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1. ABSTRACT 
This paper considers a number of large, real-
world projects that are using SPARK—an 
annotated sublanguage of Ada that is 
appropriate for the development of high-
integrity systems. Three projects are 
considered in some detail where SPARK has 
made a contribution to meeting the most 
stringent software engineering standards.  The 
projects are the Ship/Helicopter Operational 
Limits Instrumentation System (UK Interim 
Defence Standard 00-55), the MULTOS CA (a 
high-security system developed to the 
standards of ITSEC level E6), and the 
Lockheed C130J Mission Computer (DO-178B 
Level A).  A less successful project is also 
described. The lessons learnt from these 
projects show that SPARK offers a cost-
effective approach for the construction of 
high-integrity software when it is deployed 
judiciously within an appropriate software 
development process. 
1.1 Keywords 
SPARK, Ada, static analysis, proof, Def. Stan. 00-55, 
ITSEC E6, DO-178B, industrial case studies. 

2. INTRODUCTION 
Most engineers in the Ada industry know something of 
SPARK, following a number of papers and tutorials in this 
and other conferences [1], and the publication of “The 
SPARK book”[2].  Simply knowing what SPARK is, 

though, is only half the story.  Further pertinent questions 
include “Who’s using SPARK?”, “What factors separate 
successful from unsuccessful SPARK projects?”, and “How 
can SPARK help meet the various industry standards for 
critical software?” 

SPARK is an annotated sublanguage of Ada that is suitable 
for the construction of high-integrity systems.  The design 
of SPARK aims to eliminate ambiguity, erroneous 
behaviour, and implementation dependence.  The language 
is also amenable to strong forms of static analysis, such as 
information flow analysis, and program proof, via its 
supporting tool—the SPARK Examiner. 

This paper considers a number of real-world projects in an 
attempt to illustrate how SPARK meets the needs of various 
industries and standards. 

3. SHOLIS 
The Ship/Helicopter Operational Limits Instrumentation 
System (SHOLIS) is a ship-borne computer system that 
advises ship’s crew on the safety of helicopter operations 
under various scenarios.  It is a fault-tolerant, real-time, 
embedded system and is the first system constructed to 
attempt to meet all the requirements of UK Interim Defence 
Standard (IDS) 00-55 [3] for safety-critical software. IDS 
00-55 sets some bold challenges: it calls for formalized 
safety management and quality systems, formal 
specification of the system’s behaviour, formal proof (at 
both the specification and code levels), fully independent 
verification and validation, and static analysis of program 
properties such as information flow, timing and memory 
usage.  The software for SHOLIS was specified, designed 
and developed by Praxis Critical Systems. 

SHOLIS is by no means a trivial program, comprising some 
13000 declarations and 14000 statements.  Various forms 
of static analysis were used, according to a unit’s position in 
the system, its safety-integrity level, and the software 
hazards analysis.  All software was subject to full 
information flow analysis and proof of freedom from 
predefined exceptions.  The code which was designated as 
being safety critical was also subject to proof of partial 
correctness against its specification, which was written in 
the Z notation [13].  Proof that the system’s top-level safety 

 
 
 
  
  
 
 
 
 
 
 



properties were maintained by the code was also carried 
out. 

The depth and breadth of static analysis used on SHOLIS is 
probably the most novel aspect of the project.  Static 
analysis was used to show separation of critical and non-
critical functions.  Information flow analysis and proof of 
the absence of predefined exceptions were used to show 
functional separation, while static analysis of I/O usage, 
memory and timing were used to show the separation of 
non-functional properties. 

The code proof discharged some 9000 verification 
conditions—the largest such effort we were aware of at the 
time.  When  SHOLIS was constructed (1996 and 1997), 
proof was traditionally seen as both too difficult (“don’t you 
need a Ph.D. in Maths”) and having no effective tool 
support.  Both of these points were found to be untrue.  
While it is undoubtedly true that skilled staff are required, 
the qualification and experience required are only those that 
would be expected for a qualified engineer working in a 
safety-critical environment anyway.  The tool support 
available at the time was certainly sufficient, although we 
did find many areas where the SPARK Examiner could be 
improved—many of these discoveries have since been 
incorporated in subsequent Examiner releases. 

