
Industrial Experience with SPARK

Roderick Chapman
Praxis Critical Systems Limited,

20 Manvers Street,
Bath BA1 1PX, U.K.
+44 1225 466991

rod@praxis-cs.co.uk

1. ABSTRACT
This paper considers a number of large, real-
world projects that are using SPARK—an
annotated sublanguage of Ada that is
appropriate for the development of high-
integrity systems. Three projects are
considered in some detail where SPARK has
made a contribution to meeting the most
stringent software engineering standards. The
projects are the Ship/Helicopter Operational
Limits Instrumentation System (UK Interim
Defence Standard 00-55), the MULTOS CA (a
high-security system developed to the
standards of ITSEC level E6), and the
Lockheed C130J Mission Computer (DO-178B
Level A). A less successful project is also
described. The lessons learnt from these
projects show that SPARK offers a cost-
effective approach for the construction of
high-integrity software when it is deployed
judiciously within an appropriate software
development process.
1.1 Keywords
SPARK, Ada, static analysis, proof, Def. Stan. 00-55,
ITSEC E6, DO-178B, industrial case studies.

2. INTRODUCTION
Most engineers in the Ada industry know something of
SPARK, following a number of papers and tutorials in this
and other conferences [1], and the publication of “The
SPARK book”[2]. Simply knowing what SPARK is,

though, is only half the story. Further pertinent questions
include “Who’s using SPARK?”, “What factors separate
successful from unsuccessful SPARK projects?”, and “How
can SPARK help meet the various industry standards for
critical software?”

SPARK is an annotated sublanguage of Ada that is suitable
for the construction of high-integrity systems. The design
of SPARK aims to eliminate ambiguity, erroneous
behaviour, and implementation dependence. The language
is also amenable to strong forms of static analysis, such as
information flow analysis, and program proof, via its
supporting tool—the SPARK Examiner.

This paper considers a number of real-world projects in an
attempt to illustrate how SPARK meets the needs of various
industries and standards.

3. SHOLIS
The Ship/Helicopter Operational Limits Instrumentation
System (SHOLIS) is a ship-borne computer system that
advises ship’s crew on the safety of helicopter operations
under various scenarios. It is a fault-tolerant, real-time,
embedded system and is the first system constructed to
attempt to meet all the requirements of UK Interim Defence
Standard (IDS) 00-55 [3] for safety-critical software. IDS
00-55 sets some bold challenges: it calls for formalized
safety management and quality systems, formal
specification of the system’s behaviour, formal proof (at
both the specification and code levels), fully independent
verification and validation, and static analysis of program
properties such as information flow, timing and memory
usage. The software for SHOLIS was specified, designed
and developed by Praxis Critical Systems.

SHOLIS is by no means a trivial program, comprising some
13000 declarations and 14000 statements. Various forms
of static analysis were used, according to a unit’s position in
the system, its safety-integrity level, and the software
hazards analysis. All software was subject to full
information flow analysis and proof of freedom from
predefined exceptions. The code which was designated as
being safety critical was also subject to proof of partial
correctness against its specification, which was written in
the Z notation [13]. Proof that the system’s top-level safety

properties were maintained by the code was also carried
out.

The depth and breadth of static analysis used on SHOLIS is
probably the most novel aspect of the project. Static
analysis was used to show separation of critical and non-
critical functions. Information flow analysis and proof of
the absence of predefined exceptions were used to show
functional separation, while static analysis of I/O usage,
memory and timing were used to show the separation of
non-functional properties.

The code proof discharged some 9000 verification
conditions—the largest such effort we were aware of at the
time. When SHOLIS was constructed (1996 and 1997),
proof was traditionally seen as both too difficult (“don’t you
need a Ph.D. in Maths”) and having no effective tool
support. Both of these points were found to be untrue.
While it is undoubtedly true that skilled staff are required,
the qualification and experience required are only those that
would be expected for a qualified engineer working in a
safety-critical environment anyway. The tool support
available at the time was certainly sufficient, although we
did find many areas where the SPARK Examiner could be
improved—many of these discoveries have since been
incorporated in subsequent Examiner releases.

