Using ASIS for Data Base Insulation

Pace Drury

McDonald Bradley, Inc.

February 1998

The SIDPERS-3 project uses ASIS (Ada Semantic Interface Specification) to create Ada code that insulates the typical developer from the intimate details of, and any variations in, COTS (Commercial Off The Shelf) generated Ada code for data base interaction.

Background

The SIDPERS-3 project is the Department of the Army’s newest revision to their Standard Installation/Division Personnel System. This project includes hardware; software; connectivity; and training. The primary software language used in the SIDPERS-3 project is Ada. The Ada software drives the data entry screens, invokes telecommunications software, and manipulates information stored in a local data base. The project uses the Rational APEX environment for software development, and the Rational VADS compiler for final integration on the target hardware.

SQL: Embedded Vs Module Language

To interact with a data base product, an Ada developer has two options. First is to use embedded SQL. That process entails putting the desired SQL statements directly into the Ada code where the data base interaction is desired. A developer then runs that Ada code through an embedded SQL preprocessor. The preprocessor then converts the SQL to procedure calls that the Ada compiler can recognize.

The second option for interacting with the data base is to use SQL Ada Module Extensions (SAME). As with embedded SQL, the developer runs the “module language” SQL through a preprocessor to convert the SQL to procedure calls with Ada can recognize. The difference is that the SQL statements are in their own files. These files are distinct from the Ada source code file. The SIDPERS-3 project decided to use the module language so that Ada experts could work on pure Ada code, while SQL experts could work on pure SQL.

ASIS as Insulator

The SAME preprocessor creates an Ada package that can be “with-ed” by the Ada developer. While evaluating different vendors’ data base products, it became apparent that the Ada package specifications that resulted were not uniform. The staff expected the SIDPERS-3 project to be a very large effort (on the order of one million lines of Ada code). Therefore, the project staff determined they could not afford to rewrite all the Ada code that used “module language” generated Ada package specifications. Such rewrites might become necessary should the current vendor upgrade their SAME product, or should it become desirable to switch vendors. Either of these cases might result in differently generated Ada package specifications.

Here is where the project exploited ASIS. By using the Ada syntactical and semantic information, the project was able to create a new layer of Ada code. This new layer insulated the software developer from the specifics of the SAME generated Ada code.

The SIDPERS project created a new tool. The tool is titled the generate_db_support_code tool. The project has a file naming convention for generated files. Every Ada package that is generated from the module language file must end with “_db_access.” The Ada package that is used as the insulation layer must end with “_db_support.”

The generate_db_support_code has been a challenge to write. The intent of the tool is straight forward enough: Open two files, examine their contents, and create two new files based on the first two files' contents. The challenge is that everything is Ada. The two input files are an Ada package specification and body. The two output files are an Ada package specification and body. The code to examine these files is written in Ada, and it uses ASIS to break down the semantic structure of the input and store it in a linked list containing Ada. Here is an example of why this was difficult. Inside the code, the two characters “i” and “f” occur together often. Each time they occur, they might be a string of input; a string of output; data from a linked-list; or a branching statement to be executed. In the source code for the generate_db_support_code tool there are occasions where a single Ada statement can have all four different aspects of the “i” and “f” character combination. Let me say that programming in Ada to read, store, and write Ada is an arduous exercise in mental focus. [To help me, I used different mixtures of upper and lower-case characters to segregate input, output, stored data, and statements.]

The ASIS software has to identify three items from the "_db_access" package specification in order to create the “_db_support” package: Subtypes; Procedures; and Parameters. Although SAME products may very, they exist to execute SQL commands. To do so, all that is needed are the data types to be used (i.e., the Subtypes), the SQL to be executed (i.e., the Procedure), and the data to be manipulated (i.e., the Parameters).

For each declared item in the “_db_access” package specification, we assume it is either a subtype or a procedure. The generate_db_support_tool checks if a declared item is a procedure. If not, it stores the subtype so the subtype can be converted from the vendor specific subtype. (The “_db_support” package is designed to support string and SIDPERS-3 specific definitions for integer and smallint.)

If the declared item is a procedure, the generate_db_support_tool places it into one of the eight applicable types of SQL statements. On the SIDPERS-3 project, the naming convention for these procedures must reflect exactly the type of SQL statement the procedure will execute. The tool handles these eight categories based on SQL statement type: Select; Insert; Update; Delete; Cursor Open; Cursor Fetch; Cursor Close; and Cursor Free. (The Cursor Free category is a vendor specific category. The ultimate “_db_support” package specification hides the existence of this procedure from the typical Ada developer.)

Once the tool accomplishes a sub-string compare to determine to which category of SQL statement that procedure applies, the tool then uses ASIS to store its parameter list. Another naming convention applies here. Host variables that are used in the database SQL must have a prefix of “with_” while data that is coming from the database end in “_db” for data or “_nl” for null data indicators.

The tool stores all of the ASIS retrieved information in a linked list of Ada constructs. When ASIS has completed providing all the information available about the Ada specification for the “_db_access” package, the generate_db_support_tool creates the Ada specification and body for the “_db_support” package. The “_db_support” Ada specification is guaranteed to meet our projects needs for a constant and uniform access point to data base information. This is ensured because the code is a customized piece of generated software that is built from the ASIS analysis of another piece of generated software. The “_db_support” body will take care of translating any information from the SIDPERS-3 format into the COTS data base products format.

Conclusion

It did come to pass that the SIDPERS-3 project changed data base product vendor. There were differences in the syntax for SQL, and all the SQL on the project had to be reviewed. Although there were differences in the SAME generated Ada code, the project had to allocate one developer to update the generate_db_support_code tool. The ability to use ASIS saved the SIDPERS-3 project many hours of research in the data base conversion and yielded an interface between Ada and SQL in which everyone had 100% confidence.

