
27

Ada 95 Bindings for the NCSA
Hierarchical Data Format

 Bruce R. Barkstrom
Atmospheric Sciences

NASA Langley Research Center
Hampton, VA 23681-2199

1-757-864-5676

b.r.barkstrom@larc.nasa.gov

1. ABSTRACT
This paper describes Ada95 bindings for
HDF4 and HDF5, the current versions of the
NCSA Hierarchical Data Format (HDF).
These self-describing file formats are intended
for storage of large, diverse collections of
scientific data and for retrieving subsets of
these data. The libraries also support data
compression, chunking of large arrays, and
automatic conversion of vendor-specific
binary formats for a variety of data types.
1.1 Keywords
File formats, Hierarchical Data Format, HDF, HDF4,
HDF5, Self-documenting files

2. INTRODUCTION
While the four standard file I/O packages that are part of
the Ada95 language cover many I/O needs, only the
Streaming I/O package deals with storage and retrieval of
heterogeneous data types. A programmer who needs to
store such data is still faced with the rather formidible task
of defining the order of the data structures and procedure
calls – and even after considerable work is likely to have an
idiosyncratic file format that may be difficult to transfer
from one platform to another.

Fortunately, the ability of Ada95 to easily interface with
other languages has provided an opportunity for this
language to obtain bindings to the Hierarchical Data Format
(HDF) libraries developed by the HDF Group at the
National Computational Sciences Alliance (NCSA). This

family of file formats appeared about the time the early
Mosaic browser appeared and has been evolving since.

HDF files are intended to provide self-documenting storage
of scientific data. This means that HDF provides structures
that allow the file format to contain data about the file
structure and descriptive information about the data
contained in the file. By reading an appropriate sequence
of data structures in the file, a data user can extract the
information needed to understand the kind of data in the
file, the size, shape, and data type of the arrays in the file,
and even documentation about the file contents. The data
types supported by the HDF files include strings, integers,
and floating point values, as well as pointers and other
linking elements. As a result, the Ada95 bindings to HDF4
and HDF5 offer an opportunity for the Ada community to
freely avail themselves of very powerful tools for storing
and retrieving heterogeneous data structures (and even
procedures), as well as visualization tools and other helps at
organizing and using data.

This paper provides a brief overview of the HDF file
formats themselves, followed by a description of the Ada95
bindings and their documentation.

3. HDF
As the HDF4 Reference Manual [1] notes ‘‘Scientists
commonly generate and process data files on
several different machines, use various software
packages to process files and share data files with
others who use different machines and software.
Also, they may include different kinds of
information within one particular file, or within a
group of files, and the mixture of these different
kinds of information may vary from one file to
another. Files may be conceptually related but
physically separated. For example, some data may
be dispersed among different files and some in
program code. It is also possible that data may be
related only in the scientist’s conception of the data;
no physical relationship may exist.’’ The latter
conception may be particularly important where
scientists have placed data in an array whose

This paper is authored by an employee of the United States Government
and is in the public domain.

SIGAda 2001 09/01 Bloomington, MN, USA
© 2001 ACM 1-58113-392-8/01/0009...$5.00

28

underlying structure corresponds to sampling a
physical field with an implicitly defined grid which
is widely understood in that scientific discipline.

The Reference Manual continues ‘‘HDF addresses
these problems by providing a general-purpose file
structure that:

• Provides the mechanism for programs to obtain
information about the data in a file from within
the file, rather than from another source.

• Lets the user store mixtures of data from
different sources into a single file as well as
store the data and its related information in
separate files, even when the files are processed
by the same application program.

• Standardizes the formats and descriptions of
many types of commonly-used data sets, such as
raster images and multidimensional arrays.

• Encourages the use of a common data format by
all machines and programs that produce files
containing specific data.

• Can be adapted to accommodate virtually any
kind of data.’’

4. HDF4
HDF emerged at about the time the Mosaic web browser
appeared. At that time, its creators viewed HDF as a way
of providing platform-independent file structures with a
standard set of browse tools that would allow diverse
groups of scientists to view the data in files and to
document their contents. Over time, the various scientific
groups working with NCSA requested additions to the data
structures and procedures included in HDF.

The fourth version of the Hierarchical Data Format,
or HDF4, includes several basic data structures,
such as specialized arrays for raster images with
various numbers of bits per pixel, together with
their associated palettes. More general arrays are
describable as ‘‘Scientific Data Sets,’’ that have
annotation fields. Data stored in tables, such as the
data one might find in relational databases can be
placed in data structures identified as ‘‘Vdata’’ that
can be organized into ‘‘Vgroups.’’

