Tcl command Cmd, either a user
extended command or a Tcl-Tk built-in command, that is
passed into another procedure and is executed later, perhaps
with additional arguments ([7]). We now introduce the term
user callback. A user callback is defined as the invocation
of an Application Specific Command written in the host
language, either C or Ada95, by the Tcl-Tk library. Fig. 4
shows commands, languages, callbacks and user callbacks.

1 with Tcl; use Tcl;
2 with Tcl.Tk; use Tcl.Tk;
3 with Interfaces.C; use Interfaces.C;
4 with CArgv;
5 with Tcl.Ada;
6
7 procedure adding is
8 package C renames Interfaces.C;
9 package CreateCommands is new
10 Tcl.Ada.Generic_Command(Integer);
11 Number_Label : Label;
12
13 function Decrease_Cmd(
14 ClientData : in Integer;
15 Interp : in Tcl_Interp;
16 Argc : in C.Int;
17 Argv : in CArgv.Chars_Ptr_Ptr
18)return C.Int;
19 pragma Convention(C, Decrease_Cmd);
20
21 function Decrease_Cmd(
22 ClientData : in Integer;
23 Interp : in Tcl_Interp;
24 Argc : in C.Int;
25 Argv : in CArgv.Chars_Ptr_Ptr
26)return C.Int is
27 begin
28 eval("incr count -1");
29 configure(Number_Label, "-text
30 $count");
31 return TCL_OK;
32 end Decrease_Cmd;
33
34 Interp : Tcl_Interp;
35 cmd : Tcl_Command;
36 Incr_Butt : Button;
37 Decr_Butt : Button;
38 Menu_Fra : Frame;
39 Base_Fra : Frame;
40 Exit_Butt : Button;
41
41 begin --Adding
42 --Create interpreter
43 Interp := Tcl_CreateInterp;
44
45 --Initialize Tcl
46 if Tcl_Init(Interp) = TCL_ERROR then
47 Tcl_DeleteInterp(Interp);
48 Tcl_Exit(1);
49 end if;
50
51 --Initialize Tk
52 if Tcl.Tk.Init(Interp)=TCL_ERROR then
53 Tcl_DeleteInterp(Interp);
54 Tcl_Exit(1);
55 end if;
56
57 -- Create Ada95 user extended command
58 cmd:=CreateCommands.Tcl_CreateCommand(
59 Interp, "decrease",
60 Decrease_Cmd’access, 0, NULL);
61 Tcl.Tk.Set_Context(Interp);

62 -- Create Ada95 user extended command
63 cmd:=CreateCommands.Tcl_CreateCommand(
64 Interp, "decrease",
65 Decrease_Cmd’access, 0, NULL);
66 Tcl.Tk.Set_Context(Interp);
67
68 -- Main window title
69 wm("title", ".", "adding");
70
71 -- Create user interface
72 Menu_Fra := Create(".menu", "");
73 Exit_Butt := Create(".menu.exit",
74 "-text Exit -command exit");
75 Base_Fra := Create(".frame", "");
76 Incr_Butt := Create(".frame.incr",
77 "-text Increase -command increase");
78 Decr_Butt := Create(".frame.decr",
79 "-text Decrease -command decrease");
80 Number_Label :=Create(".frame.number",
81 "-text { } ");
82
83 -- Create Tcl-Tk user extended command
84 eval("set count 0");
85 eval("proc increase { } { " &
86 " global count; " &
87 " incr count; " &
88 ".frame.number configure -text
89 $count; " &
90 "}");
91
92 pack(Menu_Fra, "-fill x
93 -expand true -side top");
94 pack(Exit_Butt, "-side right");
95 pack(Base_Fra, "-fill both
96 -expand true -side top");
97 pack(Incr_Butt, "-side right");
98 pack(Decr_Butt, "-side left");
99 pack(Number_Label, "");
100
101 -- Tcl-Tk infinite service loop
102 MainLoop;
103 end adding;

