Workshop Report
ASIS — Extensions For Higher Level Abstractions
1:30-5:30 PM, Thursday, 21 October 1999
SIGAda'99, Redondo Beach, California

The Ada Semantic Interface Specification (ASIS) Working Group (ASISWG) held a Workshop on Thursday, 21
October 1999, from 1:30-5:30 P.M. in conjunction with SIGAda'99 in Redondo Beach, California. The topic was
ASIS Extensions for Higher Level AbstractionsThe primary purpose was to address a framework to support the
development of ASIS Extensions for higher level abstractions, which would be useful to vendors, developers, and
ASIS users.

The standardized ASIS interfaces reflect the low-level syntactic level of the source code. A higher level abstraction
might incorporate a number of ASIS queries. Such higher level abstractions could be useful to different classes of
tool developers to support specialized requirements (e.g., additional OO analyses, specialized static run-time
analyses). These abstractions should be implementable using the standard ASIS interfaces.

An ASIS Workshop at SIGAda'98 raised the issue that it would be useful to have a common naming scheme to
name ASIS extensions to support the development of higher level abstractions. The principal reason identified at the
SIGAda'98 Workshop was to provide higher level abstractions to increase productivity and effectiveness of the

ASIS tool developer. It would also encourage the sharing of useful ASIS interfaces amongst vendors, developers,
and users by supporting the integration of portable ASIS interfaces from multiple sources without a name clash.

Attendees

Participants included representatives from the compiler vendor community, tool vendor community, and user
community. Those who attended include:

Roy Bell, Raytheon

Steve Blake, Aonix

Todd Coniam, ESC

Steve Deller, Rational
John Harbaugh, Boeing
Tony Lowe, Adamantium
Joseph Meyer, DOD

Clyde Roby, IDA

Sergey Rybin, ACT Europe
Tucker Taft, AverStar

Anh Vo, United Defense LP
Joseph Wisniewski, Commercial Software Solutions

Background on ASIS

The primary focus of the ASISWG of ACM SIGAda has been to evolve ASIS as an interface to the Ada 95
compilation environment. ASIS now provides a powerful mechanism to perform code analysis for mission-critical,
high-integrity, and safety-critical applications. A variety of highly effective tools have been built using ASIS. This
interface was approved as an I1SO standard in 1999 as:

ISO/IEC 15291:1999 Information Technology — Programming Languages
— Ada Semantic Interface SpecificaBt®) (

Those wanting to find out more about ASIS should visit the ASIS Home Page at the following URL:

http://www.acm.org/sigada/WG/asiswg/

Overview

Currie Colket, the Chair of ASISWG, had arranged for the ASIS Workshop. Steve Blake, the Vice Chair of
ASISWG, chaired the workshop as Currie Colket was recovering from surgery. Steve introduced the issue of ASIS
extensions by providing a background on ASIS and discussing two types of extensions in the form of Toolkit and
Extension Layers. Steve Blake presented an example of tool integration using Toolkit and Extension Layers. He
presented a proposal on the use of the Toolkit and Extension Layers, which was discussed by Workshop
participants. After consensus was reached on the proposal, some brainstorming addressed other concerns to the
ASIS community. The slides Steve used are available at the ASIS Home Page.

Toolkit and Extension Layers

ASIS Toolkit/Extensions Layers was the primary topic of discussion. Steve Blake suggested two ways that ASIS
developers could extend ASIS: throughaolkit Layerand anExtensions Layer TheToolkit Layerwould provide

higher level, abstract secondary queries built from ASIS primitives and other portable services. It would be portable
to ASIS implementations provided by ASIS vendors. Such queries would be valuable as examples to reduce the
learning curve in using ASIS. TH&xtensions Layewould allow vendors to fill holes and gaps in the ASIS interface
and support queries that ASIS was never intended to support such as dynamic semantics. Figure 1 depicts the
relationship between the Toolkit Layer and the Extensions Layer to the ASIS Interface, the Ada Compilation
Environment, and the Host or Target Environment. The Extensions Layer would be able to use queries from the
Toolkit Layer, as these are portable. The converse is not true; should the Toolkit Layer use queries from the
Extensions Layer, the Toolkit Layer would no longer be portable.

