

1. ABSTRACT
The positive experiences from the usage of Ada
in a safety critical flight control system are
described in this report. It shows that preemp-
tive scheduling implemented with tasking can
be combined with high requirements on reli-
ability and deterministic behavior.

1.1 Keywords
Flight control system, tasking, data consistency, exception
handling.

2. INTRODUCTION
The flight control system in the Swedish military aircraft
JAS 39 Gripen has been upgraded and is now programmed in
Ada 83, which includes tasking and exception handling in a
limited way (further described in [1]). Traditionally, these
flight control systems have been programmed in assembler
with simple cyclic executives.

The test flights with the upgraded flight control system
started in the beginning of 1996 (on schedule) and deliveries
to the Swedish Air Force in production aircraft started later
in the same year.

The system described in this report was the first in the
Gripen avionics programmed in Ada. However, today Ada
has been selected for other upgrade programs in the avionics.

3. SYSTEM DESCRIPTION
The JAS 39 Gripen is a multi-role (fighter, attack and
reconnaissance) aircraft and is produced in both single- and
two-seat versions. The differences between these versions
are handled within the same software.

The aircraft has an electrical (fly-by-wire) flight control
system, which performs input signal conditioning and
voting, control law computations, functional monitoring and
redundancy management, data recording, etc. Autopilot
functions are also provided.

Typical input sources are stick and pedal position sensors,
angular rate gyros, accelerometers, buttons for mode
selections, etc. Outputs are sent to control surface actuators,
indicators and warning lamps, etc. Communication with
other subsystems in the aircraft is performed via a 1553 data
bus.

The flight control system has three redundant channels.
Identical software resides in the channels, and each channel
contains the following two processors:

• Primary processor (MC68040).

• Input/Output and backup processor (TMS320C30).

Simplified backup control law computations are included in
the Input/Output processor in order to be able to fly home
and land safely in case of primary side failures. The I/O &
backup processor is programmed in C, and the primary
processor is programmed in Ada. Different languages were
selected in order to obtain diversity. The software written in
C is of significantly smaller size and the number of changes
are anticipated to be insignificant, i.e. future development
and update of the system is expected on the primary
processor side.

The three redundant channels exchange data via a Cross
Channel Data Link (CCDL), and the two processors within
one channel communicate via a Dual-Port RAM.

4. USAGE OF ADA
The primary processor is programmed in Ada 83 (the compil-
er is EDS XDAda version 1.3 with the standard run-time sys-
tem and VAX as host computer). Ada is used both for the
flight part of the program and for the Built-In-Test (BIT). Ada
has been found reliable and sufficient even for routines with
close hardware interaction, and it has been possible to mini-
mize the usage of assembler code (assembler has not been
necessary for performance reasons). The strong typing and
controlled interfaces are examples of Ada features which sup-
port development of reliable software. Abstract Data Types
(ADTs) have been found useful for implementation of filters,
integrators, faders, etc., which are typical building blocks in
this application.

4.1 Tasking and Scheduling
The flight control software in the primary processor is
implemented in Ada with five periodic tasks. The harmonic
frequencies are 120, 60, 30, 15 and 7.5 Hz, which are
common for the total avionic system including the 1553 bus

Usage of Ada in the Gripen Flight Control System
Bo Frisberg

Saab AB
SE-581 88 Linköping

Sweden
Phone: +46 13 18 32 18

Bo.Frisberg@saab.se

communication. The functions are allocated to the tasks
depending on the required data update frequency.

The periodic tasks are assigned fixed priorities according to
the rate monotonic scheduling algorithm, i.e. higher
priorities to tasks with shorter periods.

The scheduling is implemented by a separate task with the
highest priority, which is activated at 120 Hz (the 8.33 ms
minor frame) by an interrupt from a real time clock device.
This scheduler task activates the periodic tasks in required
intervals and also detects if any periodic task has missed its
deadline (overrun). As this is a hard real-time application, a
missed deadline means that the backup control laws (basic
control with only a single periodic thread) in the other
processor are made active. It should be noted that it is
possible to detect a missed deadline before the time for the
next periodic activation of a task, i.e. the allowed execution
time can be shorter than the period time (but both the
allowed execution and period times have to be multiples of
the minor frame).