116

user
callback

Commands

Application Specific Commands

Built-in Commands

Ada95

Tcl-Tk

C

Tcl-Tk

decrease

increase
callback

Fig. 4 Languages, commands and callbacks

4. RELATED WORK
The initial goal of this work is to build a mechanism that
enables any Ada95 task to transparently execute a Tcl-Tk
script using Tcl_Eval. At the time of this writing, the
Tcl-Tk reentrance is been addressed by its creators. The
upcomming Tcl-Tk 8.1 release have reentrant features. It is
thread-safe, although in a rather restricted sense: Each
thread can have its own interpreters but each interpreter can
only be accessed through a single thread. Thus, its true that
Tcl_Eval can be concurrently invoked from two different
threads, but with (and only with) two separate interpreters.
That means that every Ada95 task in the system that uses
the Tcl-Tk GUI should create its own interpreter before any
Tcl_Eval call; this complicates programming, but it
should not present any major difficulty. In order to share a
single intepreter, the Tcl-Tk 8.1 provides new Tcl C-level
APIs to send commands and scripts to another thread. Of
course, the TASH thick binding must keep up with the new
thread-safe 8.1 features in a concurrent Ada95 application.
Up to that moment, and even later, we think that the
monolithic approach of this work can be useful. It even is
mandatory for those restricted to use non-reentrant Tcl-Tk
releases.

5. THE DEFERRED SERVER
ARCHITECTURE
Service-loop architecture takes control of the thread that
executes it, wich prevents Tcl-Tk to be invoked from a
multithreaded process. Our effort makes current Tcl-Tk
implementations available for concurrent Ada 95
applications in a transparent way.

Application
Specific

Commands

Graphic library

Operating system

Ada 95

Tcl-Tk
event
queue

Fig. 5a Classic single-
threaded Tcl-Tk architecture

Application
Specific

Commands

Graphic library

Operating system

Ada 95 tasks

Tcl-Tk
event
queue

Fig. 5b Multi-threaded deferred
server architecture

Firstly, we analize the Tcl implementation. An ordinary
Tcl-Tk program consists of a single thread of control that
manages an event queue (Fig. 5a), ordered on priority basis.
Each event is a data structure comming from two sources,
the user code, when Tcl_Eval (Eval under TASH) is
invoked, and the graphic library (X-Windows, for example)
on user actions. The event structure has two fields: an event
identifier and a pointer to a command. The thread executes
the infinite event-loop Mainloop, which has the following
pseudocode:
 while(1)
 Do_Event();

Do_Event access to the event queue shown in Fig. 5 and
serves the next event, perhaps by making a user callback. In
this case, the invoked Ada95 Application Specific
Command may call a Tcl-Tk Built-in command, what
causes a new event to be inserted in the queue. When the
queue is emptied, the thread calls the graphic library, where
the whole application gets blocked waiting for user action.
Under the X-Windows system, for example, the client
library gets blocked on the TCP connection to the server.
On return, data are converted into events and inserted in the
queue.
In the classic Tcl-Tk architecture shown in Fig. 5a, the only
existing thread takes control, calling the Ada95 Application
Specific Commands just on user actions. Our purpose is to
do the opposite: Multiple user threads call the Tcl-Tk
facilities when needed; i.e., at any time, the Tcl_Eval
function may be invoked by any thread in order to the
interpreter to execute a command (Fig. 5b). Of course, this
goal impose the elimination of the infinite blocking Tcl-Tk
service loop. The drawback is that each call to the
interpreter has the efect of inserting a new event in the
queue and, without the service loop, nobody serves the
events. The queue grows endlessly.

Our approach is to dedicate an additional periodic thread
for the event queue testing and serving. We aim not to

117

change the Tcl-Tk event queue model, but, rather, to
modify the way of using it. We have worked on the Tcl-Tk
8.0 version of the library. Two routines have been added to
it: Test_Events and Do_Events. Furthermore,
Test_Events and Do_Events have been added to the
original TASH interface to be invoked from Ada95.

Test_Events is a fast function that inspects both the
event queue and the X-Windows server connection. If there
are data in the connection or events in the queue,
Do_Events is called upon. Do_Events reads all the
data in the connection, transforms them in Tcl-Tk events,
inserts them in the queue and, finally, it serves them. Thus,
Test_Events and Do_Events avoid the blocking
service loop provided by the Tcl-Tk. The user code does
not use them. Under the new architecture, a new thread tests
both the event queue and the server connection on periodic
basis. This thread is a dedicated periodic task, called
TASH_Handler, which has the following implementation:

package TASH_Handler is
 pragma Elaborate_Body;
end TASH_Handler;

with TASH_Controller;
package body TASH_Handler is

 task TASH_Handler_Th is
 pragma Priority(T_H_PRIORITY);
 end TASH_Handler_Th;

 task body TASH_Handler_Th is
 T: Time;
 Period: Time_Span := T_H_PERIOD;
 begin
 T := Clock;
 loop
 if Test_Events then
 Do_Events;
 end if;
 T := T + Period;
 delay until (T);
 end loop;
 end TASH_Handler_Th;

end TASH_Handler;