It is particularly important to note that HDF files
are self-describing. This means that, for each HDF
data structure in a file, there is comprehensive
information about the data and its location in the
file. This information is often referred to as
metadata.

The Scientific Data Sets and Vdata structures can
include many types of data. For example, it is
possible to store symbolic, numerical and graphical

data within a single HDF4 file by using appropriate
HDF data structures.

If we move beyond the data structures inside the
files, we note that HDF4 can be viewed as several
interacting layers of software. At the lowest level,
HDF4 is a physical file format for storing scientific
data. At the highest level, HDF4 is a collection of
utilities and applications for manipulating, viewing,
and analyzing data stored in HDF4 files. Between
these levels, HDF4 is a software library that
provides high-level and low-level programming
interfaces. It also includes supporting software that
make it easy to store, retrieve, visualize, analyze,
and manage data in HDF files.

The basic interface layer, or low-level API, is
intended for software developers. It was designed
for direct file I/O of data streams, error handling,
memory management, and physical storage. Thus,
this layer provides a software toolkit for
experienced programmers who wish to make HDF4
do something more than what is currently available
through the higher-level interfaces. For most
purposes, these low-level routines are available only
in C.

The HDF4 application programming interfaces, or
APIs, include several independent sets of routines,
with each set specifically designed to simplify the
process of storing and accessing one type of data.
Although each interface requires programming, all
the low-level details can be ignored. In most cases,
all one must do is make the correct function call at
the correct time, and the interface will take care of
the rest. Most HDF interface routines are available
in both FORTRAN-77 and C.

The Ada95 bindings for HDF4 provide an
alternative interface. These bindings provide direct
equivalents to the C interfaces containing
procedure and function calls, as well as the HDF4
data structures.

HDF4 is very well documented [1]. The
documentation available on-line includes a User
Guide and a Reference Manual. Furthermore,
the HDF web site also provides a tutorial for the
API’s, so that programmers can systematically
develop proficiency in efficiently using this file
format. The Ada95 bindings we provide also
include procedures equivalent to the C programs in
the HDF4 documentation.

5. HDF5
HDF4 uses a “linked” representation of the data structures a
file contains. When HDF4 was designed, the “reference”
and “tag” structures that provide the links were limited to

29

32-bit referencing. As a result, the physical size of an
HDF4 file is constrained to 2 gigabytes.

In 1998, the HDF Group released a beta version of a new
file structure that was intended to substantially improve on
HDF4. As the HDF5 Introduction [2] notes: “The
development of HDF5 is motivated by a number of
limitations in the older HDF format and library. Some of
these limitations are:

• A single file cannot store more than 20,000 complex
objects, and a single file cannot be larger than 2
gigabytes.

• The data models are less consistent than they should
be, there are more object types than necessary, and
datatypes are too restricted.

• The library source is old and overly complex, does not
support parallel I/O effectively, and is difficult to use
in threaded applications.

HDF5 includes the following improvements.

• A new file format designed to address some of the
deficiencies of HDF4.x, particularly the need to store
larger files and more objects per file.

• A simpler, more comprehensive data model that
includes only two basic structures: a multidimensional
array of record structures, and a grouping structure.

• A simpler, better-engineered library and API, with
improved support for parallel I/O, threads, and other
requirements imposed by modern systems and
applications.”

The newer and much simpler data structure for HDF5
places arrays within “Datasets,” which are then placed in
“Groups.” Rather than providing distinct “image” types,
HDF5 recognizes that images are subsets of multi-
dimensional arrays. Thus, there is no point in introducing
additional, distinct subtypes of arrays. The file is self-
describing because datasets that include arrays also must
include a “Dataspace” that quantifies the number, indexing
order, and size of the array. Datasets must also include a
“Datatype” structure that quantifies the individual element
types in the array. HDF5 is particularly interesting because
it allows both simple data types (bytes, integegers, floats,
characters, and strings) and compound types that are
equivalent to Ada95 records.

As with HDF4, the HDF5 API provides routines for
creating HDF5 files, creating and writing groups, datasets,
and their attributes to HDF5 files, and reading groups,
datasets and their attributes from HDF5 files. It is
particularly noteworthy that HDF5 provides several
functions that specifically support the following features:

• Data compression

• Chunking, in which portions of the array are accessible
in “chunks” that are efficient data structures for
accessing smaller portions of the file than hyperslabs

• Irregularly-shaped array subset extraction

HDF5 not only comes with a library, documentation, and a
tutorial, it also has several tools that make life easier for
developers using this file format. For example, there is a
file content “dumper” that provides a printout of the data
structures in the file. HDF5 also has an XML description
that provides a useful formalism for designing efficient data
structures.