A background task only measures and stores the
computational load of the periodic tasks (the real time clock
timer is read when the periodic tasks have finished its
execution and the background task is resumed).
Furthermore there are two tasks with lower priorities which
are only executed during BIT.

Although tasking is allowed in this application, the
following restrictions are applicable:

• All tasks are declared at library level and are created at
start of the program.

• No task is allowed to terminate, which means that each
task contains a non-terminating outer loop. Abort is not
allowed.

• All tasks have unique and fixed priorities (no dynamic
priorities).

• The Calendar package and the Delay statement are not
used (not needed in this application).

4.2 Data Consistency
In a high integrity system where preemptive scheduling is
allowed, it is essential to ensure that data exchanged
between the tasks are consistent. The harmonic period times
make it possible to achieve a fixed scheme of data
exchanges via buffers (described more in detail in [1]). The
data buffers require some extra RAM space, but the
execution time overhead is minimal. The buffering ensures
data consistency. Furthermore, it means that the timing of
data exchanged between the periodic tasks is independent of
the current CPU utilization, i.e. preemptive scheduling can
be combined with a deterministic behavior.

4.3 Other Design Characteristics
As there is no direct communication or synchronization
between the periodic tasks, the risk for priority inversion,
deadlock and other undesired task blocking is eliminated.

All tasking and data buffering mechanisms are handled at

the executive level, transparent to the application functions.
The sequential parts of the program can be analyzed and
tested separately. This is also an advantage from the
maintenance point of view. When application functions are
modified or new functionality is added, the tasking and
communication framework will normally not be affected at
all.

4.4 Exception Handling
Exception handling is another Ada feature which has been
questioned from safety point of view. In the Gripen flight
control system exceptions are handled, but there are no
advanced recovery mechanisms designed with exceptions.
Whenever the occurrence of an exception can be foreseen,
the exception should normally be avoided. But still there
may be situations where exceptions are difficult to foresee,
e.g. exceptions triggered by hardware failures.

If an exception occurs, the type of error and program
location are always recorded for diagnostic purpose.
Exception event flags as well as other failure flags are stored
in a non volatile memory for inspection after landing. The
general action when an exception occurs is then to make the
simplified backup control laws in the I/O & backup
processor active (similar to the periodic task overrun
situation).

A special situation where exception handling has been
found appropriate is to make it possible to catch failures in
isolated procedures which are not critical to the application.
For example, functionality may be added in such procedures
only for recording purpose during flight tests. A correct
normal function can still be ensured after an exception.

Another special use of the exception mechanism in this
application is for exit of the BIT execution on ground when
the speed of the aircraft exceeds a certain value (take-off).
This is not the ordinary way to exit BIT, and can basically
be seen as a form of asynchronous transfer of control.

So far, no exception has been raised in the air.

5. SUMMARY
The project experiences prove that Ada with tasking and
exception handling can be used in a safe and efficient way in
embedded control systems with strong requirements on
reliability and deterministic behavior. A robust software
architecture and design is necessary, including restrictions
and limitations in the usage of tasking and exception
handling.

The flight control system described in this experience report
is written in Ada 83, and no transition to Ada 95 is planned
today.

6. ACKNOWLEDGEMENT
Thanks to my colleague Kjell Larsson for his comments.

7. REFERENCE
[1] Frisberg, B. Ada in the JAS 39 Gripen Flight Control,

System, In Lars Asplund (Ed.) Ada-Europe’98 Confer-
ence Proceedings, LNCS 1411, Springer Verlag, 1998.

		cr1: Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full

		cr2: citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. SIGAda '98 Washington, D.C., USA © ACM 1-58113-033-3/98/0011...$5.00