The delay until sentence gives the periodic character
to the task and allows the scheduling of other activities. The
period of the task depends on the responsiveness desired
from the user interface. The more responsive the
application, the shorter the period. In any case, keeping
Test_Events fast, the periodic thread minimally
interferes a with the rest of the system. The service loop
architecture has the advantage of serving the events
immediately. Under the proposed design, however, the
events wait for TASH_Handler to activate. The
application tasks use TASH, being unaware of TASH_
Handler. In addition, the Ada95 application tasks view
the same interface for the Tcl-Tk script that the classic
single-threaded one addressed by TASH. Because of its
nature, from here on, we shall call this design as the
deferred server (Fig.6).

TASH_
Handler

Tcl-Tk

TASH

Ada95
user tasks

Fig. 6 The deferred server (I)

6. THE REENTRANCE PROBLEM
The periodic thread of Fig. 6 solves the service loop
problem addressed in section 5. Yet, the reentrance
problem, persists. Tcl-Tk 8.0 is the typical non-thread-safe
third party library used by threaded applications.
Concurrent invocations of the Tcl-Tk interface cause the
reentrance in the Tcl-Tk library. The general strategy to
continue using Tcl-Tk is to consider the library as a big
monolithic monitor.

6.1 The first design attempt
A concurrent application may use the Pthreads interface to
support the concurrency. In such a case, the monolithic
monitor is implemented as a wrapper at every library
access. For example, a multithreaded C program could use
Tcl-Tk as follows:

pthread_mutex_lock(TclTk_Mutex);
Tcl_Eval(&Interp, "My_Command");
pthread_mutex_unlock(TclTk_Mutex);

Luckily, Ada95 applications using TASH can solve the
reentrance problem much more cleanly (Fig. 7).

TASH_
Handler

Tcl-Tk

Ada95
user tasks

TASH_Controller

TASH

Fig. 7 The deferred server (II)

The key is to introduce a protected object,
TASH_Controller, that encapsulates the whole TASH
interface.

118

with Tcl;
with Tcl.Tk;
package TASH_Controller is
 protected Agent is
 procedure Tcl_Init(...);
 procedure Tcl_CreateCommand(...);
 procedure Tcl_Eval(...);
 procedure Tk_Init(...);
 ...
 procedure Do_Events(...);
 procedure Test_Events(...);
 private
 ...
 end Agent;

 procedure Tcl_Init(...)
 renames Agent.Tcl_Init;
 procedure Tcl_CreateCommand(...);
 renames Agent.Tcl_CreateCommand;
 procedure Tcl_Eval(...);
 renames Agent.Tcl_Eval;
 procedure Tk_Init(...)
 renames Agent.Tk_Init;
 ...
 procedure Do_Events(...);
 renames Agent.Do_Events;
 procedure Test_Events(...);
 renames Agent.Test_Events;
end TASH_Controller;

package body TASH_Controller is
 protected body Agent is
 procedure Tcl_Init(...) is
 begin
 Tcl.Tcl_Init(...);
 end Tcl_Init;
 ...
 end Agent;
end TASH_Controller;

Unfortunately, this attempt of solving the reentrancy
problem is faulty. Under a Tcl-Tk interface, the user
interacts with the system through user callbacks. The rest of
this section shows that user callbacks lead to deadlock.

Fig. 8 shows a very simple embedded system, a heater,
whose control goal is to keep the water temperature as close
as possible to the r(t) desired reference.

Computer

Temperature
sensor

r(t)

y(t)

u(t)
Heater

Fig. 8 The heater control system

A Tcl-Tk heater GUI would consist of:

1 A temperature sensor, represented by a Tk widget and
updated on periodic basis.

2 An alarm widget that is raised at a critical temperature
level.

3 The operator of the system sets the reference
temperature r(t) by means of a scale widget.

The set of user interface primitives used by an application
should be provided in a package object segregated from the
rest of the application. We shall refer name this object as
User_Interface (Fig. 9).