Finally it is worth noting that machine resources have
increased by some two orders of magnitude since SHOLIS
was developed. SHOLIS was developed by a team of
approximately 8 engineers using a single UNIX server—it
is now readily possible to supply at least ten times that
computing power to every engineer at reasonable cost. A
standard $1000 PC is now capable of supporting significant
proof work, most of which is automated by theorem-
proving tools. Proofs which took days to simplify and
replay in the past could be reproducible in minutes today.
The entire proof of SHOLIS could be reproduced overnight
with reasonable ease. This realization brings “regression
proof” (as opposed to “regression testing”) within reach for
new projects—a technique we hope to field in future. More
information on SHOLIS, and in particular the proof
activities, can be found in [4]. The most important finding
was that proof (of both Z and code) was significantly more
cost-effective at finding faults than traditional testing
activities.

4. The MULTOS CA
The Multi-Application Operating System (MULTOS) is a
smart-card OS that allows several applications to reside on
a single "MULTOS Carrier Device" (MCD)—more
commonly known as a "smart-card". MULTOS enforces
separation of applications, and applications can be loaded
and deleted dynamically. A key security concern is the
prevention of forging MCDs and applications. To this end,
the data that is used to enable MCDs and applications
includes digital certificates, which are signed by the
MULTOS Certification Authority (CA).

A computer system at the core of the CA issues these
certificates, and is subject to the most stringent security
constraints. The software for this system was designed and
developed by Praxis Critical Systems to meet the standards
of the UK ITSEC scheme [5] at the most demanding "E6"
level.

The system is distributed: a single standard PC acts as the
user-interface, but performs no security critical functions. A
second group of industrial PCs are located in a tamper-
proof environment—these perform all security critical
functions, such as the signing of certificates, encryption of
output files, and the generation of cryptographic keys.

The software developed for the CA has a slightly novel
architecture. The following requirements were considered:

Availability. The software is designed to run
uninterrupted, and cannot be upgraded or even restarted
without significant effort. Avoiding memory-leaks and
unexpected behaviour (e.g. exceptions) was therefore a
major goal. The system is also designed to withstand the
total failure of one or more machines in the tamper-proof
environment.

COTS. The developers decided to use as little off-the-shelf
software as possible, since the security and failure
properties of such components could not be depended upon.
For instance, we chose to design and implement our own
inter-process communications and remote procedure call
mechanisms, rather than relying on some COTS solution.

Lifetime. The system has an expected lifespan of decades.
"Fast-moving" development techniques or technologies (i.e.
those that weren't likely to be "in fashion" next year) were
rejected.

Separation of Security Concerns. Each part of the system
was classified as security-enforcing, security-related, or not
secure. In particular, the entire user-interface and the
software outside of the tamper-proof environment are
considered insecure. The GUI is "dumb" in that it knows
nothing of the application. All data coming from the GUI is
considered insecure, and is rigorously validated by the
system. Data displayed on the GUI was carefully analysed
as having no threat to security.

Throughput. The CA is required to generate certificates at
a significant rate. This entailed the provision of specialized
cryptographic hardware and required concurrency to be
employed in some particularly time-consuming operations.

The following table shows the programming languages
used, the rough proportion of the total software written in
each language, and the main functions performed. Coding
the entire system in SPARK was judged to be simply
impractical. Several functions, such as the database
interface, the interface to the Win32 API, top-level
concurrency, and the GUI were clearly beyond the scope of
SPARK—the mixed-language approach reflected a simple

"right tools for the job" approach to the construction of the
various subsystems.

SPARK 30% "Security kernel" of the tamper-proof
software.

Ada95 30% Infrastructure (concurrency, inter-task
and inter-process communications,
database interfaces etc.), bindings to
ODBC and Win32.

C++ 30% All GUI components (Microsoft MFC)

C 5% Device drivers and some standard
cryptographic algorithms.

SQL 5% Database stored procedures.

