
basic_maze.2.ada

bell gc033 97/11/01 14:07 patterns.ss/abstract_factory_sol.wrk

1

with Map_Site;
with Room;
with Maze;
with Create_Maze;
with Maze_Factory;
procedure Basic_Maze is

The_Factory : Maze_Factory.Object;
My_Basic_Maze : Maze.Pointer := Create_Maze (The_Factory);
The_Room : Room.Object’Class :=

Maze.Room_Of (1, In_The_Maze => My_Basic_Maze.all).all;

use Map_Site;

begin
Room.Enter (The_Room);

for The_Direction in Room.Direction loop
declare

My_Maze_Location : Map_Site.Object’Class
renames Room.Get_Side (The_Room, The_Direction).all;

begin
Enter (My_Maze_Location);

end;
end loop;

end Basic_Maze;

bombed_maze.2.ada

bell gc033 97/11/01 14:07 patterns.ss/abstract_factory_sol.wrk

1

with Map_Site;
with Room;
with Maze;
with Create_Maze;
with Maze_Factory.Bombed;
procedure Bombed_Maze is

The_Factory : Maze_Factory.Bombed.Object;
My_Basic_Maze : Maze.Pointer := Create_Maze (The_Factory);
The_Room : Room.Object’Class :=

Maze.Room_Of (1, In_The_Maze => My_Basic_Maze.all).all;

use Map_Site;

begin
Room.Enter (The_Room);

for The_Direction in Room.Direction loop
declare

My_Maze_Location : Map_Site.Object’Class
renames Room.Get_Side (The_Room, The_Direction).all;

begin
Enter (My_Maze_Location);

end;
end loop;

end Bombed_Maze;

create_maze.1.ada

bell gc033 97/11/01 14:07 patterns.ss/abstract_factory_sol.wrk

1

with Maze;
with Maze_Factory;
function Create_Maze

(Using_Factory : in Maze_Factory.Object’Class) return Maze.Pointer;

create_maze.2.ada

bell gc033 97/11/01 14:07 patterns.ss/abstract_factory_sol.wrk

1

with Map_Site;
with Room;
with Wall;
with Door;
with Maze;
with Maze_Factory;
function Create_Maze (Using_Factory : in Maze_Factory.Object’Class)

return Maze.Pointer is
Result : Maze.Pointer := Maze_Factory.Make_Maze (Using_Factory);
Room1 : Room.Pointer := Maze_Factory.Make_Room (Using_Factory, 1);
Room2 : Room.Pointer := Maze_Factory.Make_Room (Using_Factory, 2);
A_Door : Door.Pointer := Maze_Factory.Make_Door

(Using_Factory, Room1, Room2);

begin
Maze.Add (Room1, Result.all);
Maze.Add (Room2, Result.all);

Room.Set_Side (Room1.all, Room.North,
Map_Site.Pointer (Maze_Factory.Make_Wall (Using_Factory)));

Room.Set_Side (Room1.all, Room.East, Map_Site.Pointer (A_Door));
Room.Set_Side (Room1.all, Room.South,

Map_Site.Pointer (Maze_Factory.Make_Wall (Using_Factory)));
Room.Set_Side (Room1.all, Room.West,

Map_Site.Pointer (Maze_Factory.Make_Wall (Using_Factory)));

Room.Set_Side (Room2.all, Room.North,
Map_Site.Pointer (Maze_Factory.Make_Wall (Using_Factory)));

Room.Set_Side (Room2.all, Room.East,
Map_Site.Pointer (Maze_Factory.Make_Wall (Using_Factory)));

Room.Set_Side (Room2.all, Room.South,
Map_Site.Pointer (Maze_Factory.Make_Wall (Using_Factory)));