TASH_
Handler

Tcl-Tk

Ada95
user tasks

TASH

TASH_Controller

User_Interface

Fig. 9 The deferred server (III)

For example, the heater user interface primitives are
Update_Temp, used to update the temperature widget,
and Show_Alarm, used to trigger the alarm widget.

The User_Interface package would be:
with TASH_Controller;
package User_Interface is
 procedure Initialice_UI(...);
 procedure Update_Temp(...);
 procedure Show_Alarm(...);
end User_Interface;

Associated to the scale widget there is an Ada95
Application Specific Command, Set_Ref_Cmd, invoked
by Do_Events on user scale events. Set_Ref_Cmd and,
in general, any user Application Specific Command, have
two fields of activity as Fig. 10 shows. First, the user code,
to update the Ada95 real time variable that holds the
reference temperature. The Application Specific Commands
should be the only place where the operator updates global
control variables of the system. Secondly, the Tcl-Tk
library, which shows the new reference value on the screen.
Set_Ref_Cmd also uses TASH_ Controller, as
User_Interface entries do.

The question is where to implement the Application
Specific Commands, such as Set_Ref_Cmd. The Ada95
Application Specific Commands are never called from any
Ada95 code, but only from the Tcl-Tk library as callbacks.
Thus, placing its interface in the specification of
User_Interface is harmless, but useless. Our solution
is to put them all in a separate package, User_Commands
as xx_Cmd functions (Fig. 10).

119

TASH_
Handler

Tcl-Tk

Ada95
user tasks

TASH

TASH_Controller

User_
Interface

User_
Commands

Fig. 10 The deferred server (IV)

Needless to say, the Tcl-Tk library has to know the address
of each xx_Cmd function in order to invoke it. For
example, the Ada95 code

shows how the main procedure passes the address of
Decrease_Cmd to the Tcl-Tk library. User_Commands
needs a method, Create_User_Command, that lets Tcl-
Tk know about every xx_Cmd function and is invoked by
User_Interface as part of its initialization. For the
heater system, for example, the definition of
User_Commands would be as follows:

with TASH_Controller;

package User_Commands is
 procedure Create_User_Command(
 Interp : Tcl_Interp);
end User_Commands;

package body User_Commands is
 package C renames Interfaces.C;
 package CreateCommands is new
 Tcl.Ada.Generic_Command(Integer);

 function Set_Ref_Cmd (
 ClientData : in Integer;
 Interp : in Tcl_Interp;
 Argc : in C.Int;
 Argv : in CArgv.Chars_Ptr_Ptr
)return C.Int;
 pragma Convention(C, Set_Ref_Cmd);

 function Set_Ref_Cmd(
 ClientData : in Integer;
 Interp : in Tcl_Interp;
 Argc : in C.Int;
 Argv : in CArgv.Chars_Ptr_Ptr
)returns C.int is
 begin
 -- 1. Update the Ada95 Reference
 -- Temperature global variable
 -- 2. Show the Reference in the
 -- screen via TASH
 end;

 procedure Create_User_Command(
 Interp : Tcl_Interp) is
 begin
 -- Create Ada95 App. Specific Commands
 -- One entry per User Extended Command
 CreateCommands.Tcl_CreateCommand(
 Interp, "Set_Reference",

 Set_Ref_Cmd’access, 0, NULL);
 end;
end User_Commands;

TASH_Handler

User_CommandsPk

User_InterfacePk

Ada95

C

TASH_ControllerPr

TASH

1
3

Create_User_Cmd

Initialize

Show_Alarm
Update_Temp 2

Fig. 11 First design attemp. Succsessful case

We can see a first working example (Fig. 11):

1. When an Ada95 task decides that the temperature
widget must be updated, the Update_Temp user
interface primitive is invoked.

2. Update_Temp uses the TASH interface encapsulated
in the TASH_Controller to introduce an event in the
queue (the operator does not notices any change on the
screen).

3. TASH_Handler wakes up and invokes
Test_Event, which causes the invocation of
Do_Event to serve the event introduced in step 2, as
expected. The new temperature value appears on the
screen.