ASIS.Extensions
ASIS.Toolkit Layer Layer
ASIS Interface
Ada Compilation Host or Target
Environment Environment

Figure 1 Relationship of the Extensions and Toolkit Layers to the ASIS Interface

Even with the limitation of using ASIS interfaces, the Toolkit functionality is limitless. It would be able to support
the following types of functionality in a portable way across all Ada vendors supporting the ASIS Standard:

* Initialize and Finalize the ASIS environment and context;

» Select compilation units using mechanisms such as filters, wild cards;

» Classify elements with new queries such as: Is_Package, Is_Task, Is_Global,

* Fully classify types by cutting through derivations and private types;

» Develop queries to support Object Oriented code analysis such as Controlling_Parameter, and
Corresponding_Tagged_Type;

e Support the use of Lists, Trees, Sorting, and other utilities;

» Offer generic report templates;

» Build iterative structures like Call Trees and Dependency Graphs; and

» Perform source code transformations.

Functionality from the Extensions Layer would support an even greater level of capabilities not possible with the
ASIS interfaces alone, such as:

« Provide sizes and alignments for types and objects;

* Provide record layout information such as: component positions, first_bit, and width;

* Provide sizes for arrays and components;

* Provide frame sizes and stack offsets of local objects;

» Provide addresses of subprograms, tasks, or data within a target specific partition or program;
» Provide filename, directory, or other host dependent functions.

Example of Tool Integration Using Toolkit and Extensions Layers
An example of an integrated tool suite using Toolkit and Extension Layers was provided. The tool suite consists of:

* Asis.Toolkit. HTML — The HTML package is a simple interface that can glue individual tool output into an
easily navigated set of reports. It can create anchors and links in Ada source code through ASIS code analysis.
It would be portable amongst ASIS vendors with some tailoring to accommodate naming conventions on
different hardware platforms.

« Asis.Toolkit.Call_Trees package — The Call_Trees package uses the ASIS traverse routine to build a call tree
for the main program. It constructs local anchors and links to support navigation between the call tree report and
the Ada sources. This also would be portable amongst ASIS vendors.

» Asis.Extensions.ObjectAda.Profiler package — The Profiler package creates a compilable copy of the source
code and inserts unique controlled object declarations in callable entities. The controlled objects Adjust and
Finalize procedures are invoked whenever a callee’s scope is entered and exited. The callee’s count and timing
information is collected and saved at runtime. It also constructs local anchors and links to support navigation
between the profiler report and Ada sources. The Profiler package uses ASIS interfaces, but by its very nature is
vendor specific and would not be portable to other vendor environments.

Figure 2 depicts the output of such an integrated tool suite with navigation links between the Call Tree Report and
source code and the Profiler Report and source code.

Proposed Guidelines
The proposed guidelines are to add only two new child packages to ASIS: Asis.Toolkit and Asis.Extensions.

ASIS vendors or tool developers would identify themselves as children and then add unlimited descendants, for
example:

Asis.Toolkits.HTML Asis.Toolkit. CORBA_IDL
Asis.Toolkit.Call_Trees Asis.Toolkits.Croby_Inc
Asis.Toolkit. Apex.Call_Trees Asis.Extensions.Apex.Profiler
Asis.Toolkit. GNAT.Call_Trees Asis.Extensions.GNAT.Profiler
Asis.Toolkit.ObjectAda.Call_Trees Asis.Extensions.ObjectAda.Profiler

Queries/Interfaces in the Toolkit Layer would be implemented with ASIS primitives, other Toolkit queries, common
portable services, and/or common portable data structures.

Queries/Interfaces in the Extensions Layer can use these resources and also be implemented with vendor specific,
host/target dependent services, and other non-portable services. Of course they would be able to use
gueries/interfaces in the Toolkit Layer.

These guidelines would allow vendors and users to independently build Toolkit and Extensions to ASIS that will:
* Promote portability for tools using the Toolkit interfaces;
» Organize additions along clear paths;
* Expand easily while avoiding name collisions;
* Mix and match with toolkits from other vendors; and
» Provide the foundation for integrated tool sets.

Profiler Report

Elapsed time: 30.7045 seconds.