It is worth noting that SPARK is almost certainly the only
industrial strength language that meets the requirements of
ITSEC E6, which not only calls for the use of standardized
languages, but goes on to require that “The definition of the
programming languages shall define unambiguously the
meaning of all statements used in the source code” [6].

The use of Ada95 largely followed a "Ravenscar-like"
profile [15]. All partitions consist of a fixed number of
library level tasks communicating via protected objects and
rendezvous. Dynamic allocation (of tasks, memory etc.)
was avoided. We also avoided language features whose
implementation was still unproven, such as user-defined
storage pools, controlled types, asynchronous transfer of
control, requeue and so on. Communication between
processes is achieved using Win32 named pipes, rather than
using the facilities of the Ada95 distributed systems annex.
This was largely a practical choice—the DSA was not
implemented by the project's compiler when the project
started.

The security-enforcing core of the system is implemented in
SPARK. The static analysis offered by SPARK proved
useful here. Dataflow errors can cause subtle security
problems—for example, an uninitialised variable might just
get an initial value which happens to be a piece of
cryptographic key material "left over" on the stack from the
execution of another subprogram. The absence of such
problems in SPARK is a useful property.

Information-flow analysis also proved useful. The
separation of some data sections (i.e. "Information stored in
variable X cannot end up leaking into variable Y") gave
confidence that certain security properties were being
maintained by the code. This use of the Examiner is an
interesting aside: the research conducted in the late 1970's
that led to the development of SPARK was originally aimed
at the needs of high-security computing [7][8]. Clearly, this
research can be judged successful—it just took 20 years to
find a practical, commercial application!

The MULTOS CA demonstrates the use of SPARK in a
large, mixed-language development. A crucial part of the
design is the split between Ada95 and SPARK in the
security-related software. This was considered at great
length in the early days of the project. It is a common
misunderstanding that SPARK is an "all-or-nothing"
language, but this is never the case in practice—even
SHOLIS included some small units coded in assembler.
"Drawing the line" between SPARK and non-SPARK is a
crucial design activity, embodied in our "INFORMED"
design approach [9], which is now delivered to all SPARK
users.

5. LOCKHEED C130J
The Lockheed C130J is the latest in a long line of military
and commercial transport aircraft, commonly known as the
"Hercules". The C130J shares the same airframe design as
previous models, but features significantly improved
avionics, engines, and (most noticeably) 6-bladed
composite propellers.

The core of the new avionics system is the Mission
Computer (MC), which performs the majority of mission
critical functions on the aircraft.

The MC is specified using the CoRE technique [10], using
so-called "Parnas Tables." These offer a formal tabular
notation for relating inputs (or "monitored variables") to
required outputs (or "controlled variables"). The core of
the MC software (approximately 80%) is implemented in
SPARK, and was subject to information flow analysis prior
to final integration and testing. SPARK was found to be a
natural fit with the larger context of Lockheed’s mature
development processes, which aim for “Right first time”
software.

Unusually, the aircraft was to be dual-certified for both civil
and military use. This required it to meet several standards,
including DO178B[14] for civil applications. The UK
Royal Air Force, as lead military customer, required certain
additional verification activities, most notably static
analysis.

In this area, SPARK proved to be a major success. MC/DC
test coverage analysis is known to be extremely expensive
to carry out, is hard on staff morale and time, and often
forms a serious bottleneck in project owing to its
dependence on the availability of real target hardware.
There is also some question over its effectiveness as a
verification activity, since the effort required is often at the
expense of other (possibly more useful) activities.

In meeting the needs of DO-178B effectively, some simple
observations can be made:

Don’t debug erroneous programs on the target.
Programs which contain a data-flow error are said to be
"erroneous" in Ada terminology. Such defects are
notoriously difficult to find, especially on a target system
that might have limited debugging and I/O support. In one

such case, some 30 person days (and some nights) of rig-
based testing were spent failing to find a simple data-flow
error in a function. The Examiner detected this problem
trivially, needing approximately 1 person-hour of effort to
locate and analyse the offending package.