TASH_Handler

User_CommandsPk

User_InterfacePk

Ada95

C

TASH_ControllerPr

TASH

Do_Events

Graphic server
Connection

Click data

1

3

2

Create_User_Cmd

Set_Reference_Cmd

4

Initialize

Show_Alarm
Update_Temp

Fig. 12 First design attemp. Faulty case

Fig. 12 illustrates a second example where a user callback
takes place:

1. The operator sets the reference temperature through the
scale widget via mouse. The graphics library sends the
data to the connection (again, the operator fails to notice
any change on the screen).

 cmd := CreateCommands.Tcl_CreateCommand(
 Interp, "decrease",
 Decrease_Cmd’access, 0, NULL);

120

2. Eventually, TASH_Handler wakes up and invokes
Test_Event, which causes the invocation of
Do_Event to read the connection, make an event and
serve it.

3. To serve the event, Set_Ref_Cmd is invoked as an
user callback.

4. When Set_Ref_Cmd tries to use TASH to put the
value on the screen, it finds the TASH_Controller
protected object closed by the current thread. A
deadlock occurs. The first attempt has failed.

6.2 A second design attempt
One solution to the deadlock problem is given by
Application Specific Commands in order to overcome the
protection of TASH_Controller by directly invoking
TASH. This impose providing a double interface for
TASH, the protected one, TASH_Controller, and the
unprotected, TASH (Fig. 13).

TASH_
Handler

Tcl-Tk

Ada95
user tasks

TASH_Controller

User_
Interface

User_
Commands

TASH

Fig. 13 The deferred server (V)

Under the double interface facility, step 4 does not cause
occasion deadlock because, now, the thread goes only once
through the protection of TASH_Controller. This is
shown in Fig. 14.

Ada95

C

Graphic
server
connection

Click data

1

3

3

Set_Ref _Cmd

Do_Events

2

TASH_HandlerUser_InterfacePk

Initialize

Show_Alarm
Update_Temp

User_CommandsPk

Create_User_Cmd

4

TASH_ControllerPr

TASH

TASHPk

TASH

Fig. 14 Second design attemp

Although it seems clear that the double interface is not the
ideal solution to the reentrance problem introduced by user
callbacks, it also seems that there is not a better one.
Notwithstanding, Ada95 applications are kept well
structured because the solution exhibites a useful property:
User_Commands only invokes the raw TASH interface,
while User_Interface only invokes the protected
TASH_Controller. Fig. 13 shows the definite deferred
server architecture.

A well known case study, the Mine ontrol System ([2]), has
been implemented with a Tcl-Tk GUI built upon the
deferred server model. We have used Linux 2.0.X, GNAT
3.10p and Tcl-Tk 8.0. Fig. 15 shows a snapshot of the GUI.

Fig. 15 The Mine Control System Tcl-Tk GUI

7. THE HRT-HOOD APPROACH TO THE
DEFERRED SERVER
HRT-HOOD is a well known object based design
metodology that helps to build reliable big real time
systems ([1], [2]). Each HRT-HOOD terminal object has an
automatic translation to an Ada95 package with timing

121

attributes. The resulting running system is a concurrent set
of Ada95 tasks. Non-terminal objects are called active,
while there are four kinds of terminal objects: Passive,
protected, cyclic and sporadic. As an example, the heater
system of Fig. 8 is described in HRT-HOOD terms by Fig.
16. Its user interface has been encapsulated in the
Operator_Console active object.

HRT-HOOD requires that the operations on an object delay
the invoking thread for a bounded time only. Therefore, the
Tcl-Tk written Operator_Console object enforces this
rule with operations restricted to be ASER (Asynchronous
Execution Request).

A Heater

A Operator_Console

A Temperature

C Sensor

Set_Ref

Pr Reference

Get
Set

Pr Resistence

On_Off

Update_Temp

Show_Alarm

PAER

PSER

ASER

ASER

ASER

PAER

Fig. 16 A first HRT-HOOD design of the heater system

Therefore, general purpose third-party libraries, such as
Tcl-Tk, are not prohibited components in the
implementation of any object. What is relevant is to enforce
the HRT-HOOD design restrictions, such as syncronization
or timing. The deferred server is a method of encapsulating
Tcl-Tk in Ada95 objetcs that can be used by a concurrent
application. The question, therefore, is whether, without
loss of generality, the deferred server architecture can be
used to implement the HRT-HOOD
Operator_Console object of Fig. 16. In the afirmative
case, every HRT-HOOD system using a deferred server
Tcl-Tk user interface would match Fig. 17.