Room.Set_Side (Room2.all, Room.West, Map_Site.Pointer (A_Door));

return Result;
end Create_Maze;

door.1.ada

bell gc033 97/11/01 14:07 patterns.ss/abstract_factory_sol.wrk

1

with Map_Site;
with Room;
package Door is

type Object is new Map_Site.Object with private;
type Pointer is access all Object’Class;

procedure Enter (The_Door : in out Object);
procedure Create (The_Door : in out Object; Room1, Room2 : in Room.Pointer);

function Other_Side (Of_Door : in Object;
From_The_Room_Of : in Room.Pointer)
return Room.Pointer;

private
type Object is new Map_Site.Object with

record
Is_Open : Boolean := False;
Side1, Side2 : Room.Pointer;

end record;
end Door;

door.2.ada

bell gc033 97/11/01 14:07 patterns.ss/abstract_factory_sol.wrk

1

with Map_Site;
with Ada.Text_Io;
package body Door is

procedure Put_Line (Item : in String) renames Ada.Text_Io.Put_Line;

procedure Enter (The_Door : in out Object) is
begin

Put_Line ("Entered Door between room number: " &
Natural’Image (Room.Number_Of (The_Door.Side1.all)) &
" and " &
Natural’Image (Room.Number_Of (The_Door.Side2.all)));

end Enter;
procedure Create (The_Door : in out Object;

Room1, Room2 : in Room.Pointer) is
begin

The_Door := (Map_Site.Object with
Is_Open => False,
Side1 => Room1,
Side2 => Room2);

end Create;
function Other_Side (Of_Door : in Object;

From_The_Room_Of : in Room.Pointer)
return Room.Pointer is

begin
if Room.Number_Of (Of_Door.Side1.all) =

Room.Number_Of (From_The_Room_Of.all) then
return Of_Door.Side2;

elsif Room.Number_Of (Of_Door.Side2.all) =
Room.Number_Of (From_The_Room_Of.all) then

return Of_Door.Side2;
else

Put_Line
("Error: Received room that does not match either side of door");

return null;
end if;

end Other_Side;
end Door;

map_site.1.ada

bell gc033 97/11/01 14:07 patterns.ss/abstract_factory_sol.wrk

1

package Map_Site is
type Object is abstract tagged private;
type Pointer is access all Object’Class;

procedure Enter (The_Object : in out Object) is abstract;

private
type Object is abstract tagged null record;

end Map_Site;

maze.1.ada

bell gc033 97/11/01 14:07 patterns.ss/abstract_factory_sol.wrk

1

with Room;
package Maze is

type Object is tagged private;
type Pointer is access all Object’Class;

procedure Add (The_Room : in Room.Pointer;
To_The_Maze : in out Object’Class);

function Room_Of (Number : in Positive; In_The_Maze : in Object’Class)
return Room.Pointer;

private
type List_Of_Room_Type is array (1 .. 2) of Room.Pointer;
type Object is tagged

record
List_Of_Rooms : List_Of_Room_Type;

end record;
end Maze;

maze.2.ada

bell gc033 97/11/01 14:07 patterns.ss/abstract_factory_sol.wrk

1

with Room;
with Ada.Text_Io;
package body Maze is

procedure Put_Line (Item : in String) renames Ada.Text_Io.Put_Line;

procedure Add (The_Room : in Room.Pointer;
To_The_Maze : in out Object’Class) is

Room_Number : constant Positive := Room.Number_Of (The_Room.all);
begin

if Room_Number in To_The_Maze.List_Of_Rooms’Range then
To_The_Maze.List_Of_Rooms (Room_Number) := The_Room;

else
Put_Line ("Error: Received room that is not part of the maze. " &

"Its number is: " & Natural’Image (Room_Number));
end if;

end Add;

function Room_Of (Number : in Positive; In_The_Maze : in Object’Class)
return Room.Pointer is

begin
if Number in In_The_Maze.List_Of_Rooms’Range then

return In_The_Maze.List_Of_Rooms (Number);
else

Put_Line ("Error: Room number: " & Natural’Image (Number) &
" does not belong to maze");

return null;
end if;

end Room_Of;
end Maze;

maze_factory.1.ada

bell gc033 97/11/01 14:07 patterns.ss/abstract_factory_sol.wrk

1

with Wall;
with Room;
with Door;
with Maze;
package Maze_Factory is

type Object is tagged null record;
type Pointer is access all Object’Class;

function Make_Maze (The_Factory : in Object) return Maze.Pointer;
function Make_Wall (The_Factory : in Object) return Wall.Pointer;
function Make_Door (The_Factory : in Object;