The target forms a bottleneck. Most projects employ a
large team of engineers, but typically only have one or two
realistic target systems, which quickly become a bottleneck
in integration, testing, and verification if too much reliance
is placed upon them.

Simplify code structure. The complexity of MC/DC
analysis is directly related to the structural complexity of
the source and object code. A key goal, therefore is to
eliminate unnecessary code, such as predefined checks,
from the object code.

These observations lead directly to some key features of
SPARK, and how they fit within this context:

Static analysis. Semantic checking, data- and information-
flow analysis, and program proof are all forms of static
analysis—they are performed without running the program,
and can be performed on incomplete programs during
development. Moreover, such analysis can be performed
by all project engineers, without access to the final target
hardware. SPARK eliminates erroneous behaviour (such as
the above-mentioned data-flow errors), so these problems
cannot even reach the integration and test phase.

This approach was used on the C130J MC to great effect.
Lockheed have reported an 80% saving in the expected
budget allocated to MC/DC testing, yet coding proceeded at
near normal Ada rates. On a system the size of the MC, this
represents a significant sum of money! SPARK cannot take
all the credit for this: other significant factors included the
maturity of Lockheed’s processes, the use of formal
requirements, and the ability to generate structural test
cases directly from the CoRE specification of units.
SPARK did contribute directly, in that the code reaching
MC/DC testing exhibited an unusually low fault density,
reported to be less than one tenth of the expected industry
norm for safety critical software—a direct testament to the
usefulness of static analysis within the process.
Furthermore, this saving was achieved by using only the
most basic level of SPARK flow analysis—proof work was
not carried out prior to MC/DC testing (although this was
later performed in the UK).

In the context of DO-178B, SPARK offers further useful
facilities:

Proof of exception freedom. It is common practice when
Ada is used in real-time embedded systems to compile
"with checks off" to reduce code size and improve
performance. This approach carries some risk, though,
since a program may actually contain instances of
predefined exceptions. Confidence in the code is usually
built through informal analysis such as code reviews, or
incomplete techniques such as testing.

SPARK offers an alternative: the proof of the absence of
predefined exceptions. These proofs are a static analysis
(and so, again, can be conducted earlier than testing, and
without reliance on target hardware), and are valid for all
input data, offering a qualitative improvement over testing.
When such proofs are conducted, run-time checks can be
disabled with confidence and evidence can be produced to
show that this is justified.

Simple object code. We have previously demonstrated
that SPARK can be compiled with little or no support from
a run-time library [11]. Moreover, if run-time checks are
disabled as described above, then the resulting object code
is simplified. This implies a significant reduction in the
effort required to conduct MC/DC analysis.

More detail on the C130J, and its use of SPARK, can be
found in [12].

6. A LESS SUCCESSFUL PROJECT
This project aimed to build a SIL4, real-time embedded
control system. The project chose a CASE-driven object-
oriented design style, based on the Shlaer/Mellor notation
with the expectation that this would provide rapid
development. SPARK was selected to meet the regulatory
requirements, but the code was not constructed in SPARK.
Instead, the project aimed to convert the code into SPARK
after testing.

Initial signs were good—the project reported rapid progress
in design and coding. Software integration and the first
attempts to “SPARKify”1 the code showed dark clouds
gathering on the horizon. The code-generator used by the
CASE tool “flattened” the structure of the code so that all
state was at the same (i.e. global) level. In SPARK, this
goes against good practice, which encourages the use of
abstraction, refinement, and hierarchy of state. The code-
generator also generated code which violated some of the
static semantic rules of SPARK, so actual code changes had
to be implemented late in the project—these were
unfortunately seen as “distortions” of the original design.

Progress slowed significantly at this stage, and the
integrated system did not meet its requirements. At present,
the scope and requirements of the system are being
reconsidered.

7. CONCLUSIONS
The four projects described in this paper have illustrated a
number of points.

• SPARK’s early adoption in a project and its influence
on design of systems are perhaps the most important
factors in successful projects. SPARK is sometimes
criticized as being “just a programming language”, but

1 SPARKify. v.tr.colloq./spa:kIfΛI/ to turn Ada into SPARK after

it’s been written. An unfortunate verb we wish had never been
invented.

our experience in this area shows quite the opposite—
the judicious use of SPARK can have a profound (and
we hope positive) influence on systems’ architecture,
design, verification, and cost.