ACCEPT Pack_is_a_prime.Task_is_prime.start Id 11
30 calls using 10.2778 seconds (% 33.4733)

TASK Main180.Calc Id
30 calls using 9.96

seconds (% 32.4476)

TASK Pack_is_a_prim¢.Task_is_prime Id 10
30 calls using 9.9523 seconds (% 32.4132)

PROC Main180 Id
30 calls using (0.3799 seconds (% 1.2372)

2 cal&sm 0.0526 seconds (% 0.1711

AN /

procedureM in180 ./

Call Tree Report

stprofiler

| entry T1.Go at line 45

| entry T2.Go at line 46

| procedure Proc1l at line 48

| | function "+" at line 30

| | function "<" atline 31

| | procedure Procl at line 32 * RECURSIVE * * REPEAT *

| Grocedure Main180 at line 49
/r?rentry Calc.Go at line 22
entry Thread_1.finish at line 24
procedure Put at line 25
procedure Put at line 26 * REPEAT *
function Positive at line 26
procedure New_Line at line 26
entry Thread_2.finish at line 28
procedure Put at line 29 * REPEAT *
procedure Put at line 30 * REPEAT *
function Positive at line 30
procedure New_Line at line 30 * REPEAT *
entry Thread_3.finish at line 32
procedure Put at line 33 * REPEAT *

with main180;

: Task_is_prime; with Ada.Text_IO;

Thread:

Factoria). Positive;
Prime /: Boolean; procedure Testprofilegls
task Calc is | : Integer;

entry Go; ' ’
end Calc; @ task t

. entry Go; a
task body Calc is separab/ end Do Main:
begin task body Do_Main is separate;

Calc.Go; T1, T2: Do_Main;

Thread_1.Finish(factorial); -- Obtain resu

procedure Put at line 34 * REPEAT *
procedure New_Line at line 34 * REPEAT *
rocedure Procl at line 50 * REPEAT *
rocedure Proc2 at line 51

|

|

|

|

|

|

|

|

|

|

|

|

| procedure Put at line 34 * REPEAT *
|

|

p

p

| procedure Procl at line 38 * REPEAT *

separate(Main180)

task body Calc is

begin
accept GO;
Thread_1.Start(5);
Thread_2.Start(7);
delay 1.0; --### DEBUG
Thread_3.Start(97);

end Calc;

procedure Main180 IS

-- Start factorial calculation
-- Start factorial calculation

-- Start is_prime calculation

Figure 2 Integrated Tool Output with Navigation Links

Discussion on Proposed Guidelines

One of the things that ASISWG can facilitate is the sharing of tests among ASIS vendors — they can be placed on the
ASIS Home Page. It was suggested that initially a package or a subprogram might be made available using the
nomenclature:

Asis. Toolkits.Aonix.DoSomething
Then when it is shown to be useful to different users and portable amongst different vendors, it can be “elevated” to:
Asis.Toolkits.DoSomething

and placed in a different directory on the ASIS Home Page. Some discussion followed which indicated that there
was really no reason to have the intermediate step (vendor-specific sub-packages) — simply hame the package
Asis.Toolkits.DoSomething and place the specification and body on the ASIS Home Page. It was recognized that
there might be some value in using the vendor-specific sub-package naming convention as it also implies that the
package has been tested in that environment. Also, it would eliminate the possibility of name clashes for ASIS
vendors prior to registration on the ASIS Home Page. The ASISWG would accept contributions in both forms to be
placed on the ASIS Home Page. Both package specifications and bodies should be provided. Comments should be
used to explicitly identify vendor environments to which the code was tested. As artifacts are provided, vendors
could identify that code is portable to their environment. It was noted after the workshop that it would be easier to
maintain the compatibility information in a spreadsheet than in comments. The spreadsheet would identify which
environments the code has been tested and who tested the code.

It was noted that defining an ASIS toolkit package and placing it on the ASIS Home Page is not a requirement that
other vendors implement that particular package. But, if in the future, a vendor decides to implement the package, it
must be implemented as described.

Brainstorming
The following areas were brainstormed.

» Data Decomposition Annex -ASIS Data Decomposition appendixes can be used for data dictionary
applications. Steve said that a specific customer is still using Data Decomposition for one of their specific
applications.