TASH TASH_Controller

TASH_
Handler

User_
Commands

HRT-HOOD
tasks

Tcl-Tk

User_
Interface

Fig. 17 Hipothetical HRT-HOOD system based on the deferred
server architecture

The implementaton of Fig. 17 raises the operating system
problem. To achieve predictability, the HRT-HOOD tasks
should stand alone, without the operating system support.
Tcl-Tk, however, needs an X-Windows and a Unix box. In
order to guarantee predictability to the real time tasks, Fig.
18 shows a distributed configuration, where the X-Windows
server is moved to a different dedicated machine or X-
terminal. Then, the operating system disappears from the
real-time system and the network adapter is controlled by
HRT-HOOD objects implemented conforming to the low
level programming Ada95 facilities ([2]).

The main shortcoming of this approach is that Tcl-Tk and
the X client library must be modified in order to support the
operating system services by themselves. This possibility
has been explored. The single line Tcl script

TASH TASH_Controller

TASH_
Handler

User_
Interface

User_
Commands

HRT-HOOD
tasks

Tcl-Tk

UNIX

X-Window s
serverX-Window s client

HRT-HOOD netw ork driver

Fig. 18 Distributed HRT-HOOD/Tcl-Tk system (I)

#!/usr/bin/tclsh
puts stdout "Hello, world"

makes 18 different system calls and a total number of 86.
The 26 lines Tcl-Tk script Adding.tcl that builds the
GUI in Fig. 2 makes 25 different system calls and a total

122

number of 488. It is true that the system is now fully
analizable in its temporal requirements, but Tcl-Tk and the
client component of X-Windows entrust functionality to the
operating system. This is difficult to be assumed by
themselves and the Ada95 run-time system.

A Operator_Console

U_I_Ops

Pa User_Interface

U_I_Ops

Pa TASH

TASH

Pr TASH_Controller

TASH

C TASH_Handler

Pa User_Commands

Create_User_Cmd
User_Ext_Cmds

Fig. 19 A faulty HRT-HOOD design of the Tcl-Tk User Interface

The operating system problem, however, is not the only
one. Fig. 19 is a refinement of Operator_Console into
terminal objects. As it can be infered by the object names
and relationships, the goal of this decomposition is to
provide an automatic mapping of the Ada95 deferred server
architecture proposed in previous sections of this study.
Some design and implementation problems can be hence
identified:

First, HRT-HOOD terminal objets must be temporally
analizable. An HRT-HOOD protected object has two
attributes, the ceiling priority and the worst case execution
time (WCET). The latter refers to its slower operation and
determines the blocking imposed on the invoking tasks.
Since the HRT-HOOD protected object
TASH_Controller is implemented as the Tcl-Tk
library, to which it guarantees mutual exclusion, it is quite
difficult to determine its WCET parameter, due to the
unpredictable operating system time response.

Secondly, HRT-HOOD specification ([1], pg. 29) explicitly
"forbids passive (or protected) objects to use each other in a
cyclic manner". Tcl-Tk user callbacks necessarily introduce
a cycle between User_Commands and TASH.

Thirdly, HRT-HOOD specification ([1], pg. 30) explicitly
establishes that passive objects can only invoke operations
on passive objects. Passive User_Interface invokes
protected TASH_Controller.

X-Window s

User_
Commands

Tcl-Tk

User_
Interface

HRT-HOOD
client stub

HRT-HOOD
tasks

multithreaded
server stub

Unix

TASH_
Handler

TASH TASH_Controller

Fig. 20 Distributed HRT-HOOD/Tcl-Tk system (II)

The run-time analysis and, more important, the inherent
violations of HRT-HOOD rules described above make clear
that to embed Tcl-Tk in a HRT-HOOD system is not
possible. Therefore, other alternatives must be explored.
Fig. 20 shows a distributed configuration where the
deferred server goes to a second machine, as a remote
service to the HRT-HOOD system. The interface definition
of this service consists of the user interface primitives of the
real-time system. As Fig. 20 shows, the HRT-HOOD tasks
are replaced in the server side by a multithreaded server
stub.