Finally it is worth noting that machine resources have 
increased by some two orders of magnitude since SHOLIS 
was developed.  SHOLIS was developed by a team of 
approximately 8 engineers using a single UNIX server—it 
is now readily possible to supply at least ten times that 
computing power to every engineer at reasonable cost.  A 
standard $1000 PC is now capable of supporting significant 
proof work, most of which is automated by theorem-
proving tools.  Proofs which took days to simplify and 
replay in the past could be reproducible in minutes today.  
The entire proof of SHOLIS could be reproduced overnight 
with reasonable ease.  This realization brings “regression 
proof” (as opposed to “regression testing”) within reach for 
new projects—a technique we hope to field in future.  More 
information on SHOLIS, and in particular the proof 
activities, can be found in [4].  The most important finding 
was that proof (of both Z and code) was significantly more 
cost-effective at finding faults than traditional testing 
activities. 

4. The MULTOS CA 
The Multi-Application Operating System (MULTOS) is a 
smart-card OS that allows several applications to reside on 
a single "MULTOS Carrier Device" (MCD)—more 
commonly known as a "smart-card".  MULTOS enforces 
separation of applications, and applications can be loaded 
and deleted dynamically.  A key security concern is the 
prevention of forging MCDs and applications.  To this end, 
the data that is used to enable MCDs and applications 
includes digital certificates, which are signed by the 
MULTOS Certification Authority (CA). 

A computer system at the core of the CA issues these 
certificates, and is subject to the most stringent security 
constraints. The software for this system was designed and 
developed by Praxis Critical Systems to meet the standards 
of the UK ITSEC scheme [5] at the most demanding "E6" 
level. 

The system is distributed:  a single standard PC acts as the 
user-interface, but performs no security critical functions. A 
second group of industrial PCs are located in a tamper-
proof environment—these perform all security critical 
functions, such as the signing of certificates, encryption of 
output files, and the generation of cryptographic keys. 

The software developed for the CA has a slightly novel 
architecture.  The following requirements were considered: 

Availability.  The software is designed to run 
uninterrupted, and cannot be upgraded or even restarted 
without significant effort.  Avoiding memory-leaks and 
unexpected behaviour (e.g. exceptions) was therefore a 
major goal.  The system is also designed to withstand the 
total failure of one or more machines in the tamper-proof 
environment. 

COTS.  The developers decided to use as little off-the-shelf 
software as possible, since the security and failure 
properties of such components could not be depended upon.  
For instance, we chose to design and implement our own 
inter-process communications and remote procedure call 
mechanisms, rather than relying on some COTS solution. 

Lifetime.  The system has an expected lifespan of decades. 
"Fast-moving" development techniques or technologies (i.e. 
those that weren't likely to be "in fashion" next year) were 
rejected. 

Separation of Security Concerns.  Each part of the system 
was classified as security-enforcing, security-related, or not 
secure.  In particular, the entire user-interface and the 
software outside of the tamper-proof environment are 
considered insecure.  The GUI is "dumb" in that it knows 
nothing of the application.  All data coming from the GUI is 
considered insecure, and is rigorously validated by the 
system. Data displayed on the GUI was carefully analysed 
as having no threat to security. 

Throughput.  The CA is required to generate certificates at 
a significant rate.  This entailed the provision of specialized 
cryptographic hardware and required concurrency to be 
employed in some particularly time-consuming operations. 

The following table shows the programming languages 
used, the rough proportion of the total software written in 
each language, and the main functions performed. Coding 
the entire system in SPARK was judged to be simply 
impractical.  Several functions, such as the database 
interface, the interface to the Win32 API, top-level 
concurrency, and the GUI were clearly beyond the scope of 
SPARK—the mixed-language approach reflected a simple 



"right tools for the job" approach to the construction of the 
various subsystems. 

 

SPARK 30% "Security kernel" of the tamper-proof 
software. 

Ada95 30% Infrastructure (concurrency, inter-task 
and inter-process communications, 
database interfaces etc.), bindings to 
ODBC and Win32. 

C++ 30% All GUI components (Microsoft MFC) 

C 5% Device drivers and some standard 
cryptographic algorithms. 

SQL 5% Database stored procedures. 

 

It is worth noting that SPARK is almost certainly the only 
industrial strength language that meets the requirements of 
ITSEC E6, which not only calls for the use of standardized 
languages, but goes on to require that “The definition of the 
programming languages shall define unambiguously the 
meaning of all statements used in the source code” [6]. 

The use of Ada95 largely followed a "Ravenscar-like" 
profile [15].  All partitions consist of a fixed number of 
library level tasks communicating via protected objects and 
rendezvous.  Dynamic allocation (of tasks, memory etc.) 
was avoided.  We also avoided language features whose 
implementation was still unproven, such as user-defined 
storage pools, controlled types, asynchronous transfer of 
control, requeue and so on.  Communication between 
processes is achieved using Win32 named pipes, rather than 
using the facilities of the Ada95 distributed systems annex. 
This was largely a practical choice—the DSA was not 
implemented by the project's compiler when the project 
started. 