6. THE HDF ADA BINDINGS
HDF is becoming widely used in scientific data holdings,
such as those of NASA’s Earth Observing System (EOS)
Data and Information System – EOSDIS. At present,
EOSDIS is adding about one TB per day to NASA’s Earth
Science data holdings. In the near future, this rate will
increase to about three TB per day. The EOS Project has
directed NASA Principal Investigators to use HDF for the
data format for all EOS missions. Thus, this data format is
very important to the author (he is Instrument Principal
Investigator for the investigation of Clouds and the Earth’s
Radiant Energy System: CERES), as well as many of his
colleagues.

Because CERES uses Ada for some of its scientific data
production, the author felt that it would be useful to provide
Ada95 bindings for the HDF5 and HDF4 libraries. He
contacted John S. Walker, who had provided Microsoft
Foundation Class bindings for Aonix, Inc., to translate the
C and C++ header files into Ada95 bindings. The author
tested the bindings by using them to create Ada95 programs
that duplicate the functions of the HDF tutorials available
through the HDF web site [1][2], using the Aonix
ObjectAda compiler and Integrated Development
Environment on Windows NT machines.

As one might expect, the bindings include a number of data
structure definitions and procedure interfaces. A simple
program to create an HDF5 file uses the normal Ada “with”
statements to include the bindings and then calls the library
procedures using the interfaces, as Listing 1 shows.

30

with VC; use VC;
with HDF5Constants; use HDF5Constants;
with HDF5C; use HDF5C;
with interfaces.c.strings;

procedure H5_Crtfile is
 use type interfaces.c.strings.chars_ptr;
 fn : interfaces.c.strings.chars_ptr
 := Interfaces.c.strings.new_string(
 str => "file.h5");
 flags : VC.Unsigned
 := HDF5Constants.H5F_ACC_TRUNC;
 create_plist : HDF5Constants.hid_t
 := HDF5Constants.H5P_DEFAULT;
 access_plist : HDF5Constants.hid_t
 := HDF5Constants.H5P_DEFAULT;
 File_Id : HDF5Constants.Hid_T;
 -- file identifier --
 Status : HDF5C.Herr_T;
begin
 -- Create a new file using default properties.
 File_Id
 := H5Fcreate(filename => fn,
 flags => flags,
 create_plist=> create_plist,
 access_plist => access_plist;
 -- Terminate access to the file.
 Status := H5fclose(File_Id);
end H5_Crtfile;

The author expects to provide the Ada bindings to
interested members of the community, probably as
contributed software to the HDF Group at NCSA. The
powerful and standardized data access that HDF makes
possible appears to offer a number of interesting prospects,
particularly for distributed databases that are capable of
selecting subsets of large, scientific files and formatting
them into much smaller packages that are suitable for
transmission over the Internet.

In addition to the binding source code, the published Ada
Bindings are expected to be supported by a tutorial that will
include not only the material equivalent to the standard API
documentation provided by the HDF Group, but also a
Windows GUI form of an HDF editor (written entirely in
Ada95) that will allow users to create or access and edit
HDF data structures for both HDF4 and HDF5.

7. ACKNOWLEDGMENTS
This work has been supported by NASA’s CERES
investigation. The author is very appreciative of the interest
and encouragement of the HDF Group and its leader, Dr.
Michael Folk. The HDF Ada95 bindings have been
provided by John Walker, using his technology to
automatically convert the C and C++ header files into
useful bindings. Without this technology, these bindings
would not have been developed. The author is also
extremely grateful to the support provided by Aonix, Inc.
In addition to the excellent support provided by the
ObjectAda compiler and its IDE, the author is particularly
appreciative of the support of Greg Gicca and of Lyn
Henderson, without which it would not have been possible
to have developed these bindings.

8. REFERENCES
[1] HDF Group. HDF[4] User’s Guide, available at

http://hdf.ncsa.uiuc.edu/.

[2] HDF Group. Introduction to HDF5 Release 1.2,
available at http://hdf.ncsa.uiuc.edu/

Listing 1. Ada95 Program to Create a Simple HDF5 File
Using the HDF Bindings.