• Retrospective “SPARKification” of code is ill-advised,
and often leads to significant difficulty.

• CASE tools and their associated code-generators do
not (currently) know enough about SPARK. Their
favoured design and code-generation strategies may
lead to code which is perfectly acceptable Ada, but
which does not follow our recommended guidelines for
SPARK.

• SPARK has been both a commercial and a technical
success in meeting three of the most stringent software
standards—Def. Stan. 00-55, DO-178B level A, and
ITSEC E6. In particular, on the C130J, SPARK
contributed to a significant commercial as well as a
technical success.

• The SHOLIS project has shown that program proof is
now a deployable and reasonable verification
technology. The proof of exception freedom has been
shown to of major benefit in meeting the needs of DO-
178B level A, where the difficulties and cost of target-
based testing and MC/DC coverage analysis are so
pronounced.

8. ACKNOWLEDGEMENTS
The author would like to thank Jim Sutton of Lockheed
Martin, Nick Williams, Jonathan Hammond and Peter
Amey of Praxis Critical Systems, and Dave Roberts and
Dave Meadon of Mondex International for their comments
on an early draft of this paper.

9. REFERENCES
[1] Barnes, J., The SPARK way to Correctness is Via

Abstraction. Proceedings of ACM SigAda 2000.

[2] Barnes, J., High Integrity Ada - The SPARK
Approach. Addison Wesley, 1997.

[3] MoD. The procurement of safety critical software in
defence equipment. UK Ministry of Defence, April
1991. Interim Defence Standard 00-55 Parts 1
(Requirements) and 2 (Guidance).

[4] King, S., Hammond, J., Chapman, R.C., and Pryor, A.
Is Proof More Cost Effective than Testing? IEEE
Transactions on Software Engineering. August 2000.

[5] Information Technology Security Evaluation Criteria
(ITSEC), Provisional Harmonised Criteria, Version
1.2, June 1991.

[6] UK ITSEC Developers’ Guide, UK Scheme
Publication No. 4, Part II: Reference for Developers,
Issue 1.0, July 1996.

[7] Bergeretti, J-F., and Carré, B. A., Information-Flow
and Data-Flow Analysis of While Programs. ACM
Transactions on Programming Languages and Systems,
Vol. 7, No. 1, January 1985. p.p. 37–61.

[8] Cohen, E., Information Transmission in Sequential
Programs. In Foundations of Secure Computing, R. A.
DeMillo et al., Ed. Academic Press, New York, 1978,
pp. 297-335.

[9] Praxis Critical Systems. INFORMED Design Method
for SPARK. S.P0468.42.4, Issue 1.0, January 1999.

[10] Software Productivity Consortium. Consortium
Requirements Engineering Guidebook, SPC-92019-
CMC Version 02.00.03, Hendon, VA, USA.
December 1993.

[11] Chapman, R.C., and Dewar, R.B.K., Re-engineering a
Safety Critical System using SPARK95 and GNORT.
in Reliable Software Technologies - Ada Europe 1999.
Harbour, M., and J. De la Puente Eds., Springer Verlag
Lecture Notes in Computer Science Vol. 1622, 1999.
pp. 39-51.

[12] Croxford, M., and Sutton, J., Breaking Through the V
and V Bottleneck. in Ada Europe 1995, Springer
Verlag Lecture Notes in Computer Science Vol. 1031,
1996.

[13] Spivey, J.M., The Z Notation - A Reference Manual.
2nd Edition. Prentice Hall. 1992.

[14] RTCA. Software Considerations in Airborne Systems
and Equipment Certification. RTCA/DO-178B, 1994.

[15] Burns, A., Tasking Profiles, in Proceedings of the 8th
International Real-Time Ada Workshop. ACM Ada
Letters, September 1997.