User callbacks are problematic. We may ask what happens
when a user extended command accesses a real-time
variable. Now the HRT-HOOD system is not only a client
of Tcl-Tk services, but it becomes a server of its real-time
variables, monitored and controlled by the operator.
Notwithstanding, the Operator_Console object
becomes much lighter that the one in Fig. 19. It implements
the client stub by taking control of the network adapter. Its
operations are ASER in order to bind the delay imposed to
real-time tasks: They return when the packet has been
inserted in the network. It also implements the real-time
variables service stub by introducing a thread that listens
for real time requests in the network adapter. As an
example, Fig. 21 shows the operator console object for the
heater system.

123

A Operator_Console

A Temperature

Ref_Temp

S

ASER
by
interrupt

Start

Callback_Server

Callback_Op_Code

Pr Network_Adapter

Update_Temp

Show_Alarm

ASER

ASER

Update_Temp

Show_Alarm

PAERD

PAERD

Get_FramePSER

Callback_Op_Parm

Fig. 21 A second HRT-HOOD design of the Tcl-Tk User
Interface

8. WORK UNDER WAY
The deferred server architecture has been implemented and
tested in a centralized way; not yet as a remote service of a
HRT-HOOD system. The main problem to be solved is the
communication between the two machines in Fig. 20. Three
possibilities are explored. First, to build an analizable
TCP/IP HRT-HOOD active object in the real time side. We
plan to model it after the Minix user space TCP/IP server
process. One second possibility is to unload the real time
side from any communication protocol. Assuming the
system shown in Fig. 20 is a reliable local network, the big
and heavy network and transport protocols seem
unnecessary. TCP/IP is, however, a good choice in the GUI
side because it allows Tcl-Tk programming on a full
standard graphic platform, such as X-Windows. The
drawback of this approach is that it forces the real time side
to fake the GUI side by inserting the TCP/IP stuff in the
outgoing frames and discarding it in the incoming ones.
Finally, a very attractive option is to explore a much ligther
network protocol than TCP/IP, the network protocol of the
Amoeba operating system: FLIP ([6]).

9. CONCLUSIONS
First, the problem of using the Tcl/Tk scripting language in
mutithreaded Ada95 applications has been studied, while a

solution proposed: the deferred server architecture. This
demands a little extension to Tcl-Tk/TASH. A complex
enough classic example, the Mine Control System, has been
implemented to test these ideas with success. Secondly, the
integration of Tcl/Tk in HRT-HOOD systems has been
explored. The reentrant nature of Tcl-Tk and its mechanism
of callbacks allow us takes us to conclude that is not
possible to build a stand alone true hard HRT-HOOD
system with a Tcl-Tk user interface. Finally, in contrast, a
distributed approach to the Tcl-Tk GUI that relies on the
deferred server model, seems like a promising option. This
distributed architecture has been described, and its
problems pinpointed. posed. Work is in progress in order to
gain experience on this approach; we aim to achieve the
goal of developping true HRT-HOOD systems with Tcl-Tk
script based user interfaces.

10. REFERENCES
[1] Burns, A. and Wellings, A., HRT-HOOD: A

Structured Design Method for Hard Real-Time Ada
Systems, Elsevier, 1995.

[2] Burns, A. and Wellings, A., Real-Time Systems and
Programing Languages, Addison-Wesley, 1996.

[3] Díaz Martín, J.C., Irala Veloso, I., "Prácticas de
Sistemas de Tiempo Real en la Uex. Integración de
Tcl-Tk en HRT-HOOD", Jenui’98, Actas del
congreso, pp. 166-172, Escola d'Informática
d'Andorra. Sant Juliá de Lória, Andorra, July, 9-10,
1998

[4] IEEE, "Information Technology -Portable Operating
System Interface (POSIX)- Part 1: System Application
Program Interface (API) [C Language], IEEE Std
1003.1, 1996 Edition, (1996).

[5] Ousterhout, John, Tcl and the Tk Toolkit, Addison-
Wesley, Reading, MA, 1994.

[6] Tanenbaum, A. S., Distributed Operating Systems,
Prentice-Hall, 1995.

 [7] Welch, B., Practical Programming in Tcl & Tk,
Prentice-Hall, 1997.

[8] Westley, T., “TASH: Tcl Ada Shell, An Ada/Tcl
Binding”, ACM SIG Ada Ada Letters, 1996.

124