The security-enforcing core of the system is implemented in 
SPARK. The static analysis offered by SPARK proved 
useful here.  Dataflow errors can cause subtle security 
problems—for example, an uninitialised variable might just 
get an initial value which happens to be a piece of 
cryptographic key material "left over" on the stack from the 
execution of another subprogram.  The absence of such 
problems in SPARK is a useful property. 

Information-flow analysis also proved useful. The 
separation of some data sections (i.e. "Information stored in 
variable X cannot end up leaking into variable Y") gave 
confidence that certain security properties were being 
maintained by the code.  This use of the Examiner is an 
interesting aside:  the research conducted in the late 1970's 
that led to the development of SPARK was originally aimed 
at the needs of high-security computing [7][8].  Clearly, this 
research can be judged successful—it just took 20 years to 
find a practical, commercial application! 

The MULTOS CA demonstrates the use of SPARK in a 
large, mixed-language development.  A crucial part of the 
design is the split between Ada95 and SPARK in the 
security-related software. This was considered at great 
length in the early days of the project. It is a common 
misunderstanding that SPARK is an "all-or-nothing" 
language, but this is never the case in practice—even 
SHOLIS included some small units coded in assembler.  
"Drawing the line" between SPARK and non-SPARK is a 
crucial design activity, embodied in our "INFORMED" 
design approach [9], which is now delivered to all SPARK 
users. 

5. LOCKHEED C130J 
The Lockheed C130J is the latest in a long line of military 
and commercial transport aircraft, commonly known as the 
"Hercules".  The C130J shares the same airframe design as 
previous models, but features significantly improved 
avionics, engines, and (most noticeably) 6-bladed 
composite propellers. 

The core of the new avionics system is the Mission 
Computer (MC), which performs the majority of mission 
critical functions on the aircraft. 

The MC is specified using the CoRE technique [10], using 
so-called "Parnas Tables."  These offer a formal tabular 
notation for relating inputs (or "monitored variables") to 
required outputs (or "controlled variables").  The core of 
the MC software (approximately 80%) is implemented in 
SPARK, and was subject to information flow analysis prior 
to final integration and testing.  SPARK was found to be a 
natural fit with the larger context of Lockheed’s mature 
development processes, which aim for “Right first time” 
software. 

Unusually, the aircraft was to be dual-certified for both civil 
and military use.  This required it to meet several standards, 
including DO178B[14] for civil applications.  The UK 
Royal Air Force, as lead military customer, required certain 
additional verification activities, most notably static 
analysis. 

In this area, SPARK proved to be a major success.  MC/DC 
test coverage analysis is known to be extremely expensive 
to carry out, is hard on staff morale and time, and often 
forms a serious bottleneck in project owing to its 
dependence on the availability of real target hardware.  
There is also some question over its effectiveness as a 
verification activity, since the effort required is often at the 
expense of other (possibly more useful) activities. 

In meeting the needs of DO-178B effectively, some simple 
observations can be made: 

Don’t debug erroneous programs on the target.  
Programs which contain a data-flow error are said to be 
"erroneous" in Ada terminology.  Such defects are 
notoriously difficult to find, especially on a target system 
that might have limited debugging and I/O support.  In one 



such case, some 30 person days (and some nights) of rig-
based testing were spent failing to find a simple data-flow 
error in a function.  The Examiner detected this problem 
trivially, needing approximately 1 person-hour of effort to 
locate and analyse the offending package. 

The target forms a bottleneck.  Most projects employ a 
large team of engineers, but typically only have one or two 
realistic target systems, which quickly become a bottleneck 
in integration, testing, and verification if too much reliance 
is placed upon them. 

Simplify code structure.  The complexity of MC/DC 
analysis is directly related to the structural complexity of 
the source and object code.  A key goal, therefore is to 
eliminate unnecessary code, such as predefined checks, 
from the object code. 

These observations lead directly to some key features of 
SPARK, and how they fit within this context: 

Static analysis.  Semantic checking, data- and information-
flow analysis, and program proof are all forms of static 
analysis—they are performed without running the program, 
and can be performed on incomplete programs during 
development.  Moreover, such analysis can be performed 
by all project engineers, without access to the final target 
hardware.  SPARK eliminates erroneous behaviour (such as 
the above-mentioned data-flow errors), so these problems 
cannot even reach the integration and test phase. 