From_Room, To_Room : in Room.Pointer)
return Door.Pointer;

function Make_Room (The_Factory : in Object; Number : in Positive)
return Room.Pointer;

end Maze_Factory;

maze_factory.2.ada

bell gc033 97/11/01 14:07 patterns.ss/abstract_factory_sol.wrk

1

package body Maze_Factory is

function Make_Maze (The_Factory : in Object) return Maze.Pointer is
begin

return new Maze.Object;
end Make_Maze;
function Make_Wall (The_Factory : in Object) return Wall.Pointer is
begin

return new Wall.Object;
end Make_Wall;
function Make_Door (The_Factory : in Object;

From_Room, To_Room : in Room.Pointer)
return Door.Pointer is

Result : Door.Pointer := new Door.Object;
begin

Door.Create (Result.all, From_Room, To_Room);
return Result;

end Make_Door;
function Make_Room (The_Factory : in Object; Number : in Positive)

return Room.Pointer is
Result : Room.Pointer := new Room.Object;

begin
Room.Create (Result.all, Number);
return Result;

end Make_Room;
end Maze_Factory;

maze_factory.bombed.1.ada

bell gc033 97/11/01 14:07 patterns.ss/abstract_factory_sol.wrk

1

with Room.Bombed;
with Wall.Bombed;
package Maze_Factory.Bombed is

type Object is new Maze_Factory.Object with null record;
type Pointer is access all Object’Class;

-- inherit function make_maze
-- inherit function make_door
function Make_Room (The_Factory : in Object; Number : in Positive)

return Room.Pointer;
function Make_Wall (The_Factory : in Object) return Wall.Pointer;

end Maze_Factory.Bombed;

maze_factory.bombed.2.ada

bell gc033 97/11/01 14:07 patterns.ss/abstract_factory_sol.wrk

1

package body Maze_Factory.Bombed is

function Make_Room (The_Factory : in Object; Number : in Positive)
return Room.Pointer is

Result : Room.Bombed.Pointer := new Room.Bombed.Object;
begin

Room.Bombed.Create (Result.all, Number);
return Room.Pointer (Result);

end Make_Room;

function Make_Wall (The_Factory : in Object) return Wall.Pointer is
begin

return new Wall.Bombed.Object;
end Make_Wall;

end Maze_Factory.Bombed;

room.1.ada

bell gc033 97/11/01 14:07 patterns.ss/abstract_factory_sol.wrk

1

with Map_Site;
package Room is

type Direction is (North, South, East, West);

type Object is new Map_Site.Object with private;
type Pointer is access all Object’Class;

procedure Enter (The_Room : in out Object);
procedure Create (The_Room : in out Object; With_The_Number : in Positive);
procedure Set_Side (Of_The_Room : in out Object’Class;

In_Direction : in Direction;
To_The_Value : in Map_Site.Pointer);

function Get_Side (Of_The_Room : in Object’Class;
In_Direction : in Direction) return Map_Site.Pointer;

function Number_Of (The_Room : in Object’Class) return Positive;
function "=" (Left, Right : in Object’Class) return Boolean;

private
type Side_Type is array (Direction) of Map_Site.Pointer;
type Object is new Map_Site.Object with

record
Side : Side_Type;
Number : Natural := 0;

end record;
end Room;

room.2.ada

bell gc033 97/11/01 14:07 patterns.ss/abstract_factory_sol.wrk

1

with Ada.Text_Io;
package body Room is

procedure Put_Line (Item : in String) renames Ada.Text_Io.Put_Line;

procedure Enter (The_Room : in out Object) is
begin

Put_Line ("Entered Room Number: " & Natural’Image (The_Room.Number));
end Enter;
procedure Create (The_Room : in out Object;