* Tool Launchers —Tool Launchers would allow a common way to start one or more ASIS-based tools. The user
would first select the particular units or files or context and the tool launcher would execute. Steve Deller said
that Rational uses a Configuration Management argument line, containing one or more compilation units/files
and a switch indicating closure. There should be a minimal set of actions that the tool launcher should perform,
e.g., identification of context, closure, etc. After much discussion, Joe Wisniewski took an action item to
propose the functionality of a tool launcher.

» Static versus Known_Value -There was some discussion concerning the meaning of static expressions and
expressions with a known value. The interface "Is_Static" was originally in Rational's LRM interface (one of
the early ancestors of ASIS). Known_Value is implementation-dependent. Extensions (note -- not toolkit)
should try to be made a "standard" extension -- if there is no agreement, then it is a "non-standard" extension.

 CORBA IDL and ASIS — Roy Bell brought up an issue concerning the ASIS database and its possible
usefulness for CORBA IDL. As we know, Ada is central to ASIS. The good news is that it fully supports all of
the syntax and semantics of Ada. The bad news is that it may not be too adaptable to other languages. Roy is
specifically interested in CORBA IDL. It would be really great if we had a way to load the contents of CORBA
IDL into an ASIS database. We could then query the database for the contents of the IDL. Perhaps some of the
gueries would not have a meaning with IDL, but IDL is surprisingly similar to an Ada specification. In fact, we
should be proud that the CORBA chapter that describes how IDL should be mapped to Ada is the shortest of all
of the mapping chapters in the CORBA standard.

One of the facilities that a CORBA vendor must supply is an "IDL repository”. The CORBA standard specifies
the queries that can be made on the repository. These queries are sufficiently powerful that a sophisticated
client can "discover" services that have been specified in IDL. This in turn means that a CORBA client can use
the results of the queries to formulate a request for a service. If we could load IDL into an ASIS repository it
should be very easy to use ASIS queries to implement the CORBA requirements.

Roy admits that he is not too familiar with all of the details of ASIS, so he does not know all of the problems

that can occur if we tried to load another language into an ASIS database. Hopefully, the mapping would not be
too bad, but we don't know how bad it would be. Roy said that he would assume that queries on Ada elements
that do not have a corresponding equivalent in IDL would result in a null response. A bigger problem would be
CORBA IDL elements that do not have a corresponding equivalent in Ada. Two that come to mind are 1) IDL
exceptions have data elements, and 2) IDL exceptions are associated with specific functions or procedures. Roy
doesn't think that these two issues would present a problem to an implementer of an IDL repository, but they are
information that some CORBA-ASIS users may wish to have. Those wishing to obtain more information should
contact Roy Bell at RMBell @ ACM.Org.

» Future Directions —Currently, the major players are Aonix, ACT, and Rational. Suggested packages should be
placed on a "neutral” site — SIGAda's ASIS Home Page can be this location. Whenever a package is placed on
the Home Page, there should also be a test driver -- a unit test driver -- which can test more than one thing in the
package.

Conclusion

The use of Toolkit and Extension Layers appear to be very important to support the ASIS community. The Toolkit
Layer will be portable and interchangeable with different vendors providing more powerful analysis capabilities to
the ASIS community. It will provide higher level abstractions to more directly support the analysis community. It
will serve as a valuable teaching resource to those new to ASIS to help reduce the learning curve. The Extension
Layer can extend ASIS to serve many needs, which are out of scope for ASIS, such as dynamic semantics. It can
also be used to fill in a number of holes and gaps in the ASIS international standard.

Clyde Roby will prepare the ASIS Home Page to receive Toolkit Layer contributions from the ASIS community. All
are encouraged to contribute packages, which will benefit the Ada and ASIS communities. We would like to thank
the Workshop participants for the valuable insight they provided.

Respectfully submitted,

e K3 64y J- Z 2

Clyde G. Roby Jr. Steven Blake
ASISWG Recorder Workshop Chair
roby@ida.org sblake@aonix.com

The ASISWG Chair gratefully thanks Steve Blake and Clyde Roby for conducting a very successful
workshop during my recovery from hip replacement surgery. The outcome of this workshop is valuable in
providing the ASIS community with clear direction as to how to work together to provide more powerful
analysis tools for the Ada community.

bl B 2T
William Currie Colket

ASISWG Chair
colket@acm.org | colket@mitre.org