This approach was used on the C130J MC to great effect.  
Lockheed have reported an 80% saving in the expected 
budget allocated to MC/DC testing, yet coding proceeded at 
near normal Ada rates.  On a system the size of the MC, this 
represents a significant sum of money!  SPARK cannot take 
all the credit for this: other significant factors included the 
maturity of Lockheed’s processes, the use of formal 
requirements, and the ability to generate structural test 
cases directly from the CoRE specification of units.  
SPARK did contribute directly, in that the code reaching 
MC/DC testing exhibited an unusually low fault density, 
reported to be less than one tenth of the expected industry 
norm for safety critical software—a direct testament to the 
usefulness of static analysis within the process.  
Furthermore, this saving was achieved by using only the 
most basic level of SPARK flow analysis—proof work was 
not carried out prior to MC/DC testing (although this was 
later performed in the UK).   

In the context of DO-178B, SPARK offers further useful 
facilities: 

Proof of exception freedom.  It is common practice when 
Ada is used in real-time embedded systems to compile 
"with checks off" to reduce code size and improve 
performance. This approach carries some risk, though, 
since a program may actually contain instances of 
predefined exceptions. Confidence in the code is usually 
built through informal analysis such as code reviews, or 
incomplete techniques such as testing. 

SPARK offers an alternative: the proof of the absence of  
predefined exceptions.  These proofs are a static analysis 
(and so, again, can be conducted earlier than testing, and 
without reliance on target hardware), and are valid for all 
input data, offering a qualitative improvement over testing.  
When such proofs are conducted, run-time checks can be 
disabled with confidence and evidence can be produced to 
show that this is justified. 

Simple object code.  We have previously demonstrated 
that SPARK can be compiled with little or no support from 
a run-time library [11]. Moreover, if run-time checks are 
disabled as described above, then the resulting object code 
is simplified.  This implies a significant reduction in the 
effort required to conduct MC/DC analysis.   

More detail on the C130J, and its use of SPARK, can be 
found in [12]. 

6. A LESS SUCCESSFUL PROJECT 
This project aimed to build a SIL4, real-time embedded 
control system.  The project chose a CASE-driven object-
oriented design style, based on the Shlaer/Mellor notation 
with the expectation that this would provide rapid 
development.  SPARK was selected to meet the regulatory 
requirements, but the code was not constructed in SPARK.  
Instead, the project aimed to convert the code into SPARK 
after testing. 

Initial signs were good—the project reported rapid progress 
in design and coding.  Software integration and the first 
attempts to “SPARKify”1 the code showed dark clouds 
gathering on the horizon.  The code-generator used by the 
CASE tool “flattened” the structure of the code so that all 
state was at the same (i.e. global) level.  In SPARK, this 
goes against good practice, which encourages the use of 
abstraction, refinement, and hierarchy of state.  The code-
generator also generated code which violated some of the 
static semantic rules of SPARK, so actual code changes had 
to be implemented late in the project—these were 
unfortunately seen as “distortions” of the original design. 

Progress slowed significantly at this stage, and the 
integrated system did not meet its requirements.  At present, 
the scope and requirements of the system are being 
reconsidered. 

7. CONCLUSIONS 
The four projects described in this paper have illustrated a 
number of points. 

• SPARK’s early adoption in a project and its influence 
on design of systems are perhaps the most important 
factors in successful projects.  SPARK is sometimes 
criticized as being “just a programming language”, but 

                                                           
1 SPARKify. v.tr.colloq./spa:kIfΛI/  to turn Ada into SPARK after 

it’s been written.  An unfortunate verb we wish had never been 
invented. 



our experience in this area shows quite the opposite—
the judicious use of SPARK can have a profound (and 
we hope positive) influence on systems’ architecture, 
design, verification, and cost. 

• Retrospective “SPARKification” of code is ill-advised, 
and often leads to significant difficulty. 

• CASE tools and their associated code-generators do 
not (currently) know enough about SPARK.  Their 
favoured design and code-generation strategies may 
lead to code which is perfectly acceptable Ada, but 
which does not follow our recommended guidelines for 
SPARK. 

• SPARK has been both a commercial and a technical 
success in meeting three of the most stringent software 
standards—Def. Stan. 00-55, DO-178B level A, and 
ITSEC E6.  In particular, on the C130J, SPARK 
contributed to a significant commercial as well as a 
technical success. 

• The SHOLIS project has shown that program proof is 
now a deployable and reasonable verification 
technology.  The proof of exception freedom has been 
shown to of major benefit in meeting the needs of DO-
178B level A, where the difficulties and cost of target-
based testing and MC/DC coverage analysis are so 
pronounced. 
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