With_The_Number : in Positive) is
begin

The_Room.Number := With_The_Number;
end Create;
procedure Set_Side (Of_The_Room : in out Object’Class;

In_Direction : in Direction;
To_The_Value : in Map_Site.Pointer) is

begin
Of_The_Room.Side (In_Direction) := To_The_Value;

end Set_Side;
function Get_Side (Of_The_Room : in Object’Class;

In_Direction : in Direction) return Map_Site.Pointer is
begin

return Of_The_Room.Side (In_Direction);
end Get_Side;
function Number_Of (The_Room : in Object’Class) return Positive is
begin

return The_Room.Number;
end Number_Of;
function "=" (Left, Right : in Object’Class) return Boolean is
begin

return Left.Number = Right.Number;
end "=";

end Room;

room.bombed.1.ada

bell gc033 97/11/01 14:07 patterns.ss/abstract_factory_sol.wrk

1

package Room.Bombed is
type Object is new Room.Object with private;
type Pointer is access all Object’Class;

procedure Enter (The_Room : in out Object);
procedure Create (The_Room : in out Object; With_The_Number : in Positive);

private
type Object is new Room.Object with

record
Contains_Bomb : Boolean := False;
Bomb_Has_Discharged : Boolean := False;

end record;
end Room.Bombed;

room.bombed.2.ada

bell gc033 97/11/01 14:07 patterns.ss/abstract_factory_sol.wrk

1

with Ada.Text_Io;
package body Room.Bombed is

procedure Put_Line (Item : in String) renames Ada.Text_Io.Put_Line;

procedure Enter (The_Room : in out Object) is
begin

Enter (Room.Object (The_Room)); -- downcast and call parent
if The_Room.Contains_Bomb then

if The_Room.Bomb_Has_Discharged then
Put_Line ("room is bombed out!");

else
Put_Line ("Bomb could go off any minute");

end if;
end if;

end Enter;

procedure Create (The_Room : in out Object;
With_The_Number : in Positive) is

Basic_Room : Room.Object;
begin

Create (Basic_Room, With_The_Number);
The_Room := (Basic_Room with

Contains_Bomb => (With_The_Number = 2),
Bomb_Has_Discharged => False);

end Create;
end Room.Bombed;

wall.1.ada

bell gc033 97/11/01 14:07 patterns.ss/abstract_factory_sol.wrk

1

with Map_Site;
package Wall is

type Object is new Map_Site.Object with private;
type Pointer is access all Object’Class;

procedure Enter (The_Wall : in out Object);

private
type Object is new Map_Site.Object with null record;

end Wall;

wall.2.ada

bell gc033 97/11/01 14:07 patterns.ss/abstract_factory_sol.wrk

1

with Ada.Text_Io;
package body Wall is

procedure Enter (The_Wall : in out Object) is
begin

Ada.Text_Io.Put_Line ("Entered Wall");
end Enter;

end Wall;

wall.bombed.1.ada

bell gc033 97/11/01 14:07 patterns.ss/abstract_factory_sol.wrk

1

package Wall.Bombed is
type Object is new Wall.Object with private;
type Pointer is access all Object’Class;

procedure Enter (The_Wall : in out Object);

private
type Percent_Type is delta 0.01 range 0.0 .. 1.0;
type Object is new Wall.Object with

record
Percent_Damage : Percent_Type := 0.0;

end record;
end Wall.Bombed;

wall.bombed.2.ada

bell gc033 97/11/01 14:07 patterns.ss/abstract_factory_sol.wrk

1

with Ada.Text_Io;
package body Wall.Bombed is

procedure Enter (The_Wall : in out Object) is
begin

Enter (Wall.Object (The_Wall)); -- downcast and call parent
Ada.Text_Io.Put_Line ("Percent damage is: " &

Percent_Type’Image (The_Wall.Percent_Damage));
end Enter;

end Wall.Bombed;